CN111974423A - 一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用 - Google Patents

一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN111974423A
CN111974423A CN202011028627.XA CN202011028627A CN111974423A CN 111974423 A CN111974423 A CN 111974423A CN 202011028627 A CN202011028627 A CN 202011028627A CN 111974423 A CN111974423 A CN 111974423A
Authority
CN
China
Prior art keywords
solution
fenton
catalytic material
center
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011028627.XA
Other languages
English (en)
Inventor
王津南
谢志群
周嘉丽
吕志平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202011028627.XA priority Critical patent/CN111974423A/zh
Publication of CN111974423A publication Critical patent/CN111974423A/zh
Priority to US18/028,229 priority patent/US20230372910A1/en
Priority to PCT/CN2021/114262 priority patent/WO2022062801A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种有缺电子Cu中心的类芬顿催化材料及其制备方法和应用,制备方法包括如下步骤:步骤一、将五水合硝酸铋溶解于硝酸溶液中,并使用去离子水将溶液稀释形成溶液A;步骤二、将柠檬酸加入到溶液A中,并用氨水调节溶液形成溶液B;步骤三、将异丙醇铝、二水合氯化铜和葡萄糖溶解于溶液B中形成悬浊液C;步骤四、将悬浊液C在高温下搅拌蒸发至固体完全析出形成固体D;步骤五、将固体D放入马弗炉中煅烧后得到所述类芬顿催化材料。该催化材料在中性条件下对各类毒害有机污染物都具有很好的去除效果尤其是酚类污染物,并且能够实现对H2O2的高选择性转化。

Description

一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和 应用
技术领域
本发明属于材料领域,涉及一种类芬顿催化材料,尤其涉及一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用。
背景技术
传统芬顿氧化包括均相芬顿法和非均相芬顿法,其中均相芬顿是利用Fe2+与H2O2反应产生具有超强氧化能力的羟基自由基(HO·)来降解水中污染物的过程。然而,传统芬顿技术存在诸多缺陷,如严格的酸性条件(pH<3),反应过程中铁泥的产生,以及对氧化剂极低的利用率都大大限制了传统芬顿法在实际废水处理中的应用。于是,多相相芬顿催化引起广泛关注,在多相芬顿催化研究中,一种双反应活性中心机理因其独特的优势如氧化剂利用率高,催化稳定性号等引起了研究人员极大的兴趣。然而,传统富电子Cu中心类芬顿催化剂依然存在许多不足之处阻碍其发展,如对酚类污染物的矿化度低,对分子量大的有机污染物降解效果差等。现有的涉及相关专利如下:
申请号为20110856060.7的发明公开了一种基于含铁粘土矿物负载钯催化剂的电芬顿水处理方法,该发明通过还原反应负载到含铁粘土矿物上得到把铁一体化催化剂,将钯铁一体化催化剂加入电芬顿水处理装置中催化产生经自由基,进而降解水中的有机污染物。实验表明,该催化剂可将0.5mmol/L苯甲酸钠在60分钟内去除92%,然而该装置需要用到稳定直流电源电源,消耗大量电能。另外,贵金属的使用使得该催化剂的制备成本极大,且传统类芬顿的电子转移机理必将造成贵金属的严重流失。这些缺陷严重限制了该催化剂在实际废水处理中的应用。
申请号为201611147885.3的发明公开了一种铁铜双金属负载介孔硅非均相芬顿催化材料的制备方法,用该种方法制备的介孔硅负载铁铜复合金属氧化物催化剂材料具有孔径分布广,比表面积大,金属分布比较均匀的特点。然而在降解染料废水过程中,需投加大量的氧化剂和催化剂。该实验中,在待降解染料废水中投加0.15M的H2O2和2g/L的催化剂反应300min后才得到62.3%的降解率。这种催化效率将大量消耗氧化剂的量,造成高额的治理成本。同时处理效果也不显著。
申请号为201510939912.X公开了一种铁一铜一铝氧化物复合催化剂的制备方法,该发明通过对介孔材料一进行修饰,获得良好纳米层,继续负载双金属组分和之后,活性组分继续保持高度分散的纳米层。然而,整个芬顿反应过程需要耗费较长时间才能污染物有效去除,整个反应仍然是遵守着经典芬顿反应的机理。且并且这种催化剂还是依靠金属单一位点的氧化还原反应实现过氧化氢的活化,体系中过氧化氢的利用率仍然很低。
申请号为CN201811311154.7公开了一种具有双反应活性中心的类芬顿催化材料的制备方法。该催化材料呈现完整的球花状介孔结构,比表面积较大,能够暴露较多的催化活性位点,使得在反应过程中H2O2尽可能的在富电子中心发生还原反应产生羟基自由基,新型催化材料在中性条件下对各类毒害有机污染物具有很好的去除效果,并且能够实现对H2O2的高选择性转化。然而该催化材料在催化降解酚类物质时矿化度很低,且在降解染料等大分子物质时催化效果也不好。
传统富电子Cu中心类芬顿催化剂依然存在对酚类污染物矿化度较低,催化大分子污染物效果差的缺陷;新近研究发现,由于酚羟基与表面铜之间形成σ-Cu-ligand作用。Cu(II)在σ-Cu(II)复合物中可以通过氧化HO-加成自由基为羟基化产物而被还原为Cu(I),这不仅阻止了Cu(II)氧化H2O2为HO2·/O2·-,而且还促进了Cu(II)/Cu(I)〔2〕的氧化还原循环。因此σ-Cu-ligand作用在酚类化合物的选择性降解和H2O2的有效利用中起着重要作用。然而要实现双反应活性中心与σ-Cu-ligand的协同作用存在几个技术难题需要解决:(1)传统富电子Cu中心类芬顿催化剂的构建会阻碍酚类物质与表面Cu的作用因此限制σ-Cu-ligand作用;(2)足够强的极化差异才能实现双反应活性中心机理,因此要选择合适的金属或金属氧化物进行负载或掺杂;(3)Cu在催化剂的晶格掺杂形式对双反应活性中心的建立起着重要作用,如何改善和提高Cu的晶格掺杂是一个难题。
发明内容
本发明提供一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用,以克服现有技术的缺陷。
为实现上述目的,本发明提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,具有这样的特征:包括如下步骤:
步骤一、将五水合硝酸铋溶解于硝酸溶液中,并使用去离子水将溶液稀释形成溶液A;
步骤二、将柠檬酸加入到溶液A中,并用氨水调节溶液形成溶液B;
步骤三、将异丙醇铝、二水合氯化铜和葡萄糖溶解于溶液B中形成悬浊液C;
步骤四、将悬浊液C在高温下搅拌蒸发至固体完全析出形成固体D;
步骤五、将固体D放入马弗炉中煅烧后得到所述类芬顿催化材料。
进一步,本发明提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,还可以具有这样的特征:其中,步骤一中,所述硝酸溶液的浓度为1mol/L-2mol/L,所述五水合硝酸铋与硝酸溶液之比为0.32-3.28g∶5mL。
进一步,本发明提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,还可以具有这样的特征:其中,所述柠檬酸与所述五水合硝酸铋的添加比为0.3-0.9g∶0.32-3.28g。
进一步,本发明提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,还可以具有这样的特征:其中,步骤二中,氨水调节溶液pH至5-9。
进一步,本发明提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,还可以具有这样的特征:其中,步骤三中,所述异丙醇铝、二水合氯化铜和葡萄糖的添加量之比为6.0-9.0g∶0.1-0.8g∶4.0-8.0g。
进一步,本发明提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,还可以具有这样的特征:其中,步骤四中,高温温度为100℃,搅拌速度为100-200r/min。
进一步,本发明提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,还可以具有这样的特征:其中,步骤五中,马弗炉煅烧温度为400-600℃,煅烧时间为3-7h,煅烧过程中的升温速率为5-10℃/min。
由上述的制备方法制得的具有缺电子Cu中心的类芬顿催化材料,也在本发明的保护范围内,所述催化材料整体呈现蓬松的棉花状多孔形貌。根据氮气吸脱附等温线和孔径分布图可知合成的类芬顿催化剂中主要存在介孔结构,且孔径分布在7.1nm左右;所述催化材料的结构式为为(Bi,Cu)Al2O3,其中Cu的质量分数为3.0-9.0%,Bi12O15Cl6的质量分数为5.4-50.4%;所述催化材料由于缺电子Cu中心的形成,使得在催化降解酚类污染物时可以实现双反应活性中心与σ-Cu-ligand的协同作用。
本发明还提供上述具有缺电子Cu中心的类芬顿催化材料的应用,具有这样的特征:所述类芬顿催化材料与H2O2在水中联用处理降解有机污染物。
进一步,本发明提供一种具有缺电子Cu中心的类芬顿催化材料的应用,还可以具有这样的特征:其中,所述有机污染物为罗丹明B、双酚A和二氯苯酚中的任一种。
本发明公开了一种缺电子Cu中心类芬顿催化材料及其制备方法,基于γ-Cu-Al2O3和Bi12O15Cl6两种催化剂的掺杂,通过改良的蒸发诱导自组装反应一步合成γ-Cu-Al2O3并负载Bi12O15Cl6,利用强电负性的Bi与使催化剂形成缺电子的Cu中心。与传统的富电子铜中心催化剂不同,缺电子铜中心有利于与酚类化合物形成σ-Cu-ligand作用。这样的σ-Cu-ligand可以通过H2O2氧化生成HO-加合自由基,生成·OH,并通过HO-加成自由基将Cu(II)配合物中的Cu(II)同时还原成Cu(I)。值得注意的是,虽然随着反应时间的延长,由于酚类化合物的减少,σ-Cu-ligand效应逐渐减弱,但随后双反应中心在催化反应中起主导作用。通过降解模拟的双酚A和二氯苯酚废水试验,表明新型γ-Cu-Al2O3-Bi12O15Cl6具有极高的芬顿催化效果和稳定性。
本发明的有益效果在于:
一、制备的类芬顿催化材料具有蓬松多孔的结构、比表面积较大,能够暴露出更多的有效活性位点。
二、制备出的催化材料能够在中性条件下对有机污染物,如双酚A(BPA)、罗丹明B和二氯苯酚表现出良好的催化活性和稳定性。
三、缺电子Cu中心的形成使得该催化剂极易与酚类物质形成σ-Cu-ligand作用,大大提高的酚类物质的降解速率,同时σ-Cu-ligand与双反应活性中心的协同作用使得该体系对酚类污染物的矿化度也大大提高。
四、双反应活性中心的建立也使得该催化剂能够有效利用体系中的氧化剂,因此在该体系中双氧水的利用率很高。
附图说明
图1为(Bi,Cu)Al2O3的扫描电镜图;
图2为(Bi,Cu)Al2O3中各元素分布EDS图谱;
图3为(Bi,Cu)Al2O3的透射电镜图;
图4为(Bi,Cu)Al2O3的N2吸脱附曲线和孔径分布图谱;
图5为(Bi,Cu)Al2O3的X射线衍射图谱;
图6为(Bi,Cu)Al2O3的Bi 4f、Cu 2p和Al 2p轨道的XPS图谱;
图7为(Bi,Cu)Al2O3中Cu元素电子自旋共振图谱;
图8为(Bi,Cu)Al2O3降解双酚A各阶段的红外图谱;
图9中,A为DMPO捕获悬浮液中HO2·/O2·-的EPR信号图;B为DMPO捕获悬浮液中·OH的EPR信号图;
图10为不同Bi12O15Cl6含量的(Bi,Cu)Al2O3对初始浓度为20ppm的双酚A降解去效果图;
图11为不同H2O2含量的(Bi,Cu)Al2O3对双酚A降解去效果图;
图12为(Bi,Cu)Al2O3在不同有机物体系下的原位拉曼图谱;
图13为(Bi,Cu)Al2O3与过氧化氢水溶液相互作用的机理图。
具体实施方式
以下结合具体实施例对本发明作进一步说明。
实施例1
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将0.32g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.3g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至600℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为5.4%。
对上述制得的催化材料进行扫描电镜以及EDS表征,由图1可知经改良的蒸发诱导自组装反应和煅烧而成的催化剂呈现棉花状非晶态结构,结构蓬松多孔,为催化反应提供大量活性位点;由图2可知,Cu、C、Bi、O、Cl、Al元素均匀的分布在体相中,表明掺入的Cu元素以及生成的Bi12O15Cl6很好的分布在基体材料Al2O3的结构中。
配置20mg/L的双酚A溶液于150mL的锥形瓶中,在锥形瓶中加入由步骤(5)制备的催化材料0.1g,放置于35℃的恒温水浴锅中搅拌30min后达到吸附平衡,然后加入0.1mL的质量分数为30%的过氧化氢溶液,每隔5min取出反应溶液1mL过0.45μm滤膜后用用高效液相色谱HPLC测定不同反应时间下的BPA的浓度,结果如图10所示。
实施例2
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将0.64g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.3g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至600℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为10.3%。
对上述制得的催化材料进行透射电镜表征,由图3可知Bi12O15Cl6纳米粒子粘附在γ-Cu-Al2O3表面,形成异质结构。值得注意的是,HRTEM图像清楚地表明,铜完全嵌入γ-Al2O3晶格中。晶面间距为0.21nm的晶格条纹对应于Cu的(111)面,而没有晶格条纹的云状结构是非晶态结构的γ-Al2O3
配置20mg/L的双酚A溶液于150mL的锥形瓶中,在锥形瓶中加入由步骤(5)制备的催化材料0.1g,放置于35℃的恒温水浴锅中搅拌30min后达到吸附平衡,然后加入0.1mL的质量分数为30%的过氧化氢溶液,每隔5min取出反应溶液1mL过0.45μm滤膜后用用高效液相色谱HPLC测定不同反应时间下的BPA的浓度,结果如图10所示。
实施例3
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将1.28g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.3g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至600℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为29.6%。
对上述制备的催化材料进行N2吸脱附曲线和孔径分布的测试,由图4可知,(Bi,Cu)Al2O3的N2吸/脱附等温线是带有H3滞回曲线的IV等温线,表明狭缝状中孔结构,第一个位于相对压力P/P0=0.4-0.8的滞后环表明合成的样品中主要存在的是介孔;第二个较小的在相对压力P/P0=0.8-1.0之间的滞后环,表明催化剂中存在着一小部分较大的介孔。由孔径分布图可知棉花状(Bi,Cu)Al2O3中的介孔孔径主要分布在7.1nm左右,且由氮气吸脱附等温线计算得到的(Bi,Cu)Al2O3的比表面积为240m2/g,孔容为0.454cm3/g。
配置20mg/L的双酚A溶液于150mL的锥形瓶中,在锥形瓶中加入由步骤(5)制备的催化材料0.1g,放置于35℃的恒温水浴锅中搅拌30min后达到吸附平衡,然后加入0.1mL的质量分数为30%的过氧化氢溶液,每隔5min取出反应溶液1mL过0.45μm滤膜后用用高效液相色谱HPLC测定不同反应时间下的BPA的浓度,结果如图10所示。
实施例4
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将2g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.3g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至600℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为30.3%。
对上述制备的催化材料进行X射线衍射测试,由图5可知,(Bi,Cu)Al2O3的X射线衍射图中没有观察到与铜相对应的衍射峰。然而掺杂Bi12O15Cl6后的催化剂的XRD图谱中出现新的峰,其中大多数峰对应于Bi12O15Cl6。2θ=30.12°处的最强衍射峰归因于Bi12O15Cl6的(413)面,表明(413)面是该晶体晶面形成的择优取向。
配置20mg/L的双酚A溶液于150mL的锥形瓶中,在锥形瓶中加入由步骤(5)制备的催化材料0.1g,放置于35℃的恒温水浴锅中搅拌30min后达到吸附平衡,然后加入0.1mL的质量分数为30%的过氧化氢溶液,每隔5min取出反应溶液1mL过0.45μm滤膜后用用高效液相色谱HPLC测定不同反应时间下的BPA的浓度,结果如图10所示。
实施例5
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将2.64g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.3g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至600℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为42.1%。
对上述制备的催化材料进行XPS表征,由图6可知,(Bi,Cu)Al2O3谱中74.2和75.3eV处Al3+的两个结合能(BEs)分配分别对应Al-O-Al和Al-O-Cu。此外,测定0.64CAB中Cu的XPS,拟合所得的三个峰932.7ev、934.0ev和942.4ev分别对应于铜的还原态、氧化态和波动峰。当Bi12O15Cl6掺杂到γ-Cu-Al2O3中后,Bi有两个特征峰Bi 4f7/2(158.3eV)和Bi 4f5/2(163.7eV))。另外氧空位(OVs)可以在BiOCl的煅烧过程中形成,并且随着低电荷Bi离子(Bi(3-x)+)[28,29]的产生,OVs上的局域电子会转移给Bi3+。因此,在Bi12O15Cl6的光谱中会出现结合能较低的新峰(157.3eV,162.7eV)。
配置20mg/L的双酚A溶液于150mL的锥形瓶中,在锥形瓶中加入由步骤(5)制备的催化材料0.1g,放置于35℃的恒温水浴锅中搅拌30min后达到吸附平衡,然后加入0.1mL的质量分数为30%的过氧化氢溶液,每隔5min取出反应溶液1mL过0.45μm滤膜后用用高效液相色谱HPLC测定不同反应时间下的BPA的浓度,结果如图10所示。
从图10中可知,所述Bi12O15Cl6质量分数为9%的类芬顿催化剂在中性pH条件下对BPA的降解效果较好,30min内的去除率达到95%以上。
实施例6
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将3.28g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.3g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至600℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为50.4%。
对上述制备的催化材料进行固体EPR表征,由图7可知,Cu元素固体EPR显示出很强的伴有超精细耦合结构的信号,这是自旋为I=3/2的Cu(II)的典型特征。(Bi,Cu)Al2O3样品的g因子和A值如下表所示:
样品 g// g⊥ A//(G)
γ-Cu-Al<sub>2</sub>O<sub>3</sub>-Bi<sub>12</sub>O<sub>15</sub>Cl<sub>6</sub> 2.403 2.130 130
其中g||>g⊥>2.0023(ge),表明催化剂表面存在的未成对电子位于Cu(II)的dx2-y2轨道上,并且g因子所在数值范围和(Bi,Cu)Al2O3的EPR信号形状符合处于六配位的八面体几何结构中的Cu(II)存在形式。上述结果表明,由于Bi和Cu的电负性差异,在对Al2O3进行Cu的共晶格掺杂并负载Bi12O15Cl6引起了催化剂表面电子的非均匀分布,并且由于Bi的电负性高于Cu,使得Cu周围电子云密度减弱产生缺电子Cu中心,相对应的产生了富电子Bi中心。
实施例7
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将0.64g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.6g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至600℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为10.3%。
配置20mg/L的双酚A溶液于150mL的锥形瓶中,在锥形瓶中加入由步骤(5)制备的催化材料0.1g,放置于35℃的恒温水浴锅中搅拌30min后达到吸附平衡,然后加入0.1mL的质量分数为30%的过氧化氢溶液,每隔5min取出反应溶液1mL过0.45μm滤膜后用用高效液相色谱HPLC测定不同反应时间下的BPA的浓度,结果如图10所示。
用不同反应时间(Bi,Cu)Al2O3的FT-IR光谱来分析催化剂的表面反应过程(图8)。新制的(Bi,Cu)Al2O3在3500.9和1643cm-1处的两个吸收带分别对应于O H的拉伸振动和H-O-H的混合振动。BPA的-OH和-CH3的特征峰分别出现在3339.7和2970cm-1处。1446.8、1510和1610cm-1处的峰归因于双酚A芳香环的骨架振动,而1177到1238cm-1范围内的特征峰代表酚羟基的C-O拉伸振动。吸附BPA后,BPA的酚羟基与Cu(II)形成第一配位相。由于双酚A酚羟基的脱质子和周围环境的差异,–OH的特征峰从3339.7cm-1移动到3423cm-1。此外,BPA在吸附后的(Bi,Cu)Al2O3光谱中也出现了一些特征峰。随着反应时间的延长,BPA芳香环的特征峰(1446.8、1510和1610cm-1)逐渐消失。反应12h后,所有有机物的特征峰消失,(Bi,Cu)Al2O3(0.64CAB)的v(OH)带移回3500.3cm-1,表明BPA及其中间体完全矿化。
实施例8
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将0.64g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.9g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至600℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为10.3%。
为了进一步阐明催化机理,在相应样品的不同分散体中检测DMPO捕获的EPR信号(图9)。在没有H2O2的情况下,纯Al2O3和Bi12O15Cl6的甲醇分散液中未检测到信号。然而,DMPO-O2·-的六个特征峰的强度为γ-Cu-Al2O3>(Bi,Cu)Al2O3。其他的峰对应于DMPO和O2·-反应产生的碳中心自由基。由于这些峰与DMPO-O2·的特征峰重叠,很难从EPR谱中识别出来。富电子中心和O2的反应可以产生O2·-。因此,在(Bi,Cu)Al2O3的甲醇分散体系中,Bi12O15Cl6可以作为富电子中心,将O2还原为O2·-。由于缺电子Cu中心氧化H2O到·OH,在γ-Cu-Al2O3水溶液和(Bi,Cu)Al2O3水溶液中观察到了DMPO-OH·的特征峰。其强度为(Bi,Cu)Al2O3>γ-Cu-Al2O3。此外,·OH攻击含碳化合物(DMPO),生成以碳为中心的自由基加合物[45],出现了其他六个峰。
实施例9
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将0.64g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.6g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至550℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为10.3%。
实施例10
本实施例提供一种具有缺电子Cu中心的类芬顿催化材料的制备方法,包括如下步骤:
(1)将0.64g五水合硝酸铋溶解在5mL硝酸溶液(2M)中,加入去离子水稀释至100mL得到溶液A;
(2)将0.6g柠檬酸溶解于步骤(1)所得的溶液A中,以100r/min的速率搅拌并用氨水调节pH至6.5,得到溶液B;
(3)在所得步骤(2)所得的溶液B中加入8.4g异丙醇铝、0.4g二水合氯化铜和7.2g葡萄糖,以100r/min的速率搅拌12h形成溶液C;
(4)将步骤(3)所得的所得溶液C放置于电热炉上以100℃加热搅拌至水分完全蒸干得到固体D;
(5)将步骤(4)所得的固体D放入刚玉坩埚中,于马弗炉中以5℃/min的升温速率,升温至650℃进行煅烧后保温6h,得到所述缺电子Cu中心类芬顿催化材料,其中Bi12O15Cl6在该体系内的质量分数为10.3%。
配置20mg/L的双酚A溶液于150mL的锥形瓶中,在锥形瓶中加入由步骤(5)制备的催化材料0.1g,放置于35℃的恒温水浴锅中搅拌30min后达到吸附平衡,然后加入0.1mL的质量分数为30%的过氧化氢溶液,每隔5min取出反应溶液1mL过0.45μm滤膜后用用高效液相色谱HPLC测定不同反应时间下的BPA的浓度。从图11中可知,所述类芬顿催化剂在中性pH条件下可以在双氧水浓度为8mmol/L时快速降解BPA,30min内的去除率达到95%以上。
实验原理为:与传统的富电子铜中心催化剂不同,如图13所示,在[(Bi,Cu)Al2O3+H2O2+酚类化合物]体系中,缺电子铜中心有利于与酚类化合物形成σ-Cu-ligand作用。这样的σ-Cu-ligand被H2O2优先氧化生成·OH和HO-加合自由基,HO-加合自由基随后将Cu(II)还原为Cu(I)。因此,σ-Cu-ligand不仅防止Cu(II)氧化H2O2到HO2·/O2·-,而且还增强了Cu(II)/Cu(I)的氧化还原循环。值得注意的是,虽然由于酚类化合物的降解,σ-Cu-ligand会随时间逐渐减少,但双反应中心仍然可以在催化后续反应中发挥重要作用。富电子Bi中心能将H2O2还原为·OH,降解有机物。因此,在酚类化合物的降解过程中,有三条电子转移路线可以产生·OH:(1)第一条转移路线是从σ-Cu-ligand到H2O2,伴随着·OH的生成和Cu(I I)的还原到Cu(I);(2)第二条转移路线是从Cu(I)到H2O2,伴随着·OH的生成;(3)第三条转移路线随着·OH的生成,从富电子Bi中心向H2O2转移。由于σ-Cu-ligand、双反应中心的协同作用,(Bi,Cu)Al2O3获得了较高的催化活性和过氧化氢的利用率(η)。

Claims (10)

1.一种具有缺电子Cu中心的类芬顿催化材料的制备方法,其特征在于:
包括如下步骤:
步骤一、将五水合硝酸铋溶解于硝酸溶液中,并使用去离子水将溶液稀释形成溶液A;
步骤二、将柠檬酸加入到溶液A中,并用氨水调节溶液形成溶液B;
步骤三、将异丙醇铝、二水合氯化铜和葡萄糖溶解于溶液B中形成悬浊液C;
步骤四、将悬浊液C在高温下搅拌蒸发至固体完全析出形成固体D;
步骤五、将固体D放入马弗炉中煅烧后得到所述类芬顿催化材料。
2.根据权利要求1所述的具有缺电子Cu中心的类芬顿催化材料的制备方法,其特征在于:
其中,步骤一中,所述硝酸溶液的浓度为1mol/L-2mol/L,所述五水合硝酸铋与硝酸溶液之比为0.32-3.28g∶5mL。
3.根据权利要求1所述的具有缺电子Cu中心的类芬顿催化材料的制备方法,其特征在于:
其中,所述柠檬酸与所述五水合硝酸铋的添加比为0.3-0.9g∶0.32-3.28g。
4.根据权利要求1所述的具有缺电子Cu中心的类芬顿催化材料的制备方法,其特征在于:
其中,步骤二中,氨水调节溶液pH至5-9。
5.根据权利要求1所述的具有缺电子Cu中心的类芬顿催化材料的制备方法,其特征在于:
其中,步骤三中,所述异丙醇铝、二水合氯化铜和葡萄糖的添加量之比为6.0-9.0g∶0.1-0.8g∶4.0-8.0g。
6.根据权利要求1所述的具有缺电子Cu中心的类芬顿催化材料的制备方法,其特征在于:
其中,步骤四中,高温温度为100℃,搅拌速度为100-200r/min。
7.根据权利要求1所述的具有缺电子Cu中心的类芬顿催化材料的制备方法,其特征在于:
其中,步骤五中,马弗炉煅烧温度为400-600℃,煅烧时间为3-7h,煅烧过程中的升温速率为5-10℃/min。
8.一种具有缺电子Cu中心的类芬顿催化材料,其特征在于:由权利要求1-7任一项所述的方法制得,所述类芬顿催化材料的结构式为(Bi,Cu)Al2O3,其中Cu的质量分数为3.0-9.0%,Bi12O15Cl6的质量分数为5.4-50.4%。
9.如权利要求8所述的具有缺电子Cu中心的类芬顿催化材料的应用,其特征在于:所述类芬顿催化材料与H2O2在水中联用处理降解有机污染物。
10.根据权利要求9所述的具有缺电子Cu中心的类芬顿催化材料的应用,其特征在于:
其中,所述有机污染物为罗丹明B、双酚A和二氯苯酚中的任一种。
CN202011028627.XA 2020-09-24 2020-09-24 一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用 Pending CN111974423A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011028627.XA CN111974423A (zh) 2020-09-24 2020-09-24 一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用
US18/028,229 US20230372910A1 (en) 2020-09-24 2021-08-24 FENTON-LIKE CATALYST MATERIAL WITH ELECTRON-POOR Cu CENTER, AND PREPARATION METHOD AND USE THEREOF
PCT/CN2021/114262 WO2022062801A1 (zh) 2020-09-24 2021-08-24 一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011028627.XA CN111974423A (zh) 2020-09-24 2020-09-24 一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111974423A true CN111974423A (zh) 2020-11-24

Family

ID=73450556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011028627.XA Pending CN111974423A (zh) 2020-09-24 2020-09-24 一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230372910A1 (zh)
CN (1) CN111974423A (zh)
WO (1) WO2022062801A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060135A (zh) * 2023-02-20 2023-05-05 中国科学院生态环境研究中心 一种复合纳米材料、制备方法以及催化降解应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521218B (zh) * 2022-07-26 2023-08-22 盐城工学院 一种氨基酸表面活性剂原料的制备方法
CN115779964B (zh) * 2022-12-05 2024-04-23 东南大学 尿素改性氧化铜材料及其制备方法和应用
CN117160455B (zh) * 2023-06-21 2024-05-10 中国科学院上海硅酸盐研究所 一种p-d轨道杂化增强类芬顿的无机纳米材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787484A (zh) * 2014-01-21 2014-05-14 同济大学 利用铜-铁非均相芬顿技术去除污水中双氯芬酸的方法
CN106881118A (zh) * 2017-04-01 2017-06-23 江苏大学 一种离子交换法合成异质结光催化剂的方法
CN108940342A (zh) * 2018-07-19 2018-12-07 广州大学 一种原位掺杂型钴系芬顿催化剂及其合成方法和应用
CN109174163A (zh) * 2018-11-06 2019-01-11 南京大学 一种具有双反应活性中心类芬顿催化材料及其制备方法
CN110479272A (zh) * 2019-08-30 2019-11-22 华北电力大学 一种Fenton非均相多组分固相催化剂及其制备方法与应用
US20200290900A1 (en) * 2019-03-14 2020-09-17 King Fahd University Of Petroleum And Minerals Copper-boron-ferrite graphite silica-sol composites

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787484A (zh) * 2014-01-21 2014-05-14 同济大学 利用铜-铁非均相芬顿技术去除污水中双氯芬酸的方法
CN106881118A (zh) * 2017-04-01 2017-06-23 江苏大学 一种离子交换法合成异质结光催化剂的方法
CN108940342A (zh) * 2018-07-19 2018-12-07 广州大学 一种原位掺杂型钴系芬顿催化剂及其合成方法和应用
CN109174163A (zh) * 2018-11-06 2019-01-11 南京大学 一种具有双反应活性中心类芬顿催化材料及其制备方法
US20200290900A1 (en) * 2019-03-14 2020-09-17 King Fahd University Of Petroleum And Minerals Copper-boron-ferrite graphite silica-sol composites
CN110479272A (zh) * 2019-08-30 2019-11-22 华北电力大学 一种Fenton非均相多组分固相催化剂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIQUN XIE ET AL.: "Novel Fenton-like catalyst γ-Cu-Al2O3-Bi12O15Cl6 with electron-poor Cu centre and electron-rich Bi centre for enhancement of phenolic compounds degradation and H2O2 utilization", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060135A (zh) * 2023-02-20 2023-05-05 中国科学院生态环境研究中心 一种复合纳米材料、制备方法以及催化降解应用

Also Published As

Publication number Publication date
US20230372910A1 (en) 2023-11-23
WO2022062801A1 (zh) 2022-03-31

Similar Documents

Publication Publication Date Title
US11065610B2 (en) Fenton-like catalytic material with dual reaction centers and preparation method thereof
Xie et al. Construction of MIL-53 (Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-scheme photocatalyst: visible-light photocatalytic performance and mechanism investigation
Wang et al. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation
CN111974423A (zh) 一种具有缺电子Cu中心的类芬顿催化材料及其制备方法和应用
Meng et al. Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity
Ji et al. Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4–BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue
Gu et al. The preparation of Ag/ZIF-8@ ZIF-67 core-shell composites as excellent catalyst for degradation of the nitroaromatic compounds
Lyu et al. Efficient Fenton-like process for organic pollutant degradation on Cu-doped mesoporous polyimide nanocomposites
Xie et al. Novel Fenton-like catalyst γ-Cu-Al2O3-Bi12O15Cl6 with electron-poor Cu centre and electron-rich Bi centre for enhancement of phenolic compounds degradation and H2O2 utilization: The synergistic effects of σ-Cu-ligand, dual-reaction centres and oxygen vacancies
Zeng et al. Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes
Ding et al. Mesoporous structure and amorphous Fe-N sites regulation in Fe-g-C3N4 for boosted visible-light-driven photo-Fenton reaction
Chen et al. Migration of cations and shell functionalization for Cu-Ce-La/SSZ-13@ ZSM-5: The contribution to activity and hydrothermal stability in the selective catalytic reduction reaction
Ji et al. Ionic liquid-assisted bidirectional regulation strategy for carbon quantum dots (CQDs)/Bi4O5I2 nanomaterials and enhanced photocatalytic properties
Kara et al. Preparation and characterization of perlite/V2O5 nano-spheres via a novel green method: applied for oxidation of benzyl alcohol derivatives
Huang et al. Influence of support surface basicity and gold particle size on catalytic activity of Au/γ-AlOOH and Au/γ-Al2O3 catalyst in aerobic oxidation of α, ω-diols to lactones
Zhao et al. Magnetic N-doped Co–carbon composites derived from metal organic frameworks as highly efficient catalysts for p-nitrophenol reduction reaction
CN107376921B (zh) 一种废水深度处理用石墨烯-多孔氧化镍复合催化剂及其制备方法和应用
Liu et al. A novel amorphous CoS x/NH 2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light
Zhang et al. Bimetal Cu and Pd decorated Z-scheme NiGa2O4/BiVO4 photocatalyst for conversion of nitride and sulfide dyes to (NH4) 2SO4
Yadav et al. Highly catalytically active palladium nanoparticles incorporated inside metal-organic framework pores by double solvents method
Wu et al. Surface activation of MnNb2O6 nanosheets by oxalic acid for enhanced photocatalysis
Mohamed et al. Construction of hierarchical ZnS@ ZnO secured from metal–organic framework-ZnS@ ZIF-8 for enhanced photoreduction of CO2
Yu et al. Visible-light-assisted activation of peroxymonosulfate (PMS) over CoOx@ C/g-C3N4 composite for efficient organic pollutant degradation
Xu et al. One-pot synthesis of La–Fe–O@ CN composites as photo-Fenton catalysts for highly efficient removal of organic dyes in wastewater
Yan et al. Preparation, characterization and photocatalytic activity of TiO 2 formed from a mesoporous precursor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Jinnan

Inventor after: Xie Zhiqun

Inventor after: Zhou Jiali

Inventor after: Lv Zhiping

Inventor before: Wang Jinnan

Inventor before: Xie Zhiqun

Inventor before: Zhou Jiali

Inventor before: Lv Zhiping

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124