CN111957330B - 一种janus两性特征的杂多酸/c3n4催化剂制备方法及其应用 - Google Patents

一种janus两性特征的杂多酸/c3n4催化剂制备方法及其应用 Download PDF

Info

Publication number
CN111957330B
CN111957330B CN202010859142.9A CN202010859142A CN111957330B CN 111957330 B CN111957330 B CN 111957330B CN 202010859142 A CN202010859142 A CN 202010859142A CN 111957330 B CN111957330 B CN 111957330B
Authority
CN
China
Prior art keywords
catalyst
mass
janus
soybean oil
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010859142.9A
Other languages
English (en)
Other versions
CN111957330A (zh
Inventor
梁栋
郭晓萍
张昊
高娜
张瑞琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202010859142.9A priority Critical patent/CN111957330B/zh
Publication of CN111957330A publication Critical patent/CN111957330A/zh
Application granted granted Critical
Publication of CN111957330B publication Critical patent/CN111957330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • C07D303/42Acyclic compounds having a chain of seven or more carbon atoms, e.g. epoxidised fats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属精细化学品的绿色催化合成技术领域,提供了一种JANUS两性特征的杂多酸/C3N4催化剂制备方法及其在光热协同快速催化豆油环氧化反应中的应用。以石蜡、OP‑10、溴代十八烷与水混合加热形成石蜡乳液,将氮化碳水溶液加入到其中得十八烷基改性C3N4,然后浸渍负载杂多酸,用石油醚洗去石蜡、干燥即为催化剂。该催化剂能高分散于油水界面、形成稳定乳液并加速界面反应效率,使双氧水/豆油在可见光与热传递双重作用下,在45‑65℃温和条件下用时0.5‑2h即制得产品的环氧值达6.4‑6.9%,且催化剂易于回收和分离,相比以往的豆油环氧化技术本发明具有快速、安全、经济、节能的优点。

Description

一种JANUS两性特征的杂多酸/C3N4催化剂制备方法及其应用
技术领域
本发明属于精细化学品的绿色催化合成技术领域,具体涉及一种JANUS两性特征的杂多酸/C3N4催化剂制备方法及其在光热协同快速催化豆油环氧化反应中的应用。
背景技术
豆油环氧化产品替代邻苯二甲酸酯作为一种环保型增塑剂、润滑剂和稳定剂,其生产需求日益增加。当前主流工艺采用过氧甲酸(乙酸)均相催化机理,后续仍需碱洗、蒸馏等步骤,污染较为严重;为提高反应效率,部分工艺还选用了无机质子酸、有机溶剂等,也增加了环境负担;从绿色化工角度,科技工作者开发了多种固体酸催化技术,例如强酸树脂、分子筛、粘土、杂多酸等,尽量减少溶剂或采用无溶剂生产工艺,以减少对设备的腐蚀和环境的污染[李玉芳, 伍小明. 环氧大豆油合成技术研究进展[J]. 精细与专用化学品,2015, 23(001):44-47.]。
但非均相催化剂的效果通常不如均相催化剂,一个原因是后者与反应物的接触效率更高、传热传质速度更快。豆油环氧化一般多采用廉价的双氧水为氧化剂,为了提高水相与油相的界面反应速率,豆油环氧化可使用季铵盐、离子液体、聚乙二醇等相转移催化剂[CN103224837A,一种快速、绿色制备环氧化大豆油的方法](其中温度60℃,时间3-4 h,产品环氧值>6.3%)、[程威威,刘国琴, 刘新旗,等.相转移催化制备环氧大豆油的工艺研究[J].华南理工大学学报(自然科学版)2015(11):23-29] (其中温度55℃,时间3.5 h,产品环氧值为6.4%)、[蒲吉运, 杨小俊, 白航,等. 四丁基溴化铵催化合成环氧大豆油[J]. 中国油脂, 2018, 43(3):110-112,140] (其中温度65℃,时间3 h,产品环氧值为3.5%)。
如将季铵盐、离子液体等与杂多酸结合,构成所谓反应型催化剂,反应时可以溶于双氧水,待氧化剂殆尽后可从溶剂中析出[李坤兰, 高爽, 奚祖威. 反应控制相转移催化合成环氧大豆油[J]. 应用化学, 2007, 24(10):1177-1181](其中温度70℃,时间4 h,产品环氧值>6%)、[朱超, 雷梦, 冯波, 等. 磷钨杂多酸季铵盐催化合成环氧大豆油的研究[J]. 粘接, 2016, (8):39-42](其中催化剂循环2次性能下降50%)、周喜、张超等[CN106831654A,一种清洁合成环氧大豆油的方法]、[CN106831656A,一种复合掺杂磷钨酸盐催化合成环氧大豆油的方法]、[CN106831655A,一种无羧酸条件下催化合成环氧大豆油的方法](其中温度40-90 ℃,时间1.5-9 h),但因为催化剂组成成分的良溶解性,所以流失风险不可避免,若干次后回收效率和催化活性均有一定下降,如:磷钨杂多酸季铵盐催化合成环氧大豆油的研究(朱超等,粘结,2016, (8):39-42),该文献中所记载的催化剂在循环2次后催化剂性能下降50%。
具有疏水/亲水两性的不对称JANUS纳米颗粒,能分散于油水界面、形成一个稳定的Pickering乳液,起到相转移催化剂的作用,但却比传统季铵盐更容易分离和回收再利用。向固体JANUS纳米颗粒中引入杂多酸,负载稳定、可重复使用,能形成稳定的水包油或油包水的Pickering乳液,表现出连续的催化氧化、裂解和酰化等反应效果。
但是现有报道中多数JANUS材质为二氧化硅、碳材料和高分子材料[薛伟, 武江红, 杜志平. Janus微纳粒子的制备[J]. 日用化学工业, 2019, 49(9): 614-620]、[高党鸽, 常瑞, 吕斌, 等. Janus纳米材料可控制备的研究进展[J]. 高分子材料科学与工程,2019, 35(1): 168-175],仅在近年有少数报道提及兼有光催化功能的TiO2、ZnO等半导体,以制成适用于油水体系的光催化剂[CN110152643A,一种Janus结构还原氧化石墨烯膜/二氧化钛复合材料的制备方法]、[CN109926049A,一种用于有机污染物降解的微球马达及其制备方法和应用][CN110508224A,一种无机半导体/共轭聚合物Janus微球及其制备方法]、[Yanting Shi, Qiaoling Zhang, Youzhi Liu, et al. Preparation of amphiphilicTiO2 Janus particles with highly enhanced photocatalytic activity[J]. ChineseJournal of Catalysis, 2019, 40(5): 786-794.]。
传统的精细化学品合成技术多为热催化工艺,但光催化有机合成技术也得到了越来越多的重视,例如光催化氧化、环氧化、缩合、偶联等反应[Xianjun Lang, XiaodongChen, Jincai Zhao. Heterogeneous visible light photocatalysis for selectiveorganic transformations[J], Chemical Society Reviews., 2014, 43: 473-486]。
然而单纯的光催化很难实现规模化生产,催化剂组成、光源、强度、时间、光子利用率等多个因素均可能直接影响工艺的稳定性和产率的分布[朱世从, 刘超, 朱威威, 等.非均相催化剂在光催化烯烃环氧反应中的应用及机理研究进展[J]. 广东化工, 2019, 46(14): 90-93],因此采用光热协同催化的技术可能更符合实际生产的需求,特别是光热协同催化CO加氢、CO2还原、费托合成和光解水制氢等可能会对未来的能源格局产生重大的影响[王丽敏, 王利清, 张一弛,等. 光热协同催化技术在能源领域的应用[J]. 化工进展,2017, 36(7): 2457-2463]。
近年来非金属的光催化剂如金属有机荧光配合物、掺杂共轭半导体和氮化碳(C3N4)等,结构易于改造设计,不仅对可见光甚至红外光有吸收,更重要的是具有显著的生物安全性,在光动力抗肿瘤疗法和光催化抗菌等医学方面已经有了充分的应用,所以以此为基质进行食品、医药试剂的光催化及光热催化合成无疑是安全可靠的。不过在目前有关JANUS纳米粒子的制备与应用中,尚未有以此类光催化剂为基质的JANUS研究报道。
有资料显示C3N4在水溶液中受可见光激发、裂解水可产生具有氧化性的超氧自由基、羟基自由基、双氧水等,如将C3N4与杂多酸复合能有效提高光催化的活性,已见于降解痕量有机污染物和微量有机合成[李秀萍, 赵荣祥, 苏建勋, 等. 磷钨酸功能化氮化碳的制备及其氧化脱硫研究[J]. 燃料化学学报, 2015(7): 105-110]、[CN104525262A,一种磷钨酸与氮化碳复合光催化剂的制备方法],[Jie Zhou, Weichao Chen, Chunyi Sun, et al.Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction[J]. ACS Applied Materials & Interfaces, 2017, 9(13):11689-11695]、[张杰, 蔡天凤, 李会鹏, 等. 磷钨酸修饰铁改性类石墨相氮化碳的制备、表征及光催化性能研究[J]. 精细石油化工, 2018, 35(4):35-40]、[张杰, 蔡天凤, 李会鹏, 等. 磷钨酸掺杂高比表面积g-C3N4催化剂的制备及其光催化性能[J].人工晶体学报,2019, 48(1):106-114]。
但C3N4对烯烃的吸附活化显然不如钨、钼、铁、锰、钴等金属催化剂,故杂多酸/C3N4催化剂未在环氧化反应中有显著应用,而且复合催化剂仍未解决油水两相界面效率低的痼疾、不能用于光热催化环氧化的规模化生产。
发明内容
针对现有制备技术的缺陷和不足,本发明提供了一种JANUS两性特征的杂多酸/C3N4催化剂制备方法及其在光热协同快速催化豆油环氧化反应中的应用。该催化剂能加速界面反应速率、发挥催化剂各组成优势,容易回收、稳定性好,在光热催化协同作用下使豆油安全、快速、经济、节能地绿色环氧化。
为了实现上述目的,本发明采用如下技术方案予以实现:
一种JANUS两性特征的杂多酸/C3N4催化剂的制备方法,步骤如下:
(1)3-5质量份石蜡、0.3-0.5质量份聚氧乙烯辛基苯酚醚-10即OP-10和1.6-2质量份溴代十八烷加入到120-150质量份的蒸馏水中,加热至75-85℃,600-1000 r/min搅拌30-60min,形成稳定的石蜡乳液;
(2)尿素在550-650℃热解2-4 h得到氮化碳C3N4,0.3质量份C3N4溶于50质量份蒸馏水中超声4-8 h,超声功率80-100 KHz,得到类白色乳状液;
(3)步骤(2)所得到的类白色乳状液加入到步骤(1)得到的石蜡乳液中,75-85℃连续搅拌24-48 h,转速为300-500 r/min,迅速转移入200质量份冰水溶液中得到淡黄色沉淀,静置4-8 h,过滤,室温干燥2-3 d;
(4)将0.7质量份磷钨酸溶于50质量份的蒸馏水中,室温下将步骤(3)所得沉淀全部加入其中,搅拌24-48 h后,得到白色沉淀,静置4-8 h,过滤,室温干燥2-3 d;
(5)30质量份的石油醚溶剂分两次浸洗步骤(4)沉淀,每次洗涤8-12 h,过滤,60-80℃真空干燥8-12 h,即为JANUS两性特征的杂多酸/C3N4催化剂。
上述这种JANUS两性特征的杂多酸/C3N4催化剂的制备方法,所述尿素可用硫脲或盐酸胍代替,所述磷钨酸可用硅钨酸或磷钼酸代替。
上述这种JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,步骤如下:
(1)双氧水、大豆油和催化剂混合,控制双氧水、大豆油、催化剂的质量比为:12-15:10:0.25-0.5,催化剂粉末处于油水界面,避光环境中800-1500 r/min搅拌10-30 min,形成稳定的乳液反应体系;
(2)乳液反应体系暴露于可见光下,加热至45-65℃维持反应0.5-2 h后过滤,滤液静置24-48 h分层,上层油即为淡黄色环氧化大豆油,下层水继续套用,催化剂用10-15质量份95%乙醇清洗、干燥后回收利用。
上述这种JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,所述双氧水的质量浓度为10-15%,所述可见光的光源为太阳光、氙灯或LED灯可见光光源。
上述这种JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,所述环氧大豆油产品的环氧值依据GB 1676产品的环氧《增塑剂环氧值的测定》中的盐酸-丙酮法测定,范围为6.4-6.9%。
与现有技术相比,本发明的有益效果是:
本发明以非金属氮化碳为基质制备了一种JANUS两性特征的杂多酸/C3N4催化剂,区别于以往的JANUS纳米粒子,兼有光催化性质和热催化性能,与已有的杂多酸催化剂或杂多酸/C3N4催化剂相比能高分散于油水两相的界面、形成稳定的pickering乳液,可起到类似传统相转移催化剂的作用、提高界面反应效率。
本发明以JANUS杂多酸/C3N4为催化剂提出了一种光热协同快速催化环氧化豆油的方法,与已有的热催化环氧化工艺相比,各组成分别发挥热催化和光催化作用,能利用可见光和热能共同提供反应能量,以水为溶剂、双氧水为绿色氧化剂,而且催化剂易于回收、性能稳定,使豆油的环氧化更为快速、安全、经济和节能。
附图说明
图1为十八烷改性C3N4前后的IR光谱(左),十八烷改性C3N4与磷钨酸(PTA)复合的JANUS催化剂与C3N4的XPS谱图比较(右);
图2为JANUS杂多酸/C3N4催化剂的SEM(左)、接触角(中)和光学显微镜照片(右);
图3 JANUS杂多酸/C3N4催化剂的循环利用实验。
具体实施方式
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1:一种JANUS两性特征的杂多酸/C3N4催化剂的制备方法,步骤如下:
(1)3质量份石蜡、0.3质量份聚氧乙烯辛基苯酚醚-10即OP-10和1.6质量份溴代十八烷加入到120质量份的蒸馏水中,加热至75℃,600 r/min搅拌30 min,形成稳定的石蜡乳液;
(2)尿素在550℃热解2 h得到氮化碳C3N4,0.3质量份C3N4溶于50质量份蒸馏水中超声4 h,超声功率80 KHz,得到类白色乳状液;
(3)步骤(2)所得到的类白色乳状液加入到步骤(1)得到的石蜡乳液中,75℃连续搅拌24 h,转速为300 r/min,迅速转移入200质量份冰水溶液中得到淡黄色沉淀,静置4 h,过滤,室温干燥2 d;
(4)将0.7质量份磷钨酸溶于50质量份的蒸馏水中,室温下将步骤(3)所得沉淀全部加入其中,搅拌24 h后,得到白色沉淀,静置4 h,过滤,室温干燥2 d;
(5)30质量份的石油醚溶剂分两次浸洗步骤(4)沉淀,每次洗涤8 h,过滤,60℃真空干燥8 h,即为JANUS两性特征的杂多酸/C3N4催化剂。
所制备的JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,步骤如下:
(1)质量浓度为10%的双氧水、大豆油和催化剂混合,控制双氧水、大豆油、催化剂的质量比为:12:10:0.25,催化剂粉末处于油水界面,避光环境中800 r/min搅拌10 min,形成稳定的乳液反应体系;
(2)乳液反应体系暴露于氙灯下,加热至45℃维持反应0.5 h后过滤,滤液静置24h分层,上层油即为淡黄色环氧化大豆油,下层水继续套用,催化剂用10质量份95%乙醇清洗、干燥后回收利用。
所述环氧大豆油产品的环氧值依据GB 1676氧大豆油产《增塑剂环氧值的测定》中的盐酸-丙酮法测定为6.9%。
实施例2:一种JANUS两性特征的杂多酸/C3N4催化剂的制备方法,步骤如下:
(1)4质量份石蜡、0.4质量份OP-10和1.8质量份溴代十八烷加入到140质量份的蒸馏水中,加热至80℃,800 r/min搅拌50 min,形成稳定的石蜡乳液;
(2)盐酸胍在600℃热解3 h得到氮化碳C3N4,0.3质量份C3N4溶于50质量份蒸馏水中超声6 h,超声功率90 KHz,得到类白色乳状液;
(3)步骤(2)所得到的类白色乳状液加入到步骤(1)得到的石蜡乳液中,80℃连续搅拌36 h,转速为400 r/min,迅速转移入200质量份冰水溶液中得到淡黄色沉淀,静置6 h,过滤,室温干燥3 d;
(4)将0.7质量份硅钨酸溶于50质量份的蒸馏水中,室温下将步骤(3)所得沉淀全部加入其中,搅拌36 h后,得到白色沉淀,静置6 h,过滤,室温干燥3 d;
(5)30质量份的石油醚溶剂分两次浸洗步骤(4)沉淀,每次洗涤10 h,过滤,70 ℃真空干燥10 h,即为JANUS两性特征的杂多酸/C3N4催化剂。
所制备的JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,步骤如下:
(1)质量浓度为12%的双氧水、大豆油和催化剂混合,控制双氧水、大豆油、催化剂的质量比为:14:10:0.4,催化剂粉末处于油水界面,避光环境中1200 r/min搅拌20 min,形成稳定的乳液反应体系;
(2)乳液反应体系暴露于LED灯下,加热至55℃维持反应1 h后过滤,滤液静置36 h分层,上层油即为淡黄色环氧化大豆油,下层水继续套用,催化剂用14质量份95%乙醇清洗、干燥后回收利用。
所述环氧大豆油产品的环氧值依据GB 1676同快速催化《增塑剂环氧值的测定》中的盐酸-丙酮法测定,范围为6.6%。
实施例3:一种JANUS两性特征的杂多酸/C3N4催化剂的制备方法,步骤如下:
(1)5质量份石蜡、0.5质量份OP-10和2质量份溴代十八烷加入到150质量份的蒸馏水中,加热至85℃,1000 r/min搅拌60 min,形成稳定的石蜡乳液;
(2)硫脲在650℃热解4 h得到氮化碳C3N4,0.3质量份C3N4溶于50质量份蒸馏水中超声8 h,超声功率100 KHz,得到类白色乳状液;
(3)步骤(2)所得到的类白色乳状液加入到步骤(1)得到的石蜡乳液中,85℃连续搅拌48h,转速为500 r/min,迅速转移入200质量份冰水溶液中得到淡黄色沉淀,静置8 h,过滤,室温干燥2 .5d;
(4)将0.7质量份磷钼酸溶于50质量份的蒸馏水中,室温下将步骤(3)所得沉淀全部加入其中,搅拌48h后,得到白色沉淀,静置8 h,过滤,室温干燥2.5d;
(5)30质量份的石油醚溶剂分两次浸洗步骤(4)沉淀,每次洗涤12h,过滤,80℃真空干燥12 h,即为JANUS两性特征的杂多酸/C3N4催化剂。
所制备的JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,步骤如下:
(1)质量浓度为15%的双氧水,大豆油、催化剂混合,控制双氧水、大豆油、催化剂的质量比为:15:10:0.5,催化剂粉末处于油水界面,避光环境中1500 r/min搅拌30 min,形成稳定的乳液反应体系;
(2)乳液反应体系暴露于太阳光下,加热至65℃维持反应2 h后过滤,滤液静置48h分层,上层油即为淡黄色环氧化大豆油,下层水继续套用,催化剂用15质量份95%乙醇清洗、干燥后回收利用。
所述环氧大豆油产品的环氧值依据GB 1676同快速催化《增塑剂环氧值的测定》中的盐酸-丙酮法测定,范围为6.4%。
以实施例1所制备的JANUS两性特征的杂多酸/C3N4催化剂为例,结合附图,解释本发明中催化剂的技术特征:
图1(左)指出了溴代十八烷对C3N4改性前后的红外谱图,g-C3N4红外谱图在1200~1800cm-1有较强的典型多齿形吸收峰,十八烷改性C3N4与g-C3N4的红外光谱相比,除了有g-C3N4的典型特征峰外,在2850和2920cm-1出现两个特征吸收峰,归属于烷基链上-CH2的C-H伸缩振动,这说明疏水性烷基链被成功接枝到g-C3N4上。
图1(右)指出了实施例1中JANUS磷钨酸(PTA)/C3N4催化剂与g-C3N4用XPS能谱仪分析的结果,可以明显看到 钨元素(W4f)特征峰的出现。这两个表征结果可以直接证明十八烷和杂多酸在复合催化剂中的存在。
图2是对实施例1中JANUS杂多酸/C3N4催化剂的扫描电镜SEM图(左)、接触角(中)和光学显微镜图(右),由SEM可见催化剂外貌为不规则微米级薄片材料,接触角94.5°,说明催化剂为疏水性、结合光学显微镜可见催化剂存在时可形成稳定的油包水乳液。
图3是对实施例1中JANUS杂多酸/C3N4催化剂的循环利用实验数据,由图可知,催化剂至少循环四次的环氧化性能并未发生明显下降,表现出良好的稳定性。
为解释实施例1中催化剂机理和优势,进一步用如下对比例加以说明:
对比例1:JANUS两性特征的杂多酸/C3N4催化剂的制备方法同实施例1,但应用时无加热、只进行光催化,步骤如下:
(1)双氧水、大豆油和催化剂混合,控制双氧水、大豆油、催化剂的质量比为:12/10/0.25,催化剂粉末处于油水界面,避光环境中800 r/min搅拌10 min,形成稳定的乳液反应体系;
(2)乳液反应体系暴露于氙灯下,常温维持反应0.5 h后过滤,滤液静置24 h分层,上层油即为淡黄色环氧化大豆油,下层水继续套用,催化剂用10质量份95%乙醇清洗、干燥后回收利用。
所述环氧大豆油产品的环氧值依据GB 1676同快速催化《增塑剂环氧值的测定》中的盐酸-丙酮法测定为2.4%。
对比例2
一种JANUS两性特征的杂多酸/C3N4催化剂的制备方法同实施例1,但应用时无光照、只进行热催化,步骤如下:
(1)双氧水、大豆油和催化剂混合,控制双氧水、大豆油、催化剂的质量比为:12/10/0.25,催化剂粉末处于油水界面,避光环境中800 r/min搅拌10 min,形成稳定的乳液反应体系;
(2)乳液反应体系继续处于避光环境中,加热至45℃维持反应0.5 h后过滤,滤液静置24 h分层,上层油即为淡黄色环氧化大豆油,下层水继续套用,催化剂用10质量份95%乙醇清洗、干燥后回收利用。
所述环氧大豆油产品的环氧值依据GB 1676同快速催化《增塑剂环氧值的测定》中的盐酸-丙酮法测定为3.7%。
以实施例1中一种JANUS两性特征的杂多酸/C3N4催化剂为例,通过以上对比例1和对比例2的实验,证明在其他条件相同的情况下、只有光催化或者只有热催化的时候,豆油环氧化的表现均不如光热协同催化的结果,这是由于催化剂组成之间存在着协同作用,杂多酸对C3N4的掺杂提高了C3N4的光催化性能,C3N4光催化产生氧/羟基自由基有利于过氧杂多酸的形成,而加热时会加速这些转化以及提高双氧水的利用率。

Claims (7)

1.一种JANUS两性特征的杂多酸/C3N4催化剂的制备方法,其特征在于:步骤如下:
(1)3-5质量份石蜡、0.3-0.5质量份聚氧乙烯辛基苯酚醚-10即OP-10和1.6-2质量份溴代十八烷加入到120-150质量份的蒸馏水中,加热至75-85℃,600-1000 r/min搅拌30-60min,形成稳定的石蜡乳液;
(2)尿素在550-650℃热解2-4h得到氮化碳C3N4,0.3质量份C3N4溶于50质量份蒸馏水中超声4-8 h,超声功率80-100 KHz,得到类白色乳状液;
(3)步骤(2)所得到的类白色乳状液加入到步骤(1)得到的石蜡乳液中,75-85℃连续搅拌24-48 h,转速为300-500 r/min,迅速转移入200质量份冰水溶液中得到淡黄色沉淀,静置4-8 h,过滤,室温干燥2-3 d;
(4)将0.7质量份磷钨酸溶于50质量份的蒸馏水中,室温下将步骤(3)所得沉淀全部加入其中,搅拌24-48 h后,得到白色沉淀,静置4~8 h,过滤,室温干燥2-3d;
(5)30质量份的石油醚溶剂分两次浸洗步骤(4)沉淀,每次洗涤8-12 h,过滤,60-80℃真空干燥8-12 h,即为JANUS两性特征的杂多酸/C3N4催化剂。
2.根据权利要求1所述的一种JANUS两性特征的杂多酸/C3N4催化剂的制备方法,其特征在于:所述尿素用硫脲或盐酸胍代替。
3.根据权利要求1所述的一种JANUS两性特征的杂多酸/C3N4催化剂的制备方法,其特征在于:所述磷钨酸用硅钨酸或磷钼酸代替。
4.一种JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,其特征在于:步骤如下:
(1)双氧水、大豆油和催化剂混合,控制双氧水、大豆油、催化剂的质量比为:12-15:10:0.25-0.5,催化剂粉末处于油水界面,避光环境中800-1500 r/min搅拌10-30 min,形成稳定的乳液反应体系;
(2)乳液反应体系暴露于可见光下,加热至45-65℃维持反应0.5-2 h后过滤,滤液静置24-48 h分层,上层油即为淡黄色环氧化大豆油,下层水继续套用,催化剂用10-15质量份95%乙醇清洗、干燥后回收利用。
5.根据权利要求4所述的一种JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,其特征在于:所述双氧水的质量浓度为10-15 %。
6.根据权利要求4所述的一种JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,其特征在于:所述可见光的光源为太阳光、氙灯或LED灯可见光光源。
7.根据权利要求4所述的一种JANUS两性特征的杂多酸/C3N4催化剂在光热协同快速催化豆油环氧化反应中的应用,其特征在于:所述环氧大豆油产品的环氧值依据GB 1676产品的环氧《增塑剂环氧值的测定》中的盐酸-丙酮法测定,范围为6.4-6.9 %。
CN202010859142.9A 2020-08-24 2020-08-24 一种janus两性特征的杂多酸/c3n4催化剂制备方法及其应用 Active CN111957330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010859142.9A CN111957330B (zh) 2020-08-24 2020-08-24 一种janus两性特征的杂多酸/c3n4催化剂制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010859142.9A CN111957330B (zh) 2020-08-24 2020-08-24 一种janus两性特征的杂多酸/c3n4催化剂制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111957330A CN111957330A (zh) 2020-11-20
CN111957330B true CN111957330B (zh) 2023-03-31

Family

ID=73390060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010859142.9A Active CN111957330B (zh) 2020-08-24 2020-08-24 一种janus两性特征的杂多酸/c3n4催化剂制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111957330B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192102B (zh) * 2021-11-29 2023-12-12 吉林工程技术师范学院 一种一步制备多酸改性的石墨相氮化碳材料及其应用
CN114405520B (zh) * 2022-01-26 2023-01-24 中国矿业大学 一种包含杂多酸的三元复合光催化剂及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088678A1 (zh) * 2010-12-29 2012-07-05 海洋王照明科技股份有限公司 一种pt-ru纳米合金/石墨烯催化剂及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133802B (zh) * 2010-01-21 2013-08-14 中国科学院化学研究所 正反表面具有不同性质的片状材料及其制备方法
CN103224837B (zh) * 2013-04-24 2014-07-16 华南理工大学 一种快速、绿色制备环氧化大豆油的方法
CN104525262B (zh) * 2014-12-29 2017-07-21 辽宁石油化工大学 一种磷钨酸与氮化碳复合光催化剂的制备方法
CN105498821B (zh) * 2015-12-17 2018-06-12 苏州大学 一种用于催化降解氮氧化物的复合材料及其制备方法和用途
CN105944581B (zh) * 2016-05-16 2019-01-01 辽宁大学 一种阴离子响应性Pickering乳液及其制备方法和应用
CN105802662B (zh) * 2016-05-16 2018-05-15 辽宁大学 一种利用Janus基酸性催化剂的氧化脱硫方法
CN106984355A (zh) * 2017-05-25 2017-07-28 上海应用技术大学 一种HPW/g‑C3N4复合材料及其制备方法和应用
CN111250141A (zh) * 2019-08-20 2020-06-09 青岛大学 一种氮化碳-多酸电荷转移盐光催化材料的制备方法
CN110479374A (zh) * 2019-09-20 2019-11-22 济南大学 一种用于合成环氧氯丙烷的磷钨杂多酸盐催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088678A1 (zh) * 2010-12-29 2012-07-05 海洋王照明科技股份有限公司 一种pt-ru纳米合金/石墨烯催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN111957330A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
Ma et al. Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride
Kalantari et al. Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles
CN111957330B (zh) 一种janus两性特征的杂多酸/c3n4催化剂制备方法及其应用
Payormhorm et al. Synthesis of C-doped TiO2 by sol-microwave method for photocatalytic conversion of glycerol to value-added chemicals under visible light
CN101890344B (zh) 石墨烯/二氧化钛复合光催化剂的制备方法
WO2020010749A1 (zh) 一种改性氮化碳光催化剂及其制备与光催化氧化木糖合成木糖酸的方法
CN109759114B (zh) 一种g-C3N4/TiO2/RGO三维Z型光催化剂及其原位电纺制备方法
Wu et al. Z-Scheme nanocomposite with high redox ability for efficient cleavage of lignin C–C bonds under simulated solar light
CN107376900A (zh) 钼酸铋超薄纳米片光催化材料的制备方法及其应用
CN107252696B (zh) 一种剑麻碳纤维光催化剂的制备方法
CN111100281B (zh) 一种改性氧化石墨烯催化剂的制备方法
Devi et al. Fabrication of nanostructured NiO/WO 3 with graphitic carbon nitride for visible light driven photocatalytic hydroxylation of benzene and metronidazole degradation
Li et al. Construction of novel amphiphilic [Bmin] 3PMo12O40/g-C3N4 heterojunction catalyst with outstanding photocatalytic oxidative desulfurization performance under visible light
Heshmatpour et al. A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants
Jafarpour et al. Aerobic benzylic C–H oxidation catalyzed by a titania-based organic–inorganic nanohybrid
Jafarpour et al. A cobalt Schiff base complex on TiO 2 nanoparticles as an effective synergistic nanocatalyst for aerobic C–H oxidation
Wang et al. Deep oxidative desulfurization of model fuels catalyzed by polyoxometalates anchored on amine-functionalized ceria doped MCM-41 with molecular oxygen
CN110302783A (zh) 一种柔性易回收碳纤维布@Cu2O光催化复合材料及其制备方法
Nejat et al. g-C3N4/H3PW4Mo8O40 S-scheme photocatalyst with enhanced photocatalytic oxidation of alcohols and sulfides
CN109319833B (zh) 一种锐钛型中孔纳米二氧化钛的制备方法
CN102266764A (zh) 一种膨胀石墨/氧化锌复合光催化剂及其制备方法
Yang et al. Grafted polyethylene glycol–graphene oxide as a novel triphase catalyst for carbenes and nucleophilic substitution reactions
CN108993472B (zh) 一种二氧化钛碳纳米管复合载体催化剂及制备和应用
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN113351202B (zh) 一种降解污染物的二氧化钛/钌单原子贵金属纳米催化材料其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant