CN111957326A - 一种漂浮型超亲水CdS/RGO复合气凝胶及其制备方法和应用 - Google Patents

一种漂浮型超亲水CdS/RGO复合气凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN111957326A
CN111957326A CN202010255425.2A CN202010255425A CN111957326A CN 111957326 A CN111957326 A CN 111957326A CN 202010255425 A CN202010255425 A CN 202010255425A CN 111957326 A CN111957326 A CN 111957326A
Authority
CN
China
Prior art keywords
cds
rgo
composite aerogel
hydrophilic
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010255425.2A
Other languages
English (en)
Inventor
刘文君
何文胜
王倩雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Vocational College Of Bioengineering
Original Assignee
Fujian Vocational College Of Bioengineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Vocational College Of Bioengineering filed Critical Fujian Vocational College Of Bioengineering
Priority to CN202010255425.2A priority Critical patent/CN111957326A/zh
Publication of CN111957326A publication Critical patent/CN111957326A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种降解盐酸四环素的漂浮型超亲水复合气凝胶光催化剂,属于光催化材料制备和环境净化的技术领域。本发明通过L‑赖氨酸作为还原剂及交联剂将CdS纳米薄片与还原型氧化石墨烯(RGO)有效复合得到漂浮型超亲水CdS/RGO复合气凝胶,可有效减缓电子和空穴在的复合,同时实现在亲水性污染物系统中无搅拌或自然光情况下自动漂浮在水面上,最大限度地提高光催化反应中可见光的利用率,从而提高光催化效率。并且漂浮型气凝胶具有直径为20mm,高为30mm的宏观结构,便于大面积抛洒,易回收,用镊子夹取气凝胶就可将其从光催化反应体系中移除。本发明制备方法简单,原料廉价易得,有利于大规模的工业生产,具有显著的经济和社会效益。

Description

一种漂浮型超亲水CdS/RGO复合气凝胶及其制备方法和应用
技术领域
本发明属于光催化材料制备和环境净化的技术领域,具体涉及一种高效吸附和光催化降解亲水性抗生素污染物的漂浮型超亲水CdS/RGO复合气凝胶光催化材料及其制备方法。
背景技术
CdS是一种窄带隙能量(约2.4eV)的传统半导体材料,具有可见光响应,能对水体中难降解的有机污染物发挥高效光催化降解作用。但是CdS易团聚、稳定性差,容易发生光腐蚀(CdS+2h+→Cd2++S)等问题降低了其光催化性能。减少电子和空穴的复合是决定量子效率的关键因素之一,同时,光催化降解都在半导体的表面发生,较高的比表面积有助于催化活性的提升。因此,改变CdS 的晶相结构、形貌、尺寸都对光催化活性有巨大影响。研究表明,CdS纳米颗粒之间形成的界面容易发生团聚,削弱了光生电子的寿命。而片状CdS结晶程度往往高于CdS纳米颗粒,能够减少晶体缺陷产生的载流子复合中心,使晶体具有更优良的载流子迁移能力。近年来,花球状、树叶状等片状CdS的溶剂热合成方法已被报道,合成过程使用高温有机溶剂,这无疑提高了合成成本,对环境造成污染。不仅如此,CdS粉末存在易沉在水底,对光的利用率不高,难回收等缺陷,使其应用受限。因此,在利用CdS高效光催化性能的同时避免其缺陷仍是一项艰巨的任务。为了解决这些问题,将CdS固定在多种非均相催化载体上,例如碳材料,聚合物,金属氧化物等,以进一步保持其活性和寿命。
碳基材料如富勒烯,碳纳米管和石墨烯都可用作非均相催化中纳米材料的载体。其中,RGO因其具有巨大比表面、超高的电导率可以促进光生电子和空穴的分离,提高纳米材料的光催化性能。此外,基于RGO的气凝胶不仅拥有RGO的所有特性,还具有机械性能好、易回收、质轻能够漂浮在水面上吸收更多的太阳光等优点。RGO气凝胶的优异特性使其成为纳米材料的理想载体。正如专利名称为一种TiO2/RGO气凝胶及其制备方法和应用(授权公告号: CN104226290B)的研究表明,通过L-半胱氨酸为交联剂和还原剂制备出的是超疏水型TiO2/RGO气凝胶,漂浮在水面上光催化降解亲油型污染物,但对水体中亲水型污染物的降解没有明显效果。因此,通过改变所使用的的交联剂,利用 L-lys能够构筑亲水型BiOBr/RGO复合气凝胶(专利名称为一种BiOBr/RGO复合气凝胶及其制备方法和应用(授权公告号:CN104117367B))。在此研究基础上,开发生产工艺简单的CdS纳米薄片,并将其均匀分散在亲水型三维RGO复合气凝胶上,形成高活性、稳定性好且易回收的漂浮型超亲水复合气凝胶材料对于推广光催化技术的实际应用以及含亲水性抗生素废水的治理具有重大的意义。
发明内容
鉴于上述现有技术的不足,本发明旨在提供提供一种新型的漂浮型超亲水 CdS/RGO复合气凝胶及其制备方法和应用,采用一步原位合成水热法,将拟解决传统光催化剂CdS颗粒易团聚、稳定性差、易发生光腐蚀、粉体催化剂不易分离回收等问题。通过不断调节合成过程中的pH值,在pH=12时制备获得漂浮型超亲水CdS/RGO复合气凝胶,其具有大比表面积,能够高效吸附和光催化降解亲水性抗生素污染物,密度小,能够漂浮在水面上吸收更多可见光,且易分离回收,用镊子夹取气凝胶就可将其从光催化反应体系中移除,不损失催化剂。微观结构上,CdS以纳米薄片的形式且均匀地分散在RGO纳米片上。与 CdS纳米颗粒相比,CdS以纳米薄片的形式存在结晶程度更高,能够减少晶体缺陷产生的载流子复合中心,使晶体具有更优良的载流子迁移能力。同时,RGO 的引入能够有效延长光生载流子寿命,提高光催化活性。本发明制备方法简单,原料廉价易得,有利于大规模的工业生产,具备显著的社会经济效益。
本发明的技术方案如下:
一种漂浮型超亲水CdS/RGO复合气凝胶是将CdS纳米薄片均匀地负载于 RGO气凝胶,具有直径20mm,高30mm的宏观结构。该复合气凝胶是超亲水型,具有大比表面积,低密度,能够漂浮在水面上吸收更多可见光,同时能够有效地减缓光生电子和空穴的复合,减缓CdS的光腐蚀,且易分离回收,用镊子夹取气凝胶就可将其从光催化反应体系中移除,不损失催化剂。
所述的漂浮型超亲水CdS/RGO复合气凝胶的制备方法为一步原位合成水热法。在4g/L的L-赖氨酸溶液中加入前驱物醋酸镉与硫脲,室温下剧烈搅拌30min,形成澄清透明的溶液,然后加入氧化石墨烯(GO),用HCl(盐酸)和NaOH(氢氧化钠)调节体系pH值,调节体系pH=3、7、12,于160℃水热反应10h。在 pH=12时,获得CdS/RGO复合水凝胶。在pH=12的合成体系中,调节CdS的装填量,可得到系列水凝胶,经洗涤、冻干,制得所述的漂浮型超亲水CdS/RGO 复合气凝胶,其中CdS的负载量为62.5-89.3wt%。
所述的漂浮型超亲水CdS/RGO复合气凝胶用于光催化降解亲水性抗生素污染物。
本发明具有如下有益效果:
(1)本发明首次制备了漂浮型超亲水CdS/RGO复合气凝胶,通过一步原位合成水热法,采用L-赖氨酸作为还原剂和交联剂,调节合成过程中的pH值,制备CdS/RGO复合物,在pH=3和7时,体系中为黑黄色固体,没有形成水凝胶;在pH=12时,形成具有直径为20mm,高为30mm的宏观结构,为CdS/RGO 复合水凝胶。微观结构上,CdS纳米薄片均匀地负载于RGO纳米片上。在pH=12 的合成体系中,调节CdS的装填量,可得到系列水凝胶。通过冷冻干燥获得CdS/RGO复合气凝胶,其中CdS的负载量为62.5-89.3wt%。
(2)本发明将漂浮型超亲水CdS/RGO复合气凝胶用于光催化领域,其比表面积大,密度小,能够漂浮在水面上吸收更多可见光,能够有效地减缓光生电子和空穴的复合,提高其光催化性能进而高效地光催化降解亲水性抗生素污染物。
(3)本发明的漂浮型超亲水CdS/RGO复合气凝胶能够高效地吸附和光催化降解亲水性抗生素污染物,同时具有良好的活性稳定性。光催化反应结束后,易分离回收,用镊子夹取气凝胶就可将其从体系中移除,可再生能力强,重复利用率高,具有很高的实用价值和应用前景。
附图说明
(1)图1是本发明不同pH条件下合成的CdS/RGO复合物的照片。
(2)图2是本发明不同含量的漂浮型超亲水CdS/RGO复合气凝胶的照片。
(3)图3(a)是本发明漂浮型超亲水CdS/RGO复合水凝胶和气凝胶的照片;(b)是复合气凝胶的SEM图像(嵌入图为CdS粉末的SEM图像);(c)复合气凝胶的TEM图像(嵌入图为HRTEM图像);(d)负载CdS纳米薄片的尺寸分布图。
(4)图4(a)是本发明漂浮型超亲水CdS/RGO复合气凝胶、CdS和GO 的XRD谱图;(b)漂浮型超亲水CdS/RGO复合气凝胶和GO的FTIR光谱图; (c)漂浮型超亲水CdS/RGO复合气凝胶的C1s的XPS谱图;(d)漂浮型超亲水CdS/RGO复合气凝胶、GO和RGO的Raman光谱图(其中a代表GO,b代表RGO,c代表CdS/RGO复合气凝胶)。
(5)图5(a)本发明漂浮型超亲水CdS/RGO复合气凝胶和(b)CdS粉末的N2吸附-脱附曲线图;(c)该复合气凝胶的Barret-Joyner-Halenda解吸孔径分布图;(d)该复合气凝胶和CdS粉末的UV/Vis DRS光谱图。
(6)图6是本发明CdS/RGO复合水凝胶和对应的漂浮型超亲水复合气凝胶的形成过程示意图。
(7)图7(a)是本发明漂浮型超亲水CdS/RGO复合气凝胶、(b)CdS粉末在可见光照射下,TC浓度随时间变化的紫外-可见吸收光谱图(图7a的嵌入图为CdS/RGO复合气凝胶的接触角照片);漂浮型超亲水CdS/RGO复合气凝胶、CdS粉末、BiOBr/RGO复合气凝胶在(c)可见光和(d)避光条件下,体系中TC在356nm处吸光度的变化图。
(8)图8是本发明漂浮型超亲水CdS/RGO复合气凝胶使用后回收的照片(嵌入图为气凝胶接触角图片)。
(9)图9是漂浮型超亲水CdS/RGO复合气凝胶和CdS粉末循环5次的活性对比图■对应漂浮型超亲水CdS/RGO复合气凝胶,●则对应CdS粉末)。
(10)图10是不同含量的漂浮型超亲水CdS/RGO复合气凝胶在可见光照射下,体系中TC在356nm处吸光度的变化图。
具体实施方式
下面结合较佳实施例对本发明作进一步的说明。
实施例1
具有高效吸附和光催化降解能力的漂浮型超亲水CdS/RGO复合气凝胶的制备
将醋酸镉与硫脲加入到4g/L的L-赖氨酸溶液中,在室温下剧烈搅拌30min,形成澄清透明的溶液,然后加入氧化GO,调节体系pH=3、7、12,于160℃下保温10h,自然冷却至室温,得到CdS/RGO复合物(如图1所示)。利用盐酸和氢氧化钠调节体系pH值,在pH=3和7的合成体系反应结束后样品中为黑黄色固体,没有形成水凝胶,且体系中漂浮着黄色固体,说明CdS和RGO没有有效复合;在pH=12的合成体系中,调节CdS的装填量,可得到如图2所示的系列水凝胶(图中,RG:C:L表示合成过程中GO(G):CdAc2(C):赖氨酸(L)的使用量比值)。经去离子水多次透析处理后,冻干制得所述漂浮型超亲水CdS/RGO 复合气凝胶,其中CdS的负载量为62.5-89.3wt%。
通过冷冻干燥,漂浮型超亲水CdS/RGO复合水凝胶脱水得到三维块状气凝胶,且体积没有发生明显变化(图3a)。以下选取RG:C:L=1:4:2条件下合成的漂浮型超亲水CdS/RGO复合气凝胶作为典型例子,该气凝胶的SEM图展示了其是由大量的RGO纳米片相互交联而成的三维微米级多孔网状结构,纳米尺寸物质均匀地锚链在RGO纳米片上(图3b),与纯CdS固体粉末的SEM图对比(图 3b的嵌入图),CdS发生团聚,没有固定形貌,说明RGO的引入能够提高CdS 的分散性。从该气凝胶的TEM图中也可清晰地看到纳米薄片状物质均匀稳定地分散在RGO纳米薄片表面(图3c)。高分辨率的透射电镜(HRTEM)图像显示了纳米薄片状物质清晰的晶格条纹d=0.335nm,对应于六方晶型CdS的(002) 晶面,表明CdS纳米薄片已经成功负载在RGO纳米片上(图3c的嵌入图)。超过95%的纳米薄片的尺寸在10-40nm之间,平均尺寸为25nm(图3d)。
图4a为本发明的漂浮型超亲水CdS/RGO复合气凝胶的X射线衍射(XRD) 图谱,,其显示了2θ=24.8°、26.5°、28.2°、43.7°、47.9°和51.8°的特征衍射峰(图 3a),可以归属于六方晶相CdS(JCPDF 01-070-2553)的(100)、(002)、(101)、 (110)、(103)和(112)晶面。在形成气凝胶的过程中,尽管在XRD谱图中归属于RGO的(002)晶面的24.3°衍射峰不明显,但GO被还原生成RGO可以从FT-IR光谱图来证实。与原始的GO相比,所合成复合气凝胶的FT-IR光谱在1720cm-1和3300cm-1显示了较弱的吸收峰,说明气凝胶形成过程中GO表面大部分的羰基和羟基已经被还原(图4b)。不仅如此,GO的还原程度也可从 CdS/RGO复合气凝胶的XPS谱图得以佐证,由C1s的XPS谱图可以看出复合气凝胶中O-C的含量为20.8%,对比还原前GO的O-C含量为55%,O-C含量的下降表明在水热凝胶过程中GO已经被高度还原(图4c)。根据先前研究表明,得到的纯RGO气凝胶也有类似的O-C含量(21.8%),这意味着制备的漂浮型超亲水CdS/RGO复合气凝胶中RGO保持了较高的还原程度。此外,采用Raman 光谱来解释CdS纳米薄片与RGO底物之间的电子相互作用。GO的Raman光谱在1565cm-1和1321cm-1处表现出两个特征峰,分别归因于石墨的sp2键合碳(G 谱带)和sp2碳呼吸模式(D谱带)。如复合气凝胶的Raman光谱所示(图4d),其D带和G带的强度比值(ID/IG=1.03)稍高于GO的值(ID/IG=0.95),这表明在复合气凝胶形成的过程中引入了表面缺陷。然而,漂浮型超亲水CdS/RGO复合气凝胶和纯RGO气凝胶具有基本等值的O-C含量以及G带和D带的强度比值(ID/IG=1.01),这些都表明CdS纳米颗粒的引入不会引起RGO气凝胶基底缺陷的增加。以上所有表征都证明了我们已经成功制备了漂浮型超亲水CdS/RGO 复合气凝胶。
前期的研究表明(已发表文献:Tuning of surface wettability of RGO-basedaerogels for various adsorbates in water using different amino acids,Chem.Commun., 2014,50,10311-10314),利用赖氨酸制备的lys-RGO气凝在真空条件下的热稳定性差,无法获得有效的BET比表面积。而嵌入CdS纳米薄片后,CdS/RGO复合气凝胶热稳定性明显提高提高,且BET比表面积增大到350.80m2/g(图5a),远大于以类似方法制备的CdS粉末(15.76m2/g)(图5b)。这可以解释为,嵌入的CdS纳米薄片可以充当RGO片的间隔物,有效防止RGO片的聚集和堆叠,而RGO片使CdS纳米薄片尺寸更小,分散更均匀。CdS/RGO复合气凝胶的BJH 平均孔径为3.6nm,为有序的介孔结构,表明了在RGO片层间插入的CdS纳米薄片能有效阻止RGO的堆积(图5c)。与lys-RGO气凝胶相比,该复合气凝胶中的RGO片堆积更少,这也可以从SEM图中得以佐证(图3b)。引入RGO后,其在可见光区域的光吸收增强,催化剂颜色从CdS粉末的黄色变为深墨绿色(图 5d)。除此之外,CdS/RGO气凝胶的密度低至0.01g/cm3,与沉在底部的CdS粉末状光催化剂相比,该复合气凝胶可以漂浮在水面上吸收更多的太阳光,在水溶液体系中用于光催化降解有机污染物将极具吸引力。
实施例2
具有高效吸附和光催化降解能力的漂浮型超亲水CdS/RGO复合气凝胶的形成过程
我们以前的工作表明(已发表文献:Chem.Commun.,2014,50,10311-10314),由于L-赖氨酸和GO之间存在静电吸引和氢键以及GO之间的π-π堆积,对L- 赖氨酸和GO混合溶液进行水热处理能够使GO纳米片相互交联并凝胶化,形成 3D的lys-RGO水凝胶。在此基础上,我们提出了CdS/RGO复合气凝胶的形成过程(图6)。L-赖氨酸是碱性氨基酸,与GO形成的混合溶液的pH值约为10.8。在此pH值下,L-赖氨酸主要以带去质子化羧基和质子化氨基的两性离子形式存在。L-赖氨酸上质子化的氨基通过静电引力吸附在GO表面,而去质子化的羧基则暴露在外。在体系中加入醋酸镉和硫脲,由于静电引力,L-赖氨酸上悬挂的去质子化羧基巯基可充当Cd2+的锚点。在水热过程中,尺寸均一的CdS纳米薄片形成,同时GO被还原生成RGO并发生π-π堆积自组装形成水凝胶。最终,通过冷冻干燥过程将水凝胶直接脱水以形成CdS/RGO气凝胶。
实施案例3
漂浮型超亲水CdS/RGO复合气凝胶和CdS粉体液相光催化降解盐酸四环素 (TC)作对比
TC废水属于含难降解有机物和生物毒性物质的医药废水,难生化,在水中溶解度高,难分离,常规水处理技术对抗生素类废水处理效果甚微,且在降解过程中只能将其分解开环而很难将其彻底矿化。本发明的CdS/RGO复合气凝胶为超亲水型(图7a嵌入图),可以用于在可见光下吸附和光催化降解亲水性TC。光催化降解TC的过程可以用TC浓度随时间变化的光谱图来表示,即监测TC 在356nm处主峰的吸光度随时间的变化。如图7a所示,漂浮型超亲水CdS/RGO 复合气凝胶在可见光照射下,TC在356nm处主峰的吸光度逐渐下降且275nm吸收峰发生蓝移。这一结果表明,在该光催化体系中,TC结构发生了分解,并生成衍生物。漂浮型超亲水CdS/RGO复合气凝胶在可见光照射45min后,体系中的TC及其衍生物的峰基本完全消失,转化率达到100%,表明TC已经被分解为小分子有机物或CO2。反应1.5h后,TOC的去除率为88.9%,进一步证明大部分TC已经被矿化。相反,CdS粉末对TC的降解效率较低,在光照45min 后,仅有68%的TC发生转化(图7b),且反应1.5h后,体系中的TOC去除率仅为23.8%。作为对比,我们先前发明的BiOBr/RGO复合气凝胶(授权公告号: CN104117367B)在光照45min后,体系中仅有40%的TC发生转化,且TC在可见光照射下,即无催化剂存在下的光降解几乎可以被忽略(图7c)。
在光催化反应过程中,漂浮型超亲水CdS/RGO复合气凝胶比CdS粉末、 BiOBr/RGO复合气凝胶拥有更优异的光催化性能,可以归因于以下三点:1、相对于CdS粉末和BiOBr/RGO复合气凝胶,CdS/RGO复合气凝胶具有超亲水性、更大的BET比表面和特有的海绵性质,使其显示出对TC更高的吸附量,这是高效光催化降解的先决条件。如图7d所示,48%的TC能够吸附在漂浮型超亲水CdS/RGO复合气凝胶表面,10%的TC能够吸附在BiOBr/RGO复合气凝胶表面,而仅有0.9%能够吸附在CdS粉末上。在光催化反应中,漂浮型超亲水 CdS/RGO复合气凝胶能够实现对TC的边吸附边降解,大大提高了光催化活性。 2、与沉在水底的CdS粉末相比,CdS/RGO复合气凝胶存在的大孔径和极低的密度(0.01g/cm3)能够漂浮于水面吸收更多的可见光;3、均匀分散CdS纳米薄片的形成,提高了结晶度,能够减少晶体缺陷产生的载流子复合中心,使晶体具有更优良的载流子迁移能力;4、RGO纳米片能够促进产生的光生载流子和空穴的分离,减少CdS表面发生的光腐蚀,提高光催化性能。除此之外,漂浮型超亲水CdS/RGO复合气凝胶还维持了相对高的电导率(11.92S/m)。
如图8所示,在光催化反应结束后,可以用镊子夹取漂浮型超亲水CdS/RGO 复合气凝胶,轻易地将其从反应体系中分离回收,且没有损失任何催化剂。经过5次循环光催化反应后,漂浮型超亲水CdS/RGO复合气凝胶的光催化活性没有明显降低(如图9中■所示)。相反,CdS粉末易在光催化过程中发生光腐蚀,且反应结束后CdS粉末在过滤回收过程中造成了不可避免的损失。在5次循环后, CdS粉末的光催化活性仅能保持原始的51%(如图9中●所示)。很明显,除了优异的光催化性能之外,漂浮型超亲水CdS/RGO复合气凝胶还具有良好的循环稳定性,这在实际应用中是十分重要的。
图10所示为不同CdS负载量的CdS/RGO复合气凝胶光催化降解TC的示意图。从图中可知不同负载量的CdS/RGO复合气凝胶均展示出较强的降解能力,当CdS的含量逐渐增加时,光催化性能首先增强,增加到某一值时,催化能力反而减弱。在RG:C:L=1:4:2条件下合成的漂浮型超亲水CdS/RGO复合气凝胶光催化降解TC的效率最高。所以CdS在复合气凝胶中的最优含量为80.1%。在CdS/RGO 复合气凝胶中,RGO含量最高(RG:C:L=1:1:2)的降解能力最差,这可能是因为过多的RGO增大了电子与空穴的重组机会,促进了两者的重组,致使催化能力减弱。将RGO与CdS进行物理混合所得复合材料(RGO与CdS的含量与 RG:C:L=1:4:2一致)用于光催化降解TC进行对比,发现在RG:C:L=1:4:2条件下合成的漂浮型超亲水CdS/RGO复合气凝胶的降解性能优越于GO与CdS物理混合物的,这是由于物理混合的RGO和CdS没有形成有效键合,电子传导性能较差的原因导致。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围内。

Claims (5)

1.一种漂浮型超亲水CdS/RGO复合气凝胶,其特征在于:将CdS纳米薄片均匀地负载在RGO气凝胶上,具有直径为20mm,高为30mm的宏观结构,其中CdS的负载量为62.5-89.3wt%。
2.制备如权利要求1所述漂浮型超亲水CdS/RGO复合气凝胶的方法,其特征在于:采用一步原位合成水热法制备漂浮型超亲水CdS/RGO复合气凝胶。
3.如权利要求2所述的制备漂浮型超亲水CdS/RGO复合气凝胶的方法,其特征在于:在4g/L的L-赖氨酸溶液中加入前驱物醋酸镉与硫脲,室温下剧烈搅拌30min,形成澄清透明的溶液,然后加入氧化石墨烯,调节体系pH为12,于160oC水热反应10h,经洗涤、冻干,制得所述的漂浮型超亲水CdS/RGO复合气凝胶。
4.如权利要求3所述的制备漂浮型超亲水CdS/RGO复合气凝胶的方法,其特征在于:所述pH调节剂为氢氧化钠。
5.如权利要求1所述的漂浮型超亲水CdS/RGO复合气凝胶的应用,其特征在于:所述漂浮型超亲水 CdS/RGO复合气凝胶用于光催化降解亲水性抗生素污染物。
CN202010255425.2A 2020-04-02 2020-04-02 一种漂浮型超亲水CdS/RGO复合气凝胶及其制备方法和应用 Pending CN111957326A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010255425.2A CN111957326A (zh) 2020-04-02 2020-04-02 一种漂浮型超亲水CdS/RGO复合气凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010255425.2A CN111957326A (zh) 2020-04-02 2020-04-02 一种漂浮型超亲水CdS/RGO复合气凝胶及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111957326A true CN111957326A (zh) 2020-11-20

Family

ID=73358054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010255425.2A Pending CN111957326A (zh) 2020-04-02 2020-04-02 一种漂浮型超亲水CdS/RGO复合气凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111957326A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406131A (zh) * 2013-08-15 2013-11-27 江苏大学 一种硫化镉负载型复合光催化剂的制备方法
CN104117367A (zh) * 2014-08-12 2014-10-29 福州大学 一种BiOBr/RGO复合气凝胶及其制备方法和应用
CN104353469A (zh) * 2014-10-28 2015-02-18 江苏大学 一种纳米复合材料光催化剂的制备方法及应用
CN110743583A (zh) * 2019-11-04 2020-02-04 黄春燕 一种0d/2d磷化铁/硫化镉复合光催化剂及制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406131A (zh) * 2013-08-15 2013-11-27 江苏大学 一种硫化镉负载型复合光催化剂的制备方法
CN104117367A (zh) * 2014-08-12 2014-10-29 福州大学 一种BiOBr/RGO复合气凝胶及其制备方法和应用
CN104353469A (zh) * 2014-10-28 2015-02-18 江苏大学 一种纳米复合材料光催化剂的制备方法及应用
CN110743583A (zh) * 2019-11-04 2020-02-04 黄春燕 一种0d/2d磷化铁/硫化镉复合光催化剂及制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BILAL AHMED 等: "Shape induced (spherical, sheets and rods) optical and magnetic", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
KRISHNADIPTI SINGHA 等: "Visible-light-driven Efficient Photocatalytic Reduction of Organic", 《CHEMISTRY AN ASIAN JOURNAL》 *
RAJESH BERA 等: "2D Hybrid Nanostructure of Reduced Graphene Oxide−CdS", 《ACS APPLIED MATERIALS & INTERFACES》 *
SK IBRAHIM1等: "Solar Light Responsive Photocatalytic Degradation of", 《AIP CONFERENCE PROCEEDINGS》 *
WENJUN LIU 等: "Self-Assembly of Semiconductor Nanoparticles/Reduced Graphene Oxide (RGO) Composite Aerogels for Enhanced Photocatalytic Performance and Facile Recycling in Aqueous Photocatalysis", 《ACS SUSTAINABLE CHEMISTRY & ENGINEERING》 *

Similar Documents

Publication Publication Date Title
Luo et al. Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation
Bai et al. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application
Zhang et al. Influence of mass ratio and calcination temperature on physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications
CN111185210B (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN109876845B (zh) M-g-C3N4/rGOA复合吸附可见光催化材料的制备方法及应用
Zhang et al. Immobilization laccase on heterophase TiO2 microsphere as a photo-enzyme integrated catalyst for emerging contaminants degradation under visible light
Feng et al. Two-step construction of WO3@ TiO2/CS-biochar S-scheme heterojunction and its synergic adsorption/photocatalytic removal performance for organic dye and antibiotic
Shi et al. The bifunctional composites of AC restrain the stack of g-C3N4 with the excellent adsorption-photocatalytic performance for the removal of RhB
CN112705242B (zh) 一种金属铋纳米颗粒修饰多孔氮化碳复合材料及其制备方法和在去除水中抗生素中的应用
Gao et al. In-situ synthesis of direct Z-scheme 2D/2D ZnIn2S4@ CeO2 heterostructure toward enhanced photodegradation and Cr (VI) reduction
Mohan et al. Zinc iron selenide nanoflowers anchored g-C3N4 as advanced catalyst for photocatalytic water splitting and dye degradation
CN113145134B (zh) 一种基于矿物复合材料的可见光催化剂及其制备方法
CN112121830A (zh) 一种磷酸银/三氧化钨核壳纳米光催化复合材料的制备方法及应用
CN109046466A (zh) 一种ZIF-8衍生碳基材料负载CdS的光催化剂及其制备方法和应用
Hao et al. In-situ hard template synthesis of mesoporous carbon/graphite carbon nitride (C/CN-Tx) composites with high photocatalytic activities under visible light irridation
CN113145158B (zh) 剥离管状氮化碳光催化剂及其制备方法和应用
CN108940348B (zh) 铬酸银/硫掺氮化碳z型光催化剂及其制备方法
CN109482209B (zh) 利用磷酸银/硫化铋/氧化铋双z型光催化剂催化去除抗生素的方法
CN108906110B (zh) 一种光催化剂的制备方法及其应用
CN113578212B (zh) 氧化锌/石墨烯/氧化石墨烯/碳纳米管气凝胶及方法
CN113842937A (zh) 超薄富氮石墨相氮化碳纳米片负载的气凝胶可见光催化剂及其制备方法和应用
CN112973744A (zh) 一种新型光电催化剂及其制备方法
CN109482210B (zh) 磷酸银/硫化铋/氧化铋双z型光催化剂及其制备方法
CN111957326A (zh) 一种漂浮型超亲水CdS/RGO复合气凝胶及其制备方法和应用
CN111715211A (zh) 一种活性炭负载TiO2/Bi2WO6异质结复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination