CN111953187A - 用于可靠切换的栅极驱动器 - Google Patents

用于可靠切换的栅极驱动器 Download PDF

Info

Publication number
CN111953187A
CN111953187A CN202010418221.6A CN202010418221A CN111953187A CN 111953187 A CN111953187 A CN 111953187A CN 202010418221 A CN202010418221 A CN 202010418221A CN 111953187 A CN111953187 A CN 111953187A
Authority
CN
China
Prior art keywords
voltage
gate
current
switch
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010418221.6A
Other languages
English (en)
Inventor
O.比伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarEdge Technologies Ltd
Original Assignee
SolarEdge Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SolarEdge Technologies Ltd filed Critical SolarEdge Technologies Ltd
Publication of CN111953187A publication Critical patent/CN111953187A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

一种用于提高功率设备中的开关的可靠性的驱动器,包括配置成感测功率设备的操作参数的一个或多个传感器。所述驱动器包括控制器,所述控制器配置成从相应的传感器接收一个或多个传感器值。所述控制器配置成根据传感器值来调节驱动脉冲。所述控制器配置成将驱动脉冲施加到功率设备的一个或多个开关的一个或多个控制端子。

Description

用于可靠切换的栅极驱动器
背景技术
本公开涉及电子领域。
功率转换器可以具有一个或多个开关,例如晶体管等,其用于将开关模式电源(SMPS)的电源连接到功率转换电路或与该功率转换电路断开连接。例如,在SMPS的特定拓扑中,可以切换一个或多个开关以将电源连接到电能储存设备,并且该开关断开连接时,所储存的功率转换为替选状态,例如,不同的电压和/或电流。在某些情况下,开关可以直接连接到负载或不具有储存能力的不同部件。开关可以是具有栅极、源极和漏极的半导体器件,并且当将电压/电流施加到栅极时,电能可以从源极流到漏极。可以使用硬开关技术或软开关技术来进行切换,该硬开关技术可以使用强脉冲来激活栅极,该软开关技术可以是准谐振、强制谐振和/或其它。
发明内容
下面的概述是一些发明构思的简短概述,仅用于说明目的,并且不是广泛的概述,并且无意于标识关键或重要元素,或者不限制或约束详细描述中的发明和示例。本领域技术人员将从详细描述中认识到其他新颖的组合和特征。
本文公开了可靠地驱动开关的栅极的技术和设备。各个方面测量与开关相关联的一个或多个电参数,例如温度(例如,部件、设备、电路、环境和/或其它的温度)、电压、占空比、电流和/或其它。驱动强度可以取决于电参数,例如栅极电压、栅极波形、栅极电流和/或其它,使得开关的最大额定电压,例如源极-漏极电压不会被瞬态电压和/或电流尖峰(例如过冲、下冲,振铃和/或其它)超过。例如,控制器可以将一个或多个电参数作为输入,并且基于该输入,(例如,使用规则)确定用于驱动栅极的驱动强度。例如,测量栅极两端的电压,并且控制器(例如,应用规则)将电压值用作输入,以确定(基于电压值):当电压值低于第一电压阈值时,使用全强度栅极驱动脉冲;当电压值高于第二电压阈值时,使用最小强度的栅极驱动脉冲;或者根据两个阈值之间的某个方程式(例如,二次方程式)来改变栅极驱动脉冲强度。可以在不同的操作条件下通过原型电气测量和/或相关的仿真(例如,包含开关的扩展电子电路的仿真),并确定不超过最大额定电压时的操作参数的包络,来确定规则(例如,数学方程式)。可以通过将一个或多个方程式、规则、查找表和/或其它拟合到所测量和仿真的数据来确定包络。
附图说明
参照以下描述、权利要求和附图,将更好地理解本公开的这些和其他特征、方面和优点。本公开通过示例的方式示出,并且不受附图的限制。
图1A示意性地示出了根据本公开的说明性方面的具有可靠的栅极驱动器的示例设备的电路图。
图1B示意性地示出了根据本公开的说明性方面的具有可靠的栅极驱动器的示例功率设备的电路图。
图1C示意性地示出了根据本公开的说明性方面的具有可靠的栅极驱动器的示例功率设备的电路图。
图2示出了根据本公开的说明性方面的用于可靠地驱动功率设备中的开关的栅极的流程图。
图3示出了根据本公开的说明性方面的用于确定可靠的栅极驱动规则和方程式的流程图。
图4示意性地示出了根据本公开的说明性方面的发电系统,其包括用于功率设备的可靠的栅极驱动器。
图5A、5B和5C示意性地示出了根据本公开的说明性方面的可靠的栅极驱动器电路的示例。
具体实施方式
构成本公开的一部分的附图示出了本公开的示例。应当理解,附图中示出和/或本文中讨论的示例是非排他性的,并且存在可以如何实践本公开的其他示例。
本文公开的是可用于通过使用传感器测量值和对于确定的栅极驱动强度的规则来驱动功率设备(例如,开关模式电源(SMPS)、逆变器等)的开关的设备、方法和系统的各方面的示例。在开发过程的设计和测试阶段,可以使用仿真和电气原型来确定功率设备在各种操作条件下的操作参数,例如:输入电压、功率转换电流/电压、开关频率、温度和/或其它。这些参数可以组合成操作条件和参数图。电压和/或电流尖峰(为简洁起见,在本文中称为尖峰)可根据操作条件和参数通过原型电路的测量和/或电路的仿真来绘图。可以确定允许的电压或电流尖峰的限值,例如开关的额定绝对最大电压,表示为Vmax_abs_rating,并将该限值减小校正因子。如果条件导致电压尖峰电平超过电压尖峰限值,则可以降低开关栅极驱动强度以防止尖峰。然后可以将驱动强度绘图到操作条件(例如,如在操作期间通过测量传感器值确定的),并且可以将其转换为响应于传感器值的一组规则。
术语“开关”在本文中用于表示任何类型的电气设备,例如晶体管或继电器,其基于施加到开关的控制端子的控制信号来控制开关的第一接触端子与开关的第二接触端子之间的电连接。例如,当电压或电流施加到控制端子(例如,晶体管的栅极)时,第一接触端子(例如,晶体管的漏极)和第二接触端子(例如,晶体管的源极)之间的有效电阻)从开路变为短路(在开关的连接技术范围内)。为了简洁起见,术语“栅极”、“源极”和“漏极”在本文中分别用于表示任何类型的开关(例如,场效应晶体管(FET)、双极晶体管(BJT)、固态继电器、绝缘栅双极晶体管(IGBT)等)的控制端子、第一接触端子和第二接触端子。
半导体开关的栅极(例如,FET的栅极、BJT的基极、IGBT的栅极和/或其它)可以充当电容器,并且当栅极被充电时,允许电流在开关的源极(例如,FET的源极或BJT的集电极)和开关的漏极(例如,FET的漏极或BJT的发射极)之间流动。栅极充电的速度可以取决于连接到栅极的电路,包括栅极驱动器操作特性(例如,驱动器的电流和电压)、使栅极电流和电压可用的速度、开关的类型和栅极的电特性、以及与栅极电路相连的其他部件。例如,快速而强大的驱动器可以将相对大量的电流快速发送到栅极,以实现最小的切换时间和最大的效率,代价为增加成本、增加部件计数、降低可靠性、增加电路噪声等。例如,慢/弱栅极驱动器的效率可能较低,但会受益于降低的噪声和提高的可靠性。
术语“栅极驱动强度”可以指用于驱动栅极以操作开关的脉冲的电压和电流水平、以及电压和电流的瞬时特性,例如斜升、斜降、波形等。这些特性可以通过调节栅极驱动器阻抗、操作、驱动电路部件和/或其它来确定。在许多情况下,电压是源极或漏极电压的函数,电流反映了栅极驱动强度。
电压和/或电流尖峰可能是由寄生电容、LC电路、RLC电路和/或其它引起的。当存储在这些电路(可以是整个功率设备电子电路(示意性)的部分)中的能量释放时,能量将跟随电导体,直到以热量形式散发到部件中或转换为存储在电路部件中的电能。尽管电压尖峰可能会对设备可靠性产生直接的负面影响(例如,可靠性降低),但在一些应用中,电流尖峰可能成为瓶颈。例如,当释放瞬态能量时,电路可能在能量耗散路径上具有电流限制,从而导致电压尖峰。例如,电流尖峰可以超过电迁移应力,可以将尖峰能量转换为从电路辐射的电磁干扰和/或其它。如本文所用,术语“尖峰”或短语“电压和/或电流尖峰”将可互换使用,并且是指由于电路中的瞬时能量释放而导致的电压和/或电流的突然增加,并且应当理解,尖峰也可以与瞬态电压、电流、功率、能量等的急剧增加相关。
可以将规则集成到用于确定栅极驱动器强度的逻辑中,并制造产品。在功率设备的操作期间,栅极驱动器可以接收操作条件的传感器值,并且可以使用规则来确定用于栅极的驱动强度。因此,栅极驱动器可以防止电压和/或电流尖峰超过开关的额定最大电压,同时在许多操作条件下提供有效的转换器操作。这些方面允许例如通过增加平均故障间隔时间(MTBF)、减少电磁干扰(EMI)和/或其它来增加功率设备的可靠性并改善其运行。
现在参考图1A,其示意性地示出了根据本公开的说明性方面的具有可靠的栅极驱动器103的设备的电路图100。功率转换器(例如,降压转换器、升压转换器、反激转换器和/或其它)的一个或多个开关101可以交替地闭合和断开以允许电流从被表示为Vin的输入端子流出。电流可以流经一个或多个储能器部件107,例如电感器、电容器、变压器和/或其它,以向被表示为Vout的输出端子供电(例如,Vout可以连接到负载(未示出))。电路100的粗虚线表示电操作导体,而细实线表示电控制导体。如本文中使用,术语“导体”是指电导体。开关101包括栅极101A,例如,晶体管栅极,其使得能够断开和闭合开关101。为了限制被表示为Vspike的电压尖峰(或者可替代地,电流尖峰,例如,由寄生电容、LC电路、RLC电路和/或其它引起的跨源极和漏极端子被施加到开关上的电压或电流尖峰)不超过开关101的最大允许电压,电路中可以包含一个或多个传感器104以测量各种参数,例如,输入电压Vin、开关101的温度、储能器107的电压、开关101的源极电压、开关101的漏极电压、环境温度106、功率设备温度和/或其它。传感器104的测量值可以由栅极驱动器103获取,该栅极驱动器103基于传感器104的值和/或规则(例如,由栅极驱动器103的电路获取、硬连线到栅极驱动器103的电路中、由控制器105提供、和/或其它)进行计算,并且可以将传感器104的测量值用于确定用于操作开关101的驱动强度。在功率转换器操作期间,控制器105操作栅极驱动器103以断开或闭合每个栅极101,并且栅极驱动器103确定栅极驱动器的强度(例如,通过传感器104并且根据规则确定)并且操作(例如,升高或降低电压)开关栅极101A。
现在参考图1B,其示意性地示出了根据本公开的说明性方面的具有可靠的栅极驱动器的功率设备的电路图110。功率设备(例如,半桥转换器、降压-升压转换器、Cuk转换器和/或其它)的开关111和112可以交替地闭合和断开以允许电流从被表示为Vin的输入端子流出。电流可以流经一个或多个储能器组件117(例如,电感器、电容器、变压器和/或其它),以将经转换的电压/电流提供给被表示为Vout的输出端子(例如,Vout可以连接到一个负载(未示出))。每个开关111和112包括相应的栅极111A和112A,例如晶体管栅极等,其使得能够分别断开和闭合开关111和112。为了限制被表示为Vspike的电压尖峰(例如,来自寄生电容和/或其它的电压尖峰)超过开关的最大允许电压,电路中可以包括一个或多个传感器114以测量输入电压Vin、开关111和/或112的温度、储能器电压、开关111和112的源极电压、开关111和112的漏极电压、环境温度、功率设备温度和/或其它。传感器114的测量值可以由栅极驱动器113获取,该栅极驱动器113基于传感器114的值和/或规则(例如,由栅极驱动器电路113获取、硬连线到栅极驱动器电路113中、由控制器115提供和/或其它)来计算用于驱动开关101的栅极驱动强度。在功率转换器操作期间,控制器115操作栅极驱动器113(例如,发送信号以断开或闭合栅极111和112),并且栅极驱动器113确定栅极驱动器对栅极111A和/或112A的强度(例如,通过传感器114的值并根据规则确定)。栅极111A和112A之间的栅极驱动脉冲强度(例如,激活开关时的栅极驱动器电流)可以不同,这取决于每种驱动强度的规则和/或输入传感器值。
现在参考图1C,其示意性地示出了根据本公开的说明性方面的具有栅极驱动器的功率设备的电路图120。例如在全桥转换器等中发现的功率设备的开关121、122、127和128可以交替地闭合和断开以允许电流从被表示为Vin的输入端子流出。电流可以可选地流经一个或多个储能器组件(未示出),例如电感器、电容器、变压器和/或其它,以将经转换的电压/电流供应给被表示为Vout的输出端子(例如,Vout可以连接到负载(未示出))。每个开关121、122、127和128包括各自的栅极121A、122A、127A和128A,例如晶体管栅极等,其分别能够断开和闭合开关121、122、127和128。为了限制被表示为Vspike的电压尖峰,(例如,来自寄生电容和/或其它的电压尖峰)不超过开关的最大允许电压,电路中可以包括一个或多个传感器124以测量输入电压Vin、开关101的温度、储能器107的电压、开关101的源极电压、开关101的漏极电压、环境温度106、功率设备温度和/或其它。传感器124的测量值可以由栅极驱动器123获取,该栅极驱动器123基于传感器124的值和/或规则计算出用于驱动开关101的驱动强度(例如,由栅极驱动器电路123获取、硬连线到栅极驱动器电路123中、由控制器125提供和/或其它)。在功率转换器操作期间,控制器125操作栅极驱动器123,并且栅极驱动器123将栅极脉冲(其强度/电流可通过传感器124并且根据规则确定)发送到栅极121A、122A、127A、和/或128A。
现在参考图2,其示出了根据本公开的说明性方面的用于可靠地驱动功率转换器中的开关(例如,图1A-1C的开关101、111、112、121、122、127和128。)的栅极的方法200的流程图。方法200可以至少部分地由栅极驱动器103、113、123、440、441、502、533、535、538和/或相关电路来执行。例如控制器(例如105、115、125、420、421、502等)或与其相关联的逻辑电路。栅极驱动器(例如,103、113、123、440、502、533、535、538等)可以在步骤201中例如从控制器(例如,105、115、125、420、421、502等)接收(例如,从存储器等获取)信息(例如,命令、操作模式),并且可以在步骤202中获取传感器数据(例如,直接或间接地从104、114、124、501等获取)和/或规则(例如,从控制器或存储设备获取)。在步骤203中,栅极驱动器可以基于传感器数据和/或规则来确定栅极驱动强度(例如,栅极驱动脉冲电流、电压、功率、能量等),并且可以在步骤204中根据所确定的驱动强度来驱动开关栅极。
现在参考图3,其示出了根据本公开的方面的用于确定可靠的栅极驱动规则/等式/查找表(LUT)的方法300的流程图。可以以与图3的示例不同的顺序执行该方法的步骤,并且可以根据需要省略其他示例的步骤。设计301用于功率转换器的电路(例如,包括选择组件)。可以在步骤302A中仿真电路和/或可以在步骤302B中构建和测试原型电路,其中原型可以是工作原型,例如,在印刷电路板布局和组件方面具有与最终产品基本相同的电气特性。在步骤302A的仿真和步骤302B的测试期间,可以在步骤302C中比较和/或分析结果,以确认设计和原型是一致的。可以在步骤303中关联来自步骤302A的仿真、步骤302B的测试和/或步骤302C的比较/分析的数据,使得可以确定传感器测量值、驱动器强度和/或电压尖峰之间的关系。在步骤304中,可以利用相关性来确定操作包络,例如,在不同操作条件下(例如,操作电压水平、电流水平、温度和/或其他传感器数据)的驱动器强度的限制可能基于开关的组件操作、安全性和可靠性限制。例如,操作包络可以包括对操作条件的选择,该操作条件在不超过指定电压(例如,与开关两端的绝对最大电压有关)的情况下可靠地操作开关,并且可以在步骤305中用于计算接受操作条件(例如,如由传感器测量值所指示的)的规则(例如,以存储在查找表(LUT)中的参数的形式或由等式确定的参数的形式等),并且基于操作条件选择驱动器强度。例如,可靠地操作开关可以包括不超过与开关的Vmax_abs_rating(例如,额定绝对最大电压)相关的阈值电压,从而增加开关故障之间的平均时间。在步骤306中,检查步骤302A的仿真、步骤302B的原型和/或步骤305计算出的驱动器强度,以确认这些方面满足设计要求,例如,由进一步的仿真确定。例如,在进一步的仿真和/或原型中实施规则(例如,LUT和/或等式)以在步骤307中验证设计,并且制造308该设计。当在步骤306中不满足要求时,从步骤301的电路设计重新表述该过程(例如,以修改设计或选择不同的组件)。本文中公开的步骤可以以其他顺序执行或者被省略。
作为本文公开的方面的示例应用,图4中示出了可再生发电系统。图4示意性地示出了根据本公开的说明性方面的用于发电的系统400,其包括用于功率转换器设备410的栅极驱动器440。功率转换设备410(例如,逆变器)可以包括栅极驱动器440,控制器420和具有开关430的转换器。功率转换设备410可以例如转换功率,例如,将可选地使用功率优化器401A的来自一个或多个太阳能电池板401的DC功率或将来自风力涡轮机402的AC功率和/或其它转换为用于对电存储设备450(例如,电池,压缩空气电存储器,热电存储器和/或其它)充电的DC功率(例如,为此目的、包括DC-DC功率转换器的逆变器)或转换为用于对负载供电或馈入电网460的AC功率。优化器401A可以包括输入和输出端子401B和401C、控制器421、栅极驱动器441和具有一个或多个开关431的DC/DC转换器。
通常,栅极驱动器的特征在于其栅极驱动强度,例如,驱动器的额定电流。功率转换器(例如,开关模式电源拓扑或包括开关的不同电子设备)可能会受益于所公开的栅极驱动器的使用,但在硬开关栅极驱动器应用中则更为如此(与软开关拓扑相比,例如,谐振开关和/或其它)。在开关模式电源(SMPS)中,栅极驱动器例如通过向开关的栅极注入更高的驱动电流来开启和关闭栅极。SMPS栅极驱动的缺点可包括较大的电压尖峰(例如,过冲和下冲),EMI和/或其它。
例如,当工作电压输入(例如,Vin)基本上是开关和/或设备的最大输入电压额定值时,电压尖峰会引起可靠性问题。例如,开关可以直接连接到设备的输入电压。例如,当Vin接近Vmax_abs_rating或源极和漏极之间的电压差接近Vmax_abs_rating时。通常,可以在设备电路中设计电压裕度,例如,预期最大输入电压(例如,源极和漏极之间的电压差)与开关的最大额定电压之间的差,例如开关电压余度(例如,最大电压额定值与开关在操作中将经历的源极和漏极之间最大电压差之间的裕度)等。该裕度减小了电压尖峰可以将施加到开关的电压升高到基线输入电压之上,并由此超过开关的额定最大电压(例如,绝对最大额定漏极至源极电压)的可能性。尖峰电压加到基准直流(DC)输入电压(Vtotal=Vin+Vspike),并且当源极和漏极之间的总电压超过开关的最大绝对电压额定值时,可能会损坏开关,从而降低开关的寿命。
最大绝对额定电压是非常“昂贵”的参数,因此可以使用具有较低Vmax_abs_rating的开关的栅极驱动器是有益的。举例来说,在设计功率转换器时,最大电压额定值的增加可能导致组件成本的大幅增加,例如,成本函数为成本=f(Vmax_abs_rating)^2.2),其中Vmax_abs_rating可与开关数据手册上记录的参数绝对最大额定Vds有关。例如,额定值为45伏(V)Vds的Rohm半导体RD3H200SNFRATL的单位成本可以为1.77美元,额定值为100VVds的RSJ400N10FRATL的单位成本可以为3.18美元和/或其它。
此外,与EMI电平有关的一阶项可以与功率转换器的输入电压电平相关联,因此也主要取决于Vmax=Vin+Vspike。例如,较强的栅极脉冲(例如,具有较高的电流栅极脉冲和相关的较高的栅极电容)可能会导致开关上的电压和/或电流的突变(例如,晶体管的源极和漏极之间的电压差),并在开关频率和开关频率的谐波处产生EMI。
公开的栅极驱动器可以测量开关的源极和漏极端子处的电压(或源极和漏极端子之间的差分电压)以确定要使用的开关强度,从而电压尖峰不超过预定阈值。电压尖峰可以是跨过开关的两个端子(例如,源极和漏极端子,源极和栅极端子)或在开关端子和参考端子(例如,源极端子和地,源极端子和低压设备输入端子)之间测得的最大瞬时电压,和/或其它。
规则(例如,LUT和/或数学方程式)根据开关端子电压来控制栅极驱动强度。例如,栅极驱动器可以遵循确定在直流(DC)测量的电压阈值(Vin)以上的、开关的驱动强度可以降低的规则。例如,驱动强度可以作为在两个电压极限之间的跨过开关端子的测得电压(例如,MOSFET的最大绝对额定Vds)的线性函数而减小。在其他示例中,多项式函数,查找表,多个电压阈值电平,功率函数和/或其它可用于根据来自传感器的测量结果(例如,功率转换器工作条件的电压,电流,或温度)来减少栅极驱动电流。以这种方式,可以修改电压尖峰行为并将其限制在设备可靠性裕度之内,例如,低于最大绝对电压额定值。裕度可取决于开关端子之间的工作电压。
例如,降压转换器可以使用额定为15V的开关,并设计用于12V的最大转换器输入电源。仿真可以显示,当使用3安培(A)的栅极驱动强度时,开关端子上会发生10V尖峰过冲,当使用1安培(A)的驱动强度时,会发生3V尖峰过冲(例如,非线性相关性)。栅极驱动器强度算法可以包括以下规则:对于最高Vin=5V,驱动器可以使用3A的电流驱动强度,从Vin=5V到最大Vin=12V,驱动强度可以从3A线性降低到1A且Vin=12V以上,以1A的驱动强度进行切换和/或更改为软开关技术(例如,谐振开关技术,准谐振开关技术和/或其它,其可以减少电压尖峰,EMI和/或其它)。此示例的规则可降低驱动强度,以避免违背开关的最大绝对电压额定值。当所有输入电压均使用1A驱动强度时(例如,使用此示例中最弱的驱动强度时),则对于工作电压范围内的大多数电压,可能会观察到更高的开关损耗,而在使用规则时,在12V下输入1A驱动强度可能导致我们遭受同样的损耗。可以设计规则,使得使用给定传感器值下的最高驱动强度,该最高驱动强度不超过开关的最大绝对电压额定值,从而最大程度地减小开关损耗。
一个或多个电流测量结果(例如,通过一个或多个组件的一个或多个端子,在一个或多个时间点,和/或其它)也可以用于确定优选的栅极驱动强度。例如,电压尖峰也可以取决于通过开关的电流。例如,较高的电流值会在固定的驱动强度下导致较高的尖峰。功率转换器可以在各种工作条件(例如,电流,电压,占空比和/或其它)下操作,并且当这些条件使得电压尖峰可能超过可用裕度(例如,输入电压和最大绝对电压额定值之间的差)时,可以例如降低栅极驱动强度,以降低高电流水平下的电压尖峰,同时最大程度地保持性能。
在许多功率转换器中,通过开关的最大电流发生在瞬态过程中(例如,两个电气工作点之间的变化),并且电压可能会大大降低,因此限制瞬态过程中的开关强度可以在电压和电流组合的最坏情况中是有益的。流过开关的电流的测量结果因此可以与电压测量结果一起使用,以预测开关端子处的电压尖峰,从而可以使用规则和/或功能来降低开关强度,以防止瞬态电压尖峰降低开关的可靠性。
将电流转换为栅极驱动强度的规则可以类似于关于电压描述的规则。例如,从特定电流阈值开始,降低栅极驱动器强度,以避免违反最大绝对电压额定值。可以将用于将电流和电压转换为驱动强度的另一个规则示例定义为:当电压和电流值都在各自的阈值之上时,减小栅极驱动强度(例如,电流)以避免超过开关的最大绝对电压额定值。一个示例规则可以是当电压值乘以电流值的乘积(即功率)高于阈值时。
以下是确定用于操作降压转换器的栅极驱动器规则的方法的示例:
1.测量Vin(例如,如图2的步骤202所示)。
2.使用方程式计算所需的驱动强度:驱动强度=Vin*a+b,其中a和b是下面描述的参数(例如,如图2的步骤203所示)。
3.例如根据与Vin相关的方程式结果、通过切换驱动器输出级(例如,最接近栅极的电路中的驱动器)以及打开和关闭前置驱动器导体来设置驱动器驱动强度配置(例如,如图2的步骤203所示)。
设计动律转换器(例如半桥逆变器)时,可以使用以下方法来应用栅极驱动器规则:
1.指定用于设计的最大输入电压,表示为Vinmax(例如,如图3的步骤301所示)。
2.根据Vinmax和功率转换器的电路的仿真来定义开关(例如,晶体管)的最大绝对电压额定值(例如,如图3的步骤302A所示)。例如,比Vinmax大不少于5%:
VinMAX=Vin+Vdiode+VFET+Vspike
其中Vdiode表示串联二极管的偏置电压(在电路中使用时),VFET表示场效应晶体管(FET)上的电压降,而Vspike可以根据驱动强度,电流,电压,温度和/或其它进行仿真。
3.使用线性函数时,按以下步骤校准线性系数A和B:
a.针对Vin和输入电流的所有值(例如,从最小电流到最大电流)建立驱动强度的矩阵(例如,如图3的步骤303所示)。
b.为低侧和/或高侧晶体管都选择驱动强度包络(例如,如图3的步骤304所示),以使V_LX(降压开关节点电压)尽可能高,但不超过最大绝对额定值减去安全系数(例如,每个晶体管2%(例如,对于低侧晶体管,我们看高侧栅极驱动强度,而对于高侧晶体管,我们看低侧栅极驱动强度)。
c.将所选的驱动强度包络拟合到一个方程式(例如,如图3的步骤305所示),例如具有系数A和B的线性方程式。
当开关节点电压的斜率高时,驱动器强度可以自然降低,并且栅极驱动器的无源效应可能会减慢开关速度。该无源栅极驱动器速度控制比本文公开的有源栅极驱动器速度控制更不明显和有效。有源栅极驱动器速度控制可以是电流的函数,例如当电流高时,驱动器可以降低栅极驱动强度。例如,当增加的电流超过最大电流的阈值(例如87%)时,当电流达到最大的极限(例如95%)时,栅极速度线性减小到零。类似地,取决于栅极驱动器和栅极对温度升高的电气响应,栅极驱动器的温度依赖性可以产生这样的效果,其中驱动电流可以被动地增加或减小。
在某些应用中,由于传感器的测量结果,驱动器强度可能会增加。例如,当传感器测量结果表明开关的端子之间存在较低的电压时,栅极驱动器可以使用更快的开关电流,速度和/或波形。
就诸如通过驱动功率,能量,电流,电压,阻抗等测量时的驱动强度而言,驱动功率开关的栅极可以通过底线时间(bottom line time)和从导通状态变为关断状态、或从关断状态到导通状态的波形来评估。栅极驱动器(例如作为电路一部分的开关节点)在更改功率栅极状态时可能会影响底线时间和栅极过渡的形状。例如,寄生电容可产生流经驱动栅极节点的反馈电流。例如,寄生电感和寄生电阻可能会对栅极过渡产生负面影响。例如,栅极电流对驱动强度的线性负反馈可能会导致栅极电流增加,从而降低驱动强度。例如,具有高电流的寄生电容将开关节点电压增加到更高的值(例如,以线性公式I=C*dV/dt),从而引起负面影响。本文所公开方面的应用可以感测工作条件并调节开关栅极的驱动强度(电流,电压,波形等)。例如,随着电流的升高,通过检测电流并调整栅极时序和强度(包括上升速率,周期,死区时间等),从而保护开关免受由于更高的电流而导致的可能具有更高值的电压尖峰的影响。
通常,在高电流下,VFET可能会增加电压幅度,特别是在具有高导通电阻(高Rds,ON)的开关中。有时,VFET可大于跨越FET寄生二极管的电压,或者当死区时间为零且开关在二极管导通之前接通时。
栅极驱动器可以控制栅极电流,栅极电压,栅极驱动器阻抗,栅极驱动脉冲的时序,栅极驱动脉冲的波形和/或其它。例如,绝热开关脉冲波形可以由栅极驱动器确定。例如,可以通过栅极驱动器将脉冲波形确定为矩形波形。例如,两个开关的交替驱动之间的死区时间(例如,一个栅极脉冲的结束到另一栅极脉冲的开始之间的时间)可由规则确定。例如,可以在功率转换器的受益于高效转换的工作模式期间确定20纳秒的死区时间,并且可以在功率转换器的低效率工作模式期间确定1毫秒的死区时间,例如,在预热期间。绝对或相对时序可以用于更好地调节栅极驱动器脉冲以满足特定功率转换器和/或工作模式的要求。时序调整可以通过导通时序,死区时间,关断时序和/或其它来进行。
栅极驱动器可使用用于电压,电流和/或其它的高时间分辨率传感器,以提供即时的栅极驱动强度调节。例如,可以使用对电压阈值敏感的电气部件(例如,晶闸管等),并且当电压尖峰接近或超过阈值时,可以降低栅极强度以防止跨过开关的电压超过最大额定电压。例如,高速(HS)模数电压/电流传感器可以直接测量电压尖峰,并且栅极驱动器可以接收HS传感器值并降低栅极强度,以防止跨过开关的电压超过最大额定电压。
例如,下表是电路工作的仿真数据,其中(Vmax_abs_rating=65V):
表1:不同Vin和驱动强度下的示例尖峰电压。
Figure BDA0002495818080000171
可以从表1中选择不超过额定值的工作点。
表2:表1的选择工作条件不超过65V的Vmax_abs_rating。
Vin(V) Ig(A) Vmax(V)
40 3 60
50 2 60
60 1 60
在该示例中,驱动强度可以由方程式确定:Ig=-Vin*0.1+7。其他示例可能会生成不同的表,规则和/或方程式。
当SMPS具有两个串联连接的开关时,中心节点电压(两个开关之间的中心点处的电压)可具有较高的dV/dt,因为此处的电压可能会从Vin跳到0再回到Vin。例如,在低侧开关的源极处的电压尖峰(由于低侧开关的操作)可能会在高侧开关的源极和漏极之间引起电压尖峰。类似地,由于串联的其他开关的栅极开关强度而使具有一系列开关的多电平逆变器可能会在中间开关处出现电压尖峰。因此,可能有必要仿真多种工作模式以确定每个开关上的电压尖峰,并且规则可以调整一个开关的栅极驱动强度以防止另一开关上的电压尖峰。
使用温度传感器测量温度可以进一步识别导致电压尖峰(或影响电压尖峰的幅度)的工作条件。这些温度传感器值可以在规则中使用。这在太阳能转换器应用中尤其有用,例如,连接到光伏发电机的DC/DC转换器或DC/AC转换器(例如,逆变器)和/或其它。例如,随着温度的升高,开关上的最大允许电压的电压额定值可能会增加,光伏(PV)面板的电压可能会降低,从而减少电压尖峰并增加在跨过开关的电压和跨过开关的增加的最大允许电压之间的电压裕度。这些工作条件(例如,PV面板的较高温度,位于面板附近的DC/DC转换器和/或其它)可以使开关强度更大,而不会不利地影响开关的可靠性。
在较低温度的示例中,开关的最大电压额定值可能会降低,并且PV面板的电压(例如,在最大功率点工作时)可能会增加,从而导致电压尖峰变大,并且电压裕度变小。如果不考虑这些工作条件,则开关的可靠性可能会降低,因为较大的电压尖峰可能会超过降低的余度。当太阳能发电系统在早上开始运行并且面板和电子设备的温度都较低时,可能会出现这种情况。随着一天的进展,电子设备的工作变得更加费力(例如,由于太阳光在太阳能电池板上的入射角较低而导致输入功率增加),工作温度可能会升高,电压峰值可能需要更少的余度,因此可使用更强的栅极驱动器脉冲来驱动开关栅极。
太阳能发电系统工作期间的电压,电流和温度也可能受到一天的时间中的电网规则(例如,上网电价,虚拟电厂服务器命令和/或其它)的影响。例如,电力公用电网可以要求太阳能发电系统在一天的中间、消耗较低时限制向电网的功率供应,从而避免总体消耗与电网的发电之间的不平衡。这种限制(也称为“削波”)可能会导致功率转换器的工作效率降低,因为无论如何该转换器都无法向电网提供可用功率的全部容量。削波可以利用几种技术来实现,例如,转换器的控制器降低PV面板的工作点电压(从而降低输入电压,并因此降低电压尖峰),改变功率转换器以使用软开关来工作,降低栅极驱动强度和/或其它。这些技术(例如,使用软开关工作,降低栅极驱动强度和/或其它)通过在由电网指定削波的时间段期间增加开关(例如,MTBF)的可靠性是有益的。
所公开的栅极驱动器的益处(例如,相对于先前的驱动器)可以包括:减少或不存在电路中的保护组件(例如,防止电压尖峰的保护设备),降低开关的最大电压额定值(例如,使开关受益于小尺寸,低成本,增加的开关可靠性和/或其它),消除在栅极驱动器逻辑中对实时电压和电流测量结果的需求(例如,使用比SMPS的时钟速率大一小部分的采样),降低传感器噪声(例如,更长的感测时间),用于测量稳态工作参数的低速传感器(例如,对瞬态参数,抖动等不敏感),和/或其它。栅极驱动强度可响应于不需要高速测量和快速逻辑处理的传感器测量结果,并允许开关在正常工作期间以最高效率工作。在不规则工作期间(例如,当电压尖峰更有可能发生时,例如设备启动,设备关闭,设备模式更改,自检和/或其它),由于驱动强度降低,效率可能降低,但是整个设备的可靠性(例如,寿命,MTBF)可以增加。
另一个示例可以是当逆变器(例如,参考图4的上述逆变器410)被规定在最大功率额定值时,所述最大功率额定值低于系统中所有PV面板的总最大功率。在该示例中,附接到面板的DC/DC功率转换器的控制器(例如,在401A中)可以执行削波(例如,通过降低到逆变器的输入电压),以保护逆变器410不接收超过逆变器额定值的功率。可替代地,逆变器可以通过限制输入电流来工作,并且在较低强度的栅极驱动脉冲的情况下以较低效率工作。在这些情况下,通过实施较弱的栅极驱动技术,可以用降低的效率来换取提高的可靠性。这种和类似削波技术的改进的可靠性允许以增加的开关可靠性(例如,较弱的栅极驱动)来进行工作。
在功率转换器的硬开关期间,在低电流(例如,当电流为Ids-delta(Ids)时)下和软开关期间(例如,谐振拓扑,准谐振拓扑,强制谐振拓扑和/或其它)可能会发生大电压尖峰,在高电流(例如,当电流为Ids+delta(Ids)时)下可能会发生大电压尖峰。例如,当将功率转换器设计为同时使用硬开关和软开关进行工作,并且可以基于面板的可用功率、逆变器的功率额定值,来自电网的电力削波指令和/或其它来选择开关方法(例如,工作模式)时,这可能是有益的。然后,栅极驱动器可以使用工作模式和其他信息来确定是否使用硬开关,软开关,高驱动器强度,中驱动器强度,低驱动器强度和/或其它。
可以通过操作在栅极驱动器内使用的一定数量的开关和/或在栅极驱动器输出级中选择开关的类型来确定驱动强度和波形。这可以允许栅极驱动器波形形成以及驱动器强度选择。一个或多个电放大器(例如,运算放大器–OpAmp,跨阻放大器,跨导放大器和/或其它)可用于实现部分强度驱动(例如,可编程,受控,预定和/或其它)。例如,可以使用放大器将方程式硬连接到栅极驱动器逻辑中,并且输入到开关(例如,晶体管,FET,绝缘栅双极晶体管和/或其它)的级联级的所得到的信号配置成使得可以激活更多数量的栅极驱动器的开关,以支持更强的栅极开关,而当通过传感器测量结果指定降低强度的驱动时是更少的开关。例如,如以下示例性图示中所示,可以使用OpAmp和栅极驱动开关的相应级联而在栅极驱动器中实现LUT。
现在参考图5A和图5B,图5A和图5B示意性地示出了栅极驱动器电路500和530的示例。
传感器测量值的测量分辨率可能是检测电压尖峰的挑战。尖峰可能会持续几毫秒或更短的时间,并且低成本传感器可能需要很长时间才能获得准确的传感器测量值。例如,电压尖峰可能持续一纳秒、一微秒、一毫秒等,并且峰值电压(最大电压)可能无法测量,但仍会损坏功率转换器开关。因此,本文公开的各方面可以允许使用慢速测量传感器测量电压、电流、温度和/或其它的基线值(例如,DC、瞬时DC、平均DC、积分测量值和/或其它),并允许使用栅极驱动器规则,并且允许基于基线传感器测量值(可选地,基于仿真和原型测量值)来确定栅极强度,而无需使用高速传感器来检测峰值瞬时电压尖峰。
现在具体参考图5A,其示意性地示出了根据本公开的说明性方面的示例栅极驱动器电路500,该栅极驱动器电路500可以用于例如在103、113、123、440和441处实现栅极驱动器。一个或多个传感器501被配置为测量电路的工作参数,例如,功率转换器的电路的导体、端子或组件的电压(例如V)、电流(例如I)、温度(例如Temp)。取决于用于计算栅极强度的技术,传感器501可包括一个或多个感测元件、一个或多个检测元件、放大器、模数转换器和/或其它。传感器501的类型可以包括电压传感器、电流传感器、温度传感器和/或其它。传感器501可以连接到驱动控制器502,该驱动控制器502包括模拟控制电路、数字控制电路、模数转换器(ADC)和/或其它。模拟控制信号502A可以由驱动控制器502响应于传感器信号(例如,用于产生一系列传感器测量数字值的信号)而产生,并且被传导至前置驱动放大器(例如,pre DRV_P 511、pre DRV_N512和/或其它)、高端电流限制器(P限制器503)、低端电流限制器(N限制器504)、开关级联505和/或其它。驱动控制器502可以响应于传感器501的信号/值来产生数字控制信号502B。数字控制信号502B可以被传导至高端电流限制器(P限制器503)、低端电流限制器(N限制器504)、开关级联505和/或其它。P限制器503可以限制源极电流,而N限制器504可以限制反向电流,从而允许分别控制接通和/或关断电流。驱动控制器502可以合并到开关控制器510中。
当功率转换器(例如,图4的功率转换器430和431)在操作中时,开关控制器510可以将信号发送到前置驱动放大器511和512,前置驱动放大器511和512将放大的信号发送到开关级联505。开关级联505可以将栅极驱动信号发送到开关521的栅极520,开关521的栅极520依次将在其开关端子之间传导电流(例如,Vd和Vs)。驱动强度可以由通过Vdrv_supply、电流限制器P限制器503和/或N限制器504、开关级联505、pre DRV_P 511、pre DRV_N 512和/或其它的模拟控制信号502A和/或数字控制信号502B来确定。
现在参考图5B,其示意性地示出了根据本公开的说明性方面的示例栅极驱动器电路530,该栅极驱动器电路530可以用于例如在103、113、123、440和441处实现栅极驱动器。示例性栅极驱动器电路530示出了可以如何使用表示传感器501值的数字控制信号来确定栅极驱动强度。如图5A所示,一个或多个传感器501被配置为提供一个或多个测量的操作参数。在该示例中,可以在需要时使用ADC 532将传感器值转换为数字值。可替代地,驱动强度计算器533可以从传感器接收模拟值。传感器值(或模拟电压电平)可以被发送到驱动强度计算器533,驱动强度计算器533可以基于传感器值(可选地,基于仿真和原型数据)计算要使用的驱动强度。驱动强度计算器533可包括下列项(或由下列项来实现):例如,控制器电路、中央处理器(CPU)(例如,执行软件)、硬件处理器和/或用于执行驱动强度的计算(例如,根据过程200或300)的类似物。当需要计算时,可以从例如硬件数字数据存储单元、数字信息库、存储器和/或其它中检索LUT 534值。驱动强度计算器533可以基于计算出的驱动强度,将控制信号(例如,数字信号)发送到驱动控制器,例如,P驱动控制器535、N驱动控制器538和/或其它。驱动控制器535和538将控制信号发送到开关级联539的开关,例如,开关536A和537A,其依次可以确定一个或多个栅极电流控制开关536C和537C的操作。尽管将开关536B、536C、537B和537C表示为理想开关,但实际上,开关在闭合时包括电阻,因此,并联操作更多的开关会导致较低的电阻,并随之产生较高的驱动电流。
在某些应用中,可以使用两级栅极驱动器,诸如具有第一级和第二级的栅极驱动器,该第一级具有快速开关和高电流以进行高效的开关,第二级连接低电阻驱动级以提高效率。例如,对于最佳逻辑条件下的给定逻辑信号,第一栅极驱动器具有高效率的开关强度和时序(诸如栅极电流、电压、功率、波形、时序等)。例如,第二栅极驱动器在转换节点电压可能以每秒千兆伏的速率上升或下降的过渡期间保持一致的逻辑栅极操作。
本文公开的各方面可以通过以特定的栅极驱动强度控制栅极驱动器的电阻率并且在栅极驱动器切换到第二电阻率或在电阻率之间转变时保持栅极驱动状态,来补偿较高的驱动电阻率/电压/电流。例如,可配置的(诸如模拟和/或数字控制的)输出栅极驱动级可以包括多个串行/并行栅极驱动器,它们分别(可能同时)被控制以响应于栅极和/或开关电阻的变化来微调栅极驱动强度。例如,可以通过模拟设备来辅助栅极控制,诸如更高的栅极到源极电压可能会降低栅极开关驱动器的电阻率。例如,可以实现电流源栅极驱动器控制,以响应于测量的电路电流/电压/电阻等来控制流向栅极的电流。
在此示例中,当功率转换器(例如,图4的功率转换器430和431中的一个)在操作中时,开关控制器510可以将信号发送至前置驱动放大器511和512,前置驱动放大器511和512可以反过来将放大的信号发送到开关级联539的栅极。开关级联539可以响应于接收到放大的信号而将栅极驱动信号发送到开关521的栅极520,作为响应,开关521的栅极520将在开关端子(例如Vd和Vs)之间传导电流。驱动强度可以由用于开关536A和537A的栅极驱动的模拟控制信号(未示出,如图5A的502A)和/或数字控制信号(未示出,如图5A的502B)确定。例如,当536A闭合时,OpAmp 511可以操作开关536B和536C两者,从而增加对栅极520的导通驱动强度。例如,当537A闭合时,OpAmp 512可以操作开关537B和537C,从而增加对栅极520的关断驱动强度。
在图5B的示例中,可以基于来自传感器501的值(数字或模拟)来确定在开关级联539中是否包括开关。添加更多的开关可以为栅极520的操作增加强度(例如,电流)。类似地,可以将附加级别的开关合并到开关级联539中,使得可以由驱动强度计算器533例如基于来自传感器501的信息来确定许多强度的级别。例如,开关级联539可以包括2个级别、3个级别、4个级别、5个级别、6个级别、7个级别、8个级别、9个级别、10到20个级别、20到50个级别、50到100个级别、100到500个级别、500到5000个级别和/或其它。所添加的级别越高,则通过533将可控制栅极驱动强度的阶跃越大。类似地,每个级别的开关可以具有不同的类型和强度,从而允许改变栅极驱动强度波形的形状。可以将时序控制添加到栅极驱动器控制器510或强度计算器533以改变栅极驱动强度波形的轮廓。例如,栅极控制器可以使用数字延迟来在每个周期期间修改栅极驱动强度和/或波形。例如,模拟延迟电路可以用于在每个周期期间修改栅极驱动强度和/或波形。电气组件的其他组合可用于实现对栅极驱动强度的数字控制,诸如减小或增大流向栅极520或从栅极520流出的电流的电阻的开关的等效组合。例如,可以实现等同于537C的附加开关级别,以允许增加用于驱动栅极520的栅极驱动强度级别的数量(例如,栅极驱动强度的分辨率)。
现在参考图5C,其示意性地示出了根据本公开的说明性方面的示例栅极驱动器电路560,该栅极驱动器电路560可用于例如在103、113、123、440和441处实现栅极驱动器。本公开的各方面。示例性栅极驱动器电路560示出了可以如何使用表示传感器501值的模拟控制信号来确定栅极驱动强度。如在图5A中,一个或多个传感器501被配置为测量电路操作参数。在该示例中,传感器模拟信号可以连接至驱动开关562的驱动OpAmp 561。电阻器R1和OpAmp 561确定流经562和563A的电流,该电流在563B中进行镜像,从而将电流Icnt调整为等于Vdrv_supply除以R1的电阻值。施加到开关564的栅极的偏置电压Vbias确定电流Iref,该电流Iref将Icnt减小到Ires(Ires=Icnt–Iref)。Ires是施加到开关567B的栅极的电流,并且该电流确定通过开关566A和566B的电流限制(例如,图5A的开关级联505的末级)。滤波器565可以连接到Vdrv_gnd以从Ires去除尖峰和噪声。可以将类似的电路(例如,压控电流源电路等)(P Dr.Cnt.570)应用于开关566B以确定接通强度。在此示例中,Iref为正,并且随着电路的变化,Iref可能为负。可以使用可以接收模拟传感器信号并输出电流Ires的其他配置,诸如驱动OpAmp 561是跨导放大器或电流放大器的配置(取决于传感器信号)。例如,可以使用等效地执行电路描述的电子组件的其他配置,因为它们基于传感器测量值(例如,基于稳定状态的电压、电流或温度测量值)来修改栅极驱动器强度(例如,栅极驱动器电流、波形、斜升、斜降和/或其它)。
栅极驱动器电路500、530和560可以为与103、113、123、440和441相同的栅极驱动器一起实现。例如,栅极驱动器电路500可以使用栅极驱动器电路530的数字控制来实现502B。例如,栅极驱动器电路500可以使用栅极驱动器电路560的模拟控制来实现502A。其他示例可以一起使用栅极驱动器电路530和560的组合,诸如结合到栅极驱动器电路500中,或者独立于栅极驱动器电路500。用于栅极驱动器的模拟控制电路可以使用不同类型的放大器,诸如运算放大器,跨电感放大器,跨导放大器和/或其它。
在该示例中,如在图5A和图5B的示例中,当功率转换器(例如,图4的功率转换器430和431)在操作中时,开关控制器(未示出)可以将信号发送到前置驱动放大器511和512。前置驱动放大器511栅极512和512可以连接到栅极566A和567A。栅极566A和567A的操作可以确定至开关521的栅极520的栅极驱动信号、以及Vd和Vs之间的电流传导。驱动强度可以由根据传感器电压操作的限流器566B和567B确定。
如本文中所使用的,术语控制器和控制器电路是指被配置为实现一种或多种功能(诸如方法,规则和/或其它)以操作和控制一个或多个其他电子电路的电子部件。例如,控制器可以是中央处理器、微处理器、嵌入式控制器、数字硬连线逻辑电路、专用指令集处理器、专用集成电路、多核处理器、现场可编程栅极阵列(FPGA)等。控制器(或控制器电路)可以解释和执行指令,这些指令例如可以存储在由控制器可访问的存储器(诸如基于硬件的数字存储单元)中,作为软件存储在存储库中,硬连接到数字逻辑或FPGA中和/或其它中。例如,一种装置可以包括控制器(例如,处理器)和存储指令的存储器,这些指令在由控制器执行时使该装置实现一个或多个功能,诸如图2和图3中所述的功能以及本文所述的任何其他功能(例如,关于装置100、110、120、400、401A,410、500、530、560)。例如,控制器(诸如控制器电路)可以被配置为(使用特定的硬件和软件)根据功率转换器的开关的源极与漏极之间的传感器值、电压和/或电流等,将驱动器脉冲的强度调整为在脉冲强度上限和脉冲强度下限之间的范围内的多个值。在传感器值上,功率转换器的开关的源极和漏极之间的电压和/或电流和/或其它。例如,当开关的源极和漏极之间的电压和/或电流低于阈值时,脉冲强度将处于上限。例如,当开关的源极和漏极之间的电压和/或电流基本接近最大开关额定值时,脉冲强度将处于下限。
本文公开的各方面可以被应用为分立的电子组件、芯片上的系统、封装中的系统、集成电路、混合信号专用集成电路和/或其它。例如,公用事业规模的应用(例如,为兆瓦级电源转换而设计的功率转换器)可以利用分立的高功率组件来实现本文公开的各方面,例如,实现101、111、101、111、112、121、122、127、128、430、431或521。例如,高达几百瓦(甚至几千瓦)的一种功率设备(例如,图4的410)的应用可以实现在此公开的作为混合信号ASIC的各方面和组件(例如:101、111、101、111、112、121、122、127、128、430、431、521)。功率转换器的不同功率级别可能需要组件和IC级别组件两者作为开关的解决方案(例如101、111、101、111、112、121、122、127、128、430、431、521)。
可受益于本文所公开的栅极驱动器(例如,在104、114、124和501处读取传感器,并在202、203和305处使用规则以确定栅极强度的栅极驱动器)的使用而的示例设备(例如,功率转换器)在非排他性列表中。例如,本文公开的各方面可以用于驱动以下项中的一个或多个开关(例如,101、111、112、121、122、127、128、430、431、521):AC-AC转换器、AC-AC变频器、AC-DC转换器、有源钳位正激式转换器、非对称半桥转换器、Barthold转换器、Bassett转换器、升压转换器、边界模式转换器、边界传导模式转换器、无桥转换器、无桥PFC转换器、无桥功率因数校正转换器、降压-升压转换器、降压转换器、级联反激转换器、Clarke转换器、连续模式转换器、连续传导模式转换器、转换器、转换器、耦合电感
Figure BDA0002495818080000281
转换器、电流倍增器、电流馈送推挽式转换器、电流模式控制转换器、
Figure BDA0002495818080000282
转换器、DC-DC转换器、对角半桥反激式转换器、直接关断型线路转换器、不连续模式转换器、双端正向转换器、双开关反激转换器、双开关正激转换器、前馈转换器、固定频率转换器、反降压转换器、反激转换器、反激电流馈送推挽转换器、正激转换器、四开关降压-升压转换器、频率转换器、频率逆变器、全桥转换器、全桥推挽转换器、半桥转换器、半桥推挽转换器、半桥谐振转换器、磁集成
Figure BDA0002495818080000283
转换器、交错式同步降压转换器、逆Watkins-Johnson转换器、逆变器、反相降压-升压转换器、隔离式降压(buck)转换器、隔离式转换器、LCC(电感器-电感器-电容器)谐振转换器、LLC谐振转换器、LLC谐振半桥转换器、改进的正弦波逆变器、多相转换器、多输入转换器、多输出转换器、同相降压-升压转换器、非隔离转换器、非饱和推挽自激振荡转换器、离线转换器、并联谐振转换器、并联谐振转换器(PRC)、无源功率因数校正(PFC)转换器、PFC转换器、功率因数校正转换器、功率因数前置调节器、脉冲宽度调制转换器、推挽式转换器、脉冲宽度调制(PWM)转换器、二次升压转换器、准谐振转换器、准谐振反激转换器、RCC转换器、谐振转换器、谐振单端初级电感转换器(SEPIC)转换器、振铃扼流转换器、Royer电路、Royer振荡器、饱和变压器转换器、自激反激式转换器、串并联谐振转换器、串联谐振转换器、Sheppard-Taylor转换器、正弦波逆变器、单端正向转换器、单端初级电感器转换器、单级PFC转换器、单级功率因数校正转换器、单晶体管正激转换器、串并联谐振转换器(SPRC)、间歇式振荡转换器、串联谐振转换器(SRC)、开关转换器、同步降压转换器、抽头电感器转换器、过渡模式转换器、两开关反向升压转换器、两开关反激转换器、两开关正激转换器、两开关隔离升压转换器、两变压器自激转换器、两晶体管正激转换器、谷值电流整形器、可变频率转换器、电压模式控制转换器、Watkins-Johnson转换器、Weinberg转换器、Zeta转换器、零电压开关(ZVS)降压转换器、ZVS降压-升压转换器、ZVS转换器和/或其它。注意,并非转换器的所有开关可能都需要可靠的栅极驱动器,并且本文公开的各方面可以应用于一个或多个开关的一个或多个栅极的一个或多个栅极驱动器。功率转换器可以是单相转换器、多相转换器、三相转换器和/或其它。功率转换器可以是主功率转换器、辅助功率转换器、备用功率转换器和/或其它。
如103、113、123、440、500、530和560那样,使用所公开的栅极驱动器的示例设备其可以包括多级开关,每一级可能具有与101、111、101、111、112、121、122、127、128、430、431、521处不同的数量、大小和类型的开关。例如,栅极驱动器开关和/或功率转换器开关可以是晶体管、双极结型晶体管、场效应晶体管(FET)、结型FET、绝缘栅FET、金属氧化物半导体FET、金属半导体FET、高电子迁移率晶体管、耗尽型FET、增强型FET、n型沟道FET、p沟道FET、绝缘栅双极晶体管、异质结双极晶体管、肖特基晶体管、雪崩晶体管、达林顿晶体管、多发射极晶体管、碳纳米管场效应晶体管、反T型场效应晶体管、鳍型场效应晶体管、快逆外延二极管场效应晶体管电阻器、有机场效应晶体管、浮栅晶体管、隧道场效应晶体管、扩散晶体管、单结晶体管、单电子晶体管、绝缘栅双极晶体管、四极晶体管、五极晶体管、三栅极晶体管、双栅极FET、无结纳米线晶体管、有机电化学晶体管和/或以上的等同组合。
这里,如说明书和权利要求书中的其他地方,范围可以组合以形成更大的范围。
本文公开的特定尺寸、特定材料、特定范围、特定电阻率、特定电压、特定形状和/或其他特定特性和值本质上是示例性的,并且不限制本公开的范围。本文中针对给定参数的特定值和值的特定范围的公开并不排除在本文所公开的一个或多个示例中可能有用的其他值和值的范围。此外,可以预见,本文所述的特定参数的任何两个特定值可以定义可能适用于给定参数的值范围的端点(例如,给定参数的第一值和第二值的公开可以解释为公开给定参数也可以采用第一值和第二值之间的任何值)。例如,如果参数X在这里示例性地具有值A并且还示例性地具有值Z,则可以预想参数X可以具有从大约A到大约Z的值的范围。类似地,可以预见的是,参数值的两个或更多个范围的公开(无论这些范围是嵌套的,重叠的还是截然不同的)都包含了可以使用所公开的范围的端点要求保护的值的范围的所有可能组合。例如,如果参数X在本文中被示例为具有在1-10或2-9或3-8范围内的值,则还可以设想参数X可以具有包括1-9、1-8、1-3、1-2、2-10、2-8、2-3、3-10和3-9的其他值范围。
在各种说明性特征的描述中,参考形成其一部分的附图,并且在附图中通过例示的方式示出了可以实践本公开的各方面的各种特征。应当理解,在不脱离本公开的范围的情况下,可以利用其他特征并且可以进行结构和功能上的修改。
可以注意到,本文的元件之间提出了各种连接。这些连接已作了一般性描述,除非另有说明,否则这些连接可以是直接或间接的;本说明书无意在这方面进行限制,并且可以设想直接和间接连接。此外,任何实施例中的一个特征的元件可以以任何组合或子组合与任何实施例中的其他特征的元件组合。例如,级联的开关可以用于实现多个级别的驱动强度,一些级别包括在530处的数字控制,而其他级别包括在560处的模拟控制。
所有描述的特征以及对描述的特征的修改可用于本文所教导的所有方面。此外,对本文描述的所有实施例的所有特征以及特征的所有变型是可组合的并且彼此可互换的。

Claims (15)

1.一种方法,包括:
从一个或多个传感器接收一个或多个传感器信号;
根据所述一个或多个传感器信号确定一个或多个驱动脉冲参数;以及
将具有确定的所述一个或多个驱动脉冲参数的驱动脉冲分别施加到功率设备的一个或多个开关的一个或多个控制端子。
2.根据权利要求1所述的方法,其中,所述一个或多个驱动脉冲参数包括功率、电流、电压、斜升定时、斜降定时、或波形。
3.根据前述权利要求中任一项所述的方法,还包括从存储器检索查找表,并且使用所述查找表调节所述一个或多个驱动脉冲参数。
4.根据前述权利要求中任一项所述的方法,还包括:
接收控制命令;以及
基于所述控制命令,将所述驱动脉冲施加到所述功率设备的所述一个或多个开关。
5.根据前述权利要求中任一项所述的方法,还包括:
基于所述一个或多个开关中的一者的源极和漏极之间的电压或电流中的一者低于第一阈值,而将所述驱动脉冲调节为脉冲强度上限;以及
基于所述一个或多个开关中的所述一者的源极和漏极之间的所述电压或所述电流高于第二阈值,而将所述驱动脉冲调节为脉冲强度下限。
6.根据前述权利要求中任一项所述的方法,还包括:
接收指示所述功率设备的操作模式的信息;以及
基于所述信息调节所述一个或多个驱动脉冲参数或所述驱动脉冲。
7.根据前述权利要求所述的方法,其中,所述操作模式包括软开关模式、硬开关模式、启动模式、削波模式、或选定电压范围模式。
8.根据前述权利要求中任一项所述的方法,还包括根据所述一个或多个传感器信号中的一者的线性函数,在脉冲强度上限和脉冲强度下限之间调节所述驱动脉冲。
9.根据前述权利要求所述的方法,其中,所述一个或多个传感器信号中的一者指示所述一个或多个开关中的一者的源极和漏极之间的电压。
10.根据前述权利要求中任一项所述的方法,其中,所述功率设备包括功率转换器,并且其中,所述一个或多个传感器信号指示由所述一个或多个传感器检测到的温度、电压、电流、或操作模式。
11.一种装置,包括:
功率设备,包括一个或多个开关;
一个或多个传感器;以及
控制器电路,所述控制器电路配置成使得使用所述功率设备以及所述一个或多个传感器执行根据前述权利要求中任一项所述的方法。
12.根据权利要求11所述的装置,其中,所述一个或多个传感器包括温度传感器、电压传感器、电流传感器、或操作模式传感器。
13.根据权利要求11或12所述的装置,其中,所述一个或多个开关包括晶体管,并且一个或多个控制端子包括所述晶体管的基极或栅极。
14.根据权利要求11-13中任一项所述的装置,其中,所述功率设备是功率转换器。
15.根据权利要求11-14中任一项所述的装置,还包括:
第一模拟电路,被配置成将从所述一个或多个传感器输出的一个或多个电压转换成一个或多个电流;和
第二模拟电路,被配置成向一个或多个控制端子输出驱动脉冲,并使用一个或多个电流来调节所述驱动脉冲。
CN202010418221.6A 2019-05-16 2020-05-18 用于可靠切换的栅极驱动器 Pending CN111953187A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962848937P 2019-05-16 2019-05-16
US62/848,937 2019-05-16

Publications (1)

Publication Number Publication Date
CN111953187A true CN111953187A (zh) 2020-11-17

Family

ID=70738440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010418221.6A Pending CN111953187A (zh) 2019-05-16 2020-05-18 用于可靠切换的栅极驱动器

Country Status (3)

Country Link
US (3) US11437905B2 (zh)
EP (1) EP3739755A1 (zh)
CN (1) CN111953187A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258917A (zh) * 2021-07-13 2021-08-13 广州市保伦电子有限公司 一种监控保护用电设备的控制装置
TWI752840B (zh) * 2020-11-25 2022-01-11 立錡科技股份有限公司 諧振切換式電源轉換器與其中之驅動電路
CN114696585A (zh) * 2020-12-30 2022-07-01 圣邦微电子(北京)股份有限公司 一种功率管的驱动电路和开关电路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209545428U (zh) * 2019-03-20 2019-10-25 力智电子股份有限公司 电源切换电路
US11418125B2 (en) 2019-10-25 2022-08-16 The Research Foundation For The State University Of New York Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages
CN113517818A (zh) * 2021-03-19 2021-10-19 西安思丹德信息技术有限公司 一种低噪声负高压电源变换器
US11323070B1 (en) 2021-04-16 2022-05-03 Apple Inc. Oscillator with fin field-effect transistor (FinFET) resonator
CN112994502B (zh) * 2021-04-29 2022-09-27 东风汽车集团股份有限公司 一种车用igbt模组损耗降低电路、控制方法及电机控制器
TWI778854B (zh) * 2021-11-03 2022-09-21 新唐科技股份有限公司 電子系統及晶片

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784245A (en) * 1996-11-27 1998-07-21 Motorola Inc. Solenoid driver and method for determining solenoid operational status
JP2005151631A (ja) * 2003-11-12 2005-06-09 Mitsubishi Electric Corp 半導体装置および過電流の基準レベルのデータ設定方法
CA2565453C (en) 2004-04-26 2015-06-23 Gary Pace Adaptive gate drive for switching devices of inverter
GB2448761A (en) * 2007-04-27 2008-10-29 Cambridge Semiconductor Ltd Protecting a power converter switch
GB2449063A (en) * 2007-04-27 2008-11-12 Cambridge Semiconductor Ltd A saturation control loop for a BJT or IGBT in a switching power supply
US7880400B2 (en) * 2007-09-21 2011-02-01 Exclara, Inc. Digital driver apparatus, method and system for solid state lighting
CN101904080B (zh) * 2007-12-20 2013-06-19 松下电器产业株式会社 电力变换装置、开关装置以及电力变换装置的控制方法
US8729870B2 (en) * 2008-08-15 2014-05-20 Analog Modules, Inc. Biphase laser diode driver and method
US8184670B2 (en) * 2009-10-09 2012-05-22 Analog Modules, Inc. Smart linear pulsed laser diode driver, and method
US8717069B2 (en) * 2012-04-24 2014-05-06 General Electric Company Converter switch apparatus and method
US8901989B2 (en) * 2012-07-26 2014-12-02 Qualcomm Incorporated Adaptive gate drive circuit with temperature compensation
US9035687B2 (en) * 2013-10-09 2015-05-19 Infineon Technologies Ag Gate clamping
JP6090256B2 (ja) * 2014-08-05 2017-03-08 株式会社デンソー 半導体スイッチング素子の駆動回路及び半導体スイッチング素子モジュール
US10074497B2 (en) * 2014-11-06 2018-09-11 Rockwell Automation Technologies, Inc. Operator coil parameter based electromagnetic switching
US9425786B2 (en) * 2014-11-17 2016-08-23 General Electric Company System and method for driving a power switch
US9800042B2 (en) * 2015-02-16 2017-10-24 Delphi Technologies, Inc. Electrical load controller with fault detection
US10087872B2 (en) * 2015-11-18 2018-10-02 Infineon Technologies Ag System and method for a synchronized driver circuit
JP6836342B2 (ja) * 2016-06-22 2021-02-24 ルネサスエレクトロニクス株式会社 駆動装置および電力供給システム
US10447085B2 (en) * 2017-04-10 2019-10-15 Shenzhen Yichong Wireless Power Technology Co. Ltd Integrated circuit-based wireless charging system and method
DE102018104621A1 (de) * 2018-02-28 2019-08-29 Infineon Technologies Ag Verfahren zum Betreiben eines Transistorbauelements und elektronische Schaltung mit einem Transistorbauelement
US10728970B2 (en) * 2018-04-27 2020-07-28 Blooming International Limited Driving circuit apparatus for automatically detecting optimized driving voltage of light string
US10693454B2 (en) * 2018-05-24 2020-06-23 Infineon Technologies Austria Ag Signals for the control of power devices
US10469057B1 (en) * 2018-10-05 2019-11-05 Infineon Technologies Austria Ag Method for self adaption of gate current controls by capacitance measurement of a power transistor
CN113169659B (zh) * 2018-12-11 2023-08-04 三菱电机株式会社 电力用半导体元件的驱动电路以及使用其的电力用半导体模块
US10680601B1 (en) * 2019-01-25 2020-06-09 Infineon Technologies Ag Driver for switching insulated-gate bipolar transistors with first pull-down signal and second pull-down signal
US11353904B2 (en) * 2019-04-30 2022-06-07 Texas Instruments Incorporated Multi-slope startup voltage regulator system
EP3970451A1 (en) * 2019-05-17 2022-03-23 Lutron Technology Company LLC Load control device having a closed-loop gate drive circuit
US11128290B2 (en) * 2019-07-24 2021-09-21 Abb Schweiz Ag Temperature-adaptive short circuit protection for semiconductor switches
US11206016B2 (en) * 2019-09-27 2021-12-21 Analog Devices International Unlimited Company Gate driver with pulsed gate slew control
US11736100B2 (en) * 2021-05-05 2023-08-22 Gan Systems Inc. Active gate voltage control circuit for burst mode and protection mode operation of power switching transistors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI752840B (zh) * 2020-11-25 2022-01-11 立錡科技股份有限公司 諧振切換式電源轉換器與其中之驅動電路
CN114696585A (zh) * 2020-12-30 2022-07-01 圣邦微电子(北京)股份有限公司 一种功率管的驱动电路和开关电路
CN113258917A (zh) * 2021-07-13 2021-08-13 广州市保伦电子有限公司 一种监控保护用电设备的控制装置
CN113258917B (zh) * 2021-07-13 2021-09-24 广州市保伦电子有限公司 一种监控保护用电设备的控制装置

Also Published As

Publication number Publication date
US11437905B2 (en) 2022-09-06
US11689096B2 (en) 2023-06-27
US20230020884A1 (en) 2023-01-19
US20200366182A1 (en) 2020-11-19
EP3739755A1 (en) 2020-11-18
US20230283164A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US11689096B2 (en) Gate driver for reliable switching
Konjedic et al. DCM-based zero-voltage switching control of a bidirectional DC–DC converter with variable switching frequency
JP5226753B2 (ja) 充電システムおよび充電方法
TWI539256B (zh) 用於切換模式調節器之動態下降之系統與方法
US9577530B1 (en) Boost converter with zero voltage switching
US8803491B2 (en) DC/DC voltage converter and voltage conversion control method therefor
US20140334195A1 (en) Managing leakage inductance in a power supply
US20140321174A1 (en) Power supply device and semiconductor device
Schirone et al. Predictive dead time controller for GaN‐based boost converters
Madsen et al. Self-oscillating resonant gate drive for resonant inverters and rectifiers composed solely of passive components
US10256744B2 (en) Controller device with adaptive synchronous rectification
US6825641B2 (en) High efficiency electrical switch and DC-DC converter incorporating same
Sun et al. Design of power integrated circuits in full AlGaN/GaN MIS‐HEMT configuration for power conversion
CN204517684U (zh) 一种隔离式电压变换电路和控制电路
Yu et al. Sequential parallel switching for drain-source synchronous rectifier efficiency and light-load stability improvement
TWI678064B (zh) 逆變器電路及控制逆變器電路中的驅動器的方法
JP6147423B2 (ja) 電源装置の回路
Ting et al. Digital control of IGBTs for module shutdown in input-series and output-parallel connected modular DC-DC converter
CN113872428B (zh) 一种氮化镓晶体管的驱动控制电路、方法、设备、介质
Merrassi et al. Switching losses analysis of a constructed solar DC-DC static boost converter
Lazarević et al. Design and optimization of a high-frequency GaN-based ANPC three-level converter as an arbitrary PWL voltage generator
Li et al. Small-signal characterization of synchronous buck converters under light load conditions
Sergentanis et al. A topology-morphing series resonant converter for photovoltaic module applications
Kumar et al. Adaptive Control for DC-DC Converter to Operate on Critical Conduction Mode
Rachmad et al. Efficiency Comparison of Asynchronous and Synchronous Buck Converter with Variation in Duty Cycle and Output Current

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination