CN111952424B - 一种具有P面钝化层的AlGaInN基LED制备方法 - Google Patents

一种具有P面钝化层的AlGaInN基LED制备方法 Download PDF

Info

Publication number
CN111952424B
CN111952424B CN202010798818.8A CN202010798818A CN111952424B CN 111952424 B CN111952424 B CN 111952424B CN 202010798818 A CN202010798818 A CN 202010798818A CN 111952424 B CN111952424 B CN 111952424B
Authority
CN
China
Prior art keywords
layer
type
passivation layer
preparing
based led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010798818.8A
Other languages
English (en)
Other versions
CN111952424A (zh
Inventor
吴小明
陈芳
莫春兰
王光绪
郭醒
罗昕
陶喜霞
李树强
丁杰
胡武民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010798818.8A priority Critical patent/CN111952424B/zh
Publication of CN111952424A publication Critical patent/CN111952424A/zh
Application granted granted Critical
Publication of CN111952424B publication Critical patent/CN111952424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种具有P面钝化层的AlGaInN基LED制备方法,在暂时衬底上依次外延生长N型AlxGayIn1‑x‑yN层,有源区和P型AlxGayIn1‑x‑yN层;在P型AlxGayIn1‑x‑yN层上制备P面钝化层;采用湿法蚀刻图案化P面钝化层,暴露出其下的AlxGayIn1‑x‑yN层,高温退火,使外延层中的H溢出至表面,并将表面还原,去除因生长P面钝化层在P型AlxGayIn1‑x‑yN层表面生成的产物,从而提高P型AlxGayIn1‑x‑yN层的导电性能;利用高浓度HCl水溶液清洗,彻底去除P型AlxGayIn1‑x‑yN层表面产物,然后在暴露的P型AlxGayIn1‑x‑yN层上制备P侧电极;制备邦定金属层,并与永久基板键合,去除暂时衬底;在N型AlxGayIn1‑x‑yN层上制备N侧电极;制备N面钝化层。本发明解决了制备P面钝化层时,P型AlxGayIn1‑x‑yN层表面发生变化,导电性变差的问题,提高了AlxGayIn1‑x‑yN基LED的可靠性。

Description

一种具有P面钝化层的AlGaInN基LED制备方法
技术领域
本发明涉及发光二极管领域,尤其是涉及一种具有P面钝化层的AlxGayIn1-x-yN基LED制备方法。
背景技术
AlGaInN基材料可用于制备从紫外到红光的LED器件。在实际生产中,产生的光来源于受主掺杂层(P型掺杂层)和施主掺杂层(N型掺杂层)之间的有源区域。为了保证LED的高光效,期望载流子只在有源区内复合。由于LED侧面的晶体结构的中断,所以在这样的表面上有大量的复合中心。不必要的表面复合率会增加反向漏电流,进而降低LED的效率和稳定性。此外,对垂直结构LED,在腐蚀切割道后,制备N面钝化膜前,如果导电金属颗粒吸附在边缘,极易将边缘pn结短路,造成器件失效,影响器件制造合格率和稳定性。钝化层可以阻止载流子在LED表面上发生不必要的复合,而且,在P面制备一层钝化膜,即使有导电颗粒吸附在边缘pn结上,P面钝化层可切断垂直漏电通道,迫使漏电横向通过P型AlxGayIn1-x-yN层,而由于P型AlxGayIn1-x-yN层电阻大,都生长得很薄,其横向电阻极大,从而使得横向的导电难以发生。因此在AlxGayIn1-x-yN基LED中的P层制备钝化膜具有重要作用。例如:对比文件CN200880128211.6提出一种有效降低漏电流、增强器件可靠性的具有P面钝化的AlxGayIn1-x-yN基LED,LED结构示意图如图1所示。
但是P型AlxGayIn1-x-yN层本身导电性差,而钝化层的生长目前需要通过等离子体沉积,等离体子一般都会使P型AlxGayIn1-x-yN层表面氧化或者氮化,从而导致P型AlxGayIn1-x-yN层导电性更差,欧姆接触变差,器件电压升高等问题,影响LED的光电性能。该现象是P面钝化技术必须要解决的一个问题。
发明内容
针对上述问题, 本发明的目的在于提供一种具有P面钝化层、提高AlxGayIn1-x-yN基LED的可靠性、能提高P型AlxGayIn1-x-yN层的导电性能、消除因制备P面钝化层带来的对器件光电性能影响的AlxGayIn1-x-yN基LED制备方法。
本发明的第一个目的是这样实现的:
一种具有P面钝化层的AlxGayIn1-x-yN基LED制备方法,步骤包括:
A、在暂时衬底上生长AlxGayIn1-x-yN基LED结构,包括N型AlxGayIn1-x-yN层(即N型掺杂层),有源层和P型AlxGayIn1-x-yN层(即P型掺杂层),其中0≤x≤1,0≤y≤1;
B、在P型AlxGayIn1-x-yN层上制备P面钝化层,利用光刻技术,保留器件边缘需钝化区域的P面钝化层,去除其余区域的P面钝化层,暴露出P面钝化层下面的P型AlxGayIn1-x- yN层;在P面钝化层的制备过程中,P型AlxGayIn1-x-yN层表面与活性O或者N发生反应,电学性质发生改变;
C、在步骤B处理后暴露的P型AlxGayIn1-x-yN层上制备P侧电极;
D、制备阻挡层和邦定金属层,并与永久导电基板键合,去除暂时衬底;
E、对N型AlxGayIn1-x-yN层表面进行粗化;
F、刻蚀器件边缘的AlxGayIn1-x-yN外延层,加工出切割道;
G、制备N面钝化层:腐蚀待制备N电极区域的N面钝化层;N面钝化层覆盖了P型AlxGayIn1-x-yN层的边缘、有源区和N型AlxGayIn1-x-yN层侧壁,以及未被N侧电极覆盖的N型AlxGayIn1-x-yN层的部分表面;
H、在N型AlxGayIn1-x-yN层上制备N侧电极;
其特征在于:在制备P面钝化层后,对P型AlxGayIn1-x-yN层进行退火,退火气氛围为N2和O2,O2体积百分比为0%-20%;退火后,制备P侧电极前,利用HCl水溶液对P型AlxGayIn1-x-yN层的表面进行清洗,进一步去除表面产物。
步骤B中的P面钝化层材料为氧化硅、氮化硅或氮氧硅中的一种;或,上述三种中的两种或三种组成的叠层。
步骤B中的P面钝化层的制备方法为物理或者化学气相沉积。
HCl水溶液的浓度≥6 mol/L。
步骤F中的切割道腐蚀后,P面钝化层与P型AlxGayIn1-x-yN层重叠的宽度为W,W≥0.1μm。
本发明是在暂时衬底上依次外延生长N型AlxGayIn1-x-yN层(即N型掺杂层),有源层和P型AlxGayIn1-x-yN层(即P型掺杂层));在P型AlxGayIn1-x-yN层上制备P面钝化层后,首先将P型AlxGayIn1-x-yN层的激活工步放在P面钝化层制备之后,激活的过程中由于采用高温退火,会打断外延层中的Mg-H键, P型AlxGayIn1-x-yN层中的H溢出至表面,H能将P型AlxGayIn1-x-yN层的表面还原,达到去除P型AlxGayIn1-x-yN层的表面产物的目的,从而提高P型AlxGayIn1-x-yN层的导电性能;然后使用高浓度HCl水溶液清洗P型AlxGayIn1-x-yN层的表面,进一步彻底去除表面产物,从而消除因制备P面钝化层带来的对器件光电性能的影响。即,经过步骤C、D,本发明能将P型AlxGayIn1-x-yN层的表面还原,解决了因制备P面钝化层而使表面性质改变的问题。
本发明解决了制备P面钝化层时,P型AlxGayIn1-x-yN层表面发生变化导致P型欧姆接触变差、器件电压升高的问题,给出了P面钝化层的AlxGayIn1-x-yN基LED结构制备方法,实现了具有P面钝化层的AlxGayIn1-x-yN基LED结构,提高了AlxGayIn1-x-yN基LED的可靠性。
因此,本发明具有能提高P型AlxGayIn1-x-yN层的导电性能、提高AlxGayIn1-x-yN基LED的可靠性、消除因制备P面钝化层带来的对器件光电性能影响的优点。
附图说明
图1为具有P面钝化层的AlxGayIn1-x-yN基LED结构示意图,其中:100-永久基板,101-阻挡层和邦定金属层,102-P侧电极,103-P面钝化层,104-P型AlxGayIn1-x-yN层,105-有源区,106-N型AlxGayIn1-x-yN层,107-N侧电极,108-N面钝化层;
图2为假设AlxGayIn1-x-yN基LED芯片吸附有金属导电颗粒时其导电途径示意图,其中:209-金属颗粒,①-漏电途径1,②-漏电途径2;
图3为AlxGayIn1-x-yN基LED外延结构示意图,其中:300-暂时衬底。
具体实施方式
以下结合附图和具体实施例对本发明进行详细说明。需说明的是,本发明的附图均采用非常简化的非精准比例,仅用以方便、明晰的辅助说明本发明。
图1给出了具有P面钝化层的AlxGayIn1-x-yN基LED结构示意图,其制备工艺如下:
(1)首先利用常规的MOCVD生长方法在硅衬底上制备AlGaInN LED外延材料,在暂时衬底300(硅衬底)上依次外延生长N型AlxGayIn1-x-yN层106,有源区105,P型AlxGayIn1-x-yN层104;
(2)在P型AlxGayIn1-x-yN层104上制备 P面钝化层103,P面钝化层103的材料包括但不限于:氧化硅、氮化硅、氮氧化硅,P面钝化层103的厚度在500-2000Å之间;
(3)采用湿法蚀刻图案化P面钝化层103,保留器件边缘的P面钝化层103,器件边缘的P面钝化层103保留20μm-60μm,刻蚀其余区域的P面钝化层103,暴露出P面钝化层103下的P型AlxGayIn1-x-yN层104;
(4)在N2+O2氛围下高温退火;O2体积百分比为0-20%,退火温度为500℃-700℃,退火时间为150s- 300s;高温退火会打断外延层中的Mg-H键,P型AlxGayIn1-x-yN层中的H溢出至P型AlxGayIn1-x-yN层的表面,将P型AlxGayIn1-x-yN层的表面还原,退火气氛中加入O2更有利于H的溢出;
(5)在步骤(4)的基础上,利用高浓度HCl水溶液(HCl浓度≥6 mol/L)室温下清洗,本实施例采用的浓度是9 mol/L,清洗时间为60s- 600s;
(6)在步骤(4)和(5)处理后暴露的P型AlxGayIn1-x-yN层104上制备P侧电极102,采用电子束蒸发台蒸镀NiAg基反射电极;Ni厚度为0-10埃,Ag厚度为500-3000Å;蒸镀后进行合金,合金氛围为N2+O2,O2体积百分比为0-20%,合金温度为280℃-400℃,时间为15s-45s;
(7)制备阻挡层和邦定金属层101,并与永久导电Si基板100键合,去除Si衬底300;
(8)对N型AlxGayIn1-x-yN层106表面进行粗化;粗化液为KOH水溶液,KOH质量分数为10%-30%,粗化温度为25℃-80℃,粗化时间为10s-400s;
(9)刻蚀芯片边缘的AlxGayIn1-x-yN(104-106),加工出切割道,此时P面钝化层103暴露出来,腐蚀切割道后,P面钝化层103与P型AlxGayIn1-x-yN层104重合宽度在0.1μm-30μm;在制备N面钝化层108前,即使有导电金属颗粒吸附在器件边缘,P面钝化层103可切断漏电途径①,而由于P型AlxGayIn1-x-yN层104薄,导电性不佳,横向电阻极大,漏电途径②也难以导通,从而极大地提高了器件生产合格率,稳定性以及器件的可靠性,如图2所示;
(10)制备N面钝化层108:腐蚀出待制备N电极区域的N面钝化层108,保留其余区域;
(11)在N型AlxGayIn1-x-yN层106上制备N侧电极107,采用电子束蒸发台蒸镀CrPtAu电极,厚度在10000-30000Å,仅保留电极区域的金属材料,其余区域剥离掉。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种具有P面钝化层的AlGaInN基LED制备方法,步骤包括:
A、在暂时衬底上生长AlxGayIn1-x-yN基LED结构,包括N型AlxGayIn1-x-yN层,有源层和P型AlxGayIn1-x-yN层,其中0≤x≤1,0≤y≤1;
B、在P型AlxGayIn1-x-yN层上制备P面钝化层,利用光刻技术,保留器件边缘需钝化区域的P面钝化层,去除其余区域的P面钝化层,暴露出P面钝化层下面的P型AlxGayIn1-x-yN层;在P面钝化层的制备过程中,P型AlxGayIn1-x-yN层表面与活性O或者N发生反应,电学性质发生改变;
C、在步骤B处理后暴露的P型AlxGayIn1-x-yN层上制备P侧电极;
D、制备阻挡层和邦定金属层,并与永久导电基板键合,去除暂时衬底;
E、对N型AlxGayIn1-x-yN层表面进行粗化;
F、刻蚀器件边缘的AlxGayIn1-x-yN外延层,加工出切割道;
G、制备N面钝化层:腐蚀待制备N电极区域的N面钝化层;N面钝化层覆盖了P型AlxGayIn1-x-yN层的边缘、有源区和N型AlxGayIn1-x-yN层侧壁,以及未被N侧电极覆盖的N型AlxGayIn1-x-yN层的部分表面;
H、在N型AlxGayIn1-x-yN层上制备N侧电极;
其特征在于:在制备P面钝化层后,对P型AlxGayIn1-x-yN层进行退火,退火气氛围为N2和O2,O2体积百分比为0%-20%;退火后,制备P侧电极前,利用HCl水溶液对P型AlxGayIn1-x-yN层的表面进行清洗,进一步去除表面产物。
2.根据权利要求1所述的具有P面钝化层的AlGaInN基LED制备方法,其特征在于:步骤B中的P面钝化层材料为氧化硅、氮化硅或氮氧硅中的一种;或,上述三种中的两种或三种组成的叠层。
3.根据权利要求1所述的具有P面钝化层的AlGaInN基LED制备方法,其特征在于:步骤B中的P面钝化层的制备方法为物理或者化学气相沉积。
4.根据权利要求1所述的具有P面钝化层的AlGaInN基LED制备方法,其特征在于:HCl水溶液浓度≥6 mol/L。
5.根据权利要求1所述的具有P面钝化层的AlGaInN基LED制备方法,其特征在于:切割道腐蚀后,P面钝化层与P型AlxGayIn1-x-yN重叠的宽度为W,W≥0.1 μm。
CN202010798818.8A 2020-08-11 2020-08-11 一种具有P面钝化层的AlGaInN基LED制备方法 Active CN111952424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010798818.8A CN111952424B (zh) 2020-08-11 2020-08-11 一种具有P面钝化层的AlGaInN基LED制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010798818.8A CN111952424B (zh) 2020-08-11 2020-08-11 一种具有P面钝化层的AlGaInN基LED制备方法

Publications (2)

Publication Number Publication Date
CN111952424A CN111952424A (zh) 2020-11-17
CN111952424B true CN111952424B (zh) 2022-06-14

Family

ID=73333323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010798818.8A Active CN111952424B (zh) 2020-08-11 2020-08-11 一种具有P面钝化层的AlGaInN基LED制备方法

Country Status (1)

Country Link
CN (1) CN111952424B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200633248A (en) * 2005-03-04 2006-09-16 Univ Chang Gung AlGaInN nitride substrate utilizing TiN as buffer layer and manufacture method thereof
JP2006324685A (ja) * 2002-07-08 2006-11-30 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法及び窒化物半導体素子
CN104638070A (zh) * 2015-03-06 2015-05-20 天津三安光电有限公司 一种光电器件的制备方法
CN108511570A (zh) * 2018-04-19 2018-09-07 如皋市大昌电子有限公司 一种发光二极管的外延片及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795050B2 (en) * 2005-08-12 2010-09-14 Samsung Electronics Co., Ltd. Single-crystal nitride-based semiconductor substrate and method of manufacturing high-quality nitride-based light emitting device by using the same
WO2008061085A1 (en) * 2006-11-10 2008-05-22 University Of South Carolina Selectively doped semi-conductors and methods of making the same
JP2012028381A (ja) * 2010-07-20 2012-02-09 Sharp Corp 半導体発光素子およびその製造方法
US9818912B2 (en) * 2011-12-12 2017-11-14 Sensor Electronic Technology, Inc. Ultraviolet reflective contact
EP2791983A4 (en) * 2011-12-12 2015-08-12 Sensor Electronic Tech Inc REFLECTIVE CONTACT ULTRAVIOLET
WO2019094391A2 (en) * 2017-11-07 2019-05-16 Gallium Enterprises Pty Ltd Buried activated p-(al,in)gan layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324685A (ja) * 2002-07-08 2006-11-30 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法及び窒化物半導体素子
TW200633248A (en) * 2005-03-04 2006-09-16 Univ Chang Gung AlGaInN nitride substrate utilizing TiN as buffer layer and manufacture method thereof
CN104638070A (zh) * 2015-03-06 2015-05-20 天津三安光电有限公司 一种光电器件的制备方法
CN108511570A (zh) * 2018-04-19 2018-09-07 如皋市大昌电子有限公司 一种发光二极管的外延片及其制备方法

Also Published As

Publication number Publication date
CN111952424A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
US7675077B2 (en) Light-emitting diode and method for manufacturing the same
US20050179045A1 (en) Nitride semiconductor light emitting diode having improved ohmic contact structure and fabrication method thereof
JP3700872B2 (ja) 窒化物系iii−v族化合物半導体装置およびその製造方法
JP2006073619A (ja) 窒化物系化合物半導体発光素子
CN103283003B (zh) 半导体装置及其制造方法
JPH1032347A (ja) 窒素−3族元素化合物半導体発光素子
CN103797591A (zh) 制造氮化物半导体发光器件的方法以及由此制造出的氮化物半导体发光器件
KR100344103B1 (ko) 질화갈륨계 결정 보호막을 형성한 반도체 소자 및 그 제조방법
JP2011009521A (ja) 半導体装置及びその製造方法
CN102334203B (zh) 发光器件的制造方法
JP2010287714A (ja) 窒化物半導体装置
JP3665243B2 (ja) 窒化物半導体素子及びその製造方法
KR101203137B1 (ko) GaN계 화합물 반도체 발광 소자 및 그 제조 방법
KR101008268B1 (ko) 외부양자효율 개선을 위한 수직구조 발광다이오드 및 그 제조방법
KR20090076163A (ko) 질화물 반도체 발광소자 제조방법 및 이에 의해 제조된질화물 반도체 발광소자
CN111952424B (zh) 一种具有P面钝化层的AlGaInN基LED制备方法
KR101018280B1 (ko) 수직구조 발광다이오드 및 그 제조방법
CN203013782U (zh) 一种led芯片
CN111968907B (zh) 一种氮极性ⅲ族氮化物粗化方法
JP4570683B2 (ja) 窒化物系化合物半導体発光素子の製造方法
KR20130059026A (ko) 에피층을 성장 기판으로부터 분리하는 방법
CN114497186A (zh) 金刚石/氧化镓异质pn结二极管的制备方法
KR101202731B1 (ko) 수직형 발광 다이오드의 제조 방법
KR101528098B1 (ko) 전자 빔 빗각 증착과 열처리를 이용하는 질화갈륨 계열 발광 다이오드 제조 방법
CN102891232B (zh) 半导体发光器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant