CN111948562A - 一种燃料电池全生命周期监控与评估系统 - Google Patents

一种燃料电池全生命周期监控与评估系统 Download PDF

Info

Publication number
CN111948562A
CN111948562A CN202010857634.4A CN202010857634A CN111948562A CN 111948562 A CN111948562 A CN 111948562A CN 202010857634 A CN202010857634 A CN 202010857634A CN 111948562 A CN111948562 A CN 111948562A
Authority
CN
China
Prior art keywords
output
input
fuel cell
voltage
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010857634.4A
Other languages
English (en)
Other versions
CN111948562B (zh
Inventor
李俊娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Mechatronic Technology
Original Assignee
Nanjing Institute of Mechatronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Mechatronic Technology filed Critical Nanjing Institute of Mechatronic Technology
Priority to CN202010857634.4A priority Critical patent/CN111948562B/zh
Publication of CN111948562A publication Critical patent/CN111948562A/zh
Application granted granted Critical
Publication of CN111948562B publication Critical patent/CN111948562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Medical Informatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供一种燃料电池全生命周期监控与评估系统,在标准运行工况下,实时监测燃料电池堆输出电压,并与标准电压及1小时前的电压值分别进行比较,获得与标准电压的差值以及1小时的电压衰减值,通过模糊算法,获得燃料电池堆的性能指标。在非标准工况下,通过检测电池堆的氢气、氧气输入流量值以及当前运行温度,通过BP申请网络算法获得在当前工况下的参比电压值,并将所获得的参比电压作为模糊算法所需要的标准电压,从而获得在该实际工况条件下的电池堆性能指标。

Description

一种燃料电池全生命周期监控与评估系统
技术领域
本发明涉及燃料电池监控技术领域,尤其涉及一种燃料电池全生命周期监控与评估系统。
背景技术
燃料电池是一种把燃料所具有的化学能直接转换成电能的发电装置,燃料电池系统能量转换效率高,是非常理想的能源利用方式,商业化应用存在着广阔的发展前景,具有重要的研究意义。燃料电池按其电解质的不同,可分为五类,即质子交换膜燃料电池、熔融碳酸盐燃料电池、碱性燃料电池、磷酸燃料电池和固体氧化物燃料电池,其中固体氧化物燃料电池具有全固态结构、无需贵金属催化剂、能量转换效率高等优点,被认为是第三代燃料电池技术,具有广阔的市场前景。然而,固体氧化物燃料电池运行在高温状态下,一般高于600℃,对燃料电池的实时监控与性能评估及其重要。专利CN201120287461.3公布了一种U型中空纤维固体氧化物燃料电池的测试装置,实现U型中空纤维的性能检测。然而目前关于固体氧化物燃料电池的实时监控与性能评估的技术甚少。
发明内容
针对现有技术的不足,基于模糊算法与神经网络算法,本发明的目的是提供了一种燃料电池全生命周期监控与评估系统,能够在燃料电池堆全生命周期内实现关键参数的监控和评估,为燃料电池的稳定与可靠运行提供可靠的技术路线。
本发明提供一种燃料电池全生命周期监控与评估系统,包括燃料电池堆、电压采集模块、模糊算法控制器、输出显示模块、氧气储存装置、氧气减压阀、氧气流量电控流量计、温度传感器、氢气流量电控流量计、氢气减压阀、氢气储存装置、信号采集模块和BP神经网络控制器,所述燃料电池堆的输出正极与负极与电压采集模块的输入连接,电压采集模块的输出与模糊算法控制器的输入连接,模糊算法控制器的输出与输出显示模块输入连接;所述氢气储存装置的输出口与氢气减压阀的输入连接,氢气减压阀的输出与氢气流量电控流量计连接,氢气流量电控流量计的信号输出与信号采集模块输入连接,氢气流量电控流量计气体输出端口与燃料电池堆的阳极进气口连接;所述氧气储存装置的输出口与氧气减压阀的输入连接,氧气减压阀的输出与氧气流量电控流量计的输入连接,氧气流量电控流量计的信号输出与信号采集模块输入连接,氧气流量电控流量计气体输出端口与燃料电池堆的阳极进气口连接,所述信号采集模块的输入端口还与温度传感器连接,信号采集模块的输出与BP神经网络控制器的输入连接,所述BP神经网络控制器的输出与模糊算法控制器的输入连接。
进一步改进在于:所述燃料电池堆为固体氧化物燃料电池,由阴极、阳极、电解质、连接体、电极板构成,阳极通入氢气,阴极通入氧气,在运行温度为600度左右将存储在氢气中的化学能高效的转化为电能,排放物为水。
进一步改进在于:所述模糊算法控制器根据输入参数,经过模糊推理获得燃料电池堆性能等级,可由高性能单片机硬件实现。
所述输出显示模块由LED显示器构成,用于显示燃料电池性能等级。所述氧气储存装置为高压储存罐,压力和容量可根据的实际的应用系统设计。
所述氧气减压阀用于减小氧气输出的压力,从而给燃料电池堆进口提供合适的氧气压力输入。
所述氧气流量电控流量计用于精确控制氧气流量。
所述温度传感器由热电偶构成,用于检测燃料电池堆的运行温度。
所述氢气流量电控流量计用于精确控制氢气流量。
所述氢气减压阀用于减小氢气输出的压力,从而给燃料电池堆进口提供合适的氢气压力输入。
所述氢气储存装置为高压储存罐,压力和容量可根据的实际的应用系统设计。
所述信号采集模块用于采集氧气流量电控流量计、氢气流量电控流量计以及温度传感器的值。
所述BP神经网络控制器的结构为3-5-1结构,即三输入,单输出结构,中间隐含层节点数为5,根据采集到的实际工况数值,获得该工况下的参比电压。
进一步改进在于:所述模糊控制器的控制结构为2输入、单输出结构,模糊算法控制器的算法为:输入变量x1:当前电压Vt与标准电压Vo的差值,即ΔV=Vt-Vo;输入变量x2:电压每小时衰减率s的公式为
Figure BDA0002647015370000041
Vt为电池堆当前电压值,Vo为电池堆标准电压,Vt1为前一小时的电池堆电压值,输出量为性能输出等级u,输入输出变量论域和量化因子,输入变量x1的基本论域设计为(-1V,+1V),输入变量x2的基本论域设计为(0,0.5%),然后将两个输入量分为5个语言变量,即正大(PB)、正中(PM)、零(ZE)、负中(NM)、负大(NB),两个输入量的5个语言变量在基本论域中的隶属度函数为三角形与梯形组合式隶属度函数;输出变量u分为5个语言变量,即正大(PB)、正中(PM)、零(ZE)、负中(NM)、负大(NB);输出变量的5个语言变量分别代表电池性能参数等级。
PB:性能极差。
PM:性能较差。
ZE:性能临界稳定。
NM:性能良好。
NB性能优越。
模糊控制规则的设计:
设计模糊控制规则的原则是当误差大或者较大时,选择控制量以尽快消除误差为主,而当误差小或者较小时,选择控制量要控制超调量,模糊控制规则表为:
Figure BDA0002647015370000042
Figure BDA0002647015370000051
解模糊:
经过上述的模糊推理得到输出变量的模糊量,对输出变量的模糊量进行变换,得到燃料电池堆输出等级:
PB:性能极差。
PM:性能较差。
ZE:性能临界稳定。
NM:性能良好。
NB性能优越。
进一步改进在于:所述监控与评估系统在非标准工况运行条件下,监控与评估算法为BP神经网络算法,算法过程如下:
步骤一:网络初始化输入层与隐含层的连接权ωij,隐含层与输出层神经元之间的连接权ωj,初始化隐含层阈值a和输出层阈值b,连接权值与阈值随机生成,定义学习速率(η=0.8)和神经元激励函数;
步骤二:隐含层输出计算:根据输入向量X=[x1,x2,x3]T,输入层和隐含层连接权ωij以及隐含层阈值a,计算隐含层输出H:
Figure BDA0002647015370000052
式中f为隐含层激励函数,该函数为:
Figure BDA0002647015370000061
步骤三:输出层输出计算,根据隐含层输出H,连接权ωj和阈值b,计算BP神经网络输出Vto:
Figure BDA0002647015370000062
步骤四:误差计算,根据网络输出Vto和期望输出Y,计算网络输出误差e:e=Y-Vto;
步骤五:权值更新,根据网络输出误差e更新网络连接权ωij和ωj:ωij=ωij+ηHj(1-Hj)x(i)ωje i=1,2,3;j=1,2,3,4,5,ωj=ωj+ηHje j=1,2,3,4,5,式中η为学习速率,η=0.8;
步骤六:阈值更新,根据网络输出误差e更新网络节点阈值a,b:aj=aj+ηHj(1-Hjje j=1,2,3,4,5,b=b+e;
步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。
进一步改进在于:所述参比电压Vto作为模糊算法所需要的参比电压,经过模糊算法,获得在该工况下的性能评估值。
本发明的有益效果是:在质子交换膜燃料电池堆启停过程中,采用了接入可调虚拟负载的方法有效减小电池过电位等问题,进一步采用模糊控制算法获得更优的虚拟负载值,有效减小了电池堆启停过程中的衰减;通过在燃料进气侧采用反馈模糊控制算法,控制燃料进气的压力调节阀,使得燃料供给更加平稳,大大提高了车用质子交换膜燃料电池的耐久性与可靠性。
附图说明
图1是本发明的系统结构图。
图2是本发明的模糊推理结构图。
图3是本发明的BP神经网络结构图。
其中:1-燃料电池堆,2-电压采集模块,3-模糊算法控制器,4-输出显示模块,5-氧气储存装置,6-氧气减压阀,7-氧气流量电控流量计,8-温度传感器,9-氢气流量电控流量计,10-氢气减压阀,11-氢气储存装置,12-信号采集模块,13-BP神经网络控制器。
具体实施方式
为了加深对本发明的理解,下面将结合实施例对本发明作进一步的详述,本实施例仅用于解释本发明,并不构成对本发明保护范围的限定。如图1所示,本实施例提供了一种燃料电池全生命周期监控与评估系统,包括燃料电池堆1、电压采集模块2、模糊算法控制器3、输出显示模块4、氧气储存装置5、氧气减压阀6、氧气流量电控流量计7、温度传感器8、氢气流量电控流量计9、氢气减压阀10、氢气储存装置11、信号采集模块12和BP神经网络控制器13,所述燃料电池堆1的输出正极与负极与电压采集模块2的输入连接,电压采集模块2的输出与模糊算法控制器3的输入连接,模糊算法控制器3的输出与输出显示模块4输入连接;所述氢气储存装置11的输出口与氢气减压阀10的输入连接,氢气减压阀10的输出与氢气流量电控流量计9连接,氢气流量电控流量计9的信号输出与信号采集模块12输入连接,氢气流量电控流量计9气体输出端口与燃料电池堆1的阳极进气口连接;所述氧气储存装置5的输出口与氧气减压阀6的输入连接,氧气减压阀6的输出与氧气流量电控流量计7的输入连接,氧气流量电控流量计7的信号输出与信号采集模块12输入连接,氧气流量电控流量计7气体输出端口与燃料电池堆1的阳极进气口连接,所述信号采集模块12的输入端口还与温度传感器8连接,信号采集模块12的输出与BP神经网络控制器13的输入连接,所述BP神经网络控制器13的输出与模糊算法控制器3的输入连接。
所述燃料电池堆1为固体氧化物燃料电池,由阴极、阳极、电解质、连接体、电极板构成,阳极通入氢气,阴极通入氧气,在运行温度为600度左右将存储在氢气中的化学能高效的转化为电能,排放物为水。所述电压采集模块2用于采集燃料电池堆输出端口两端的输出电压,糊算法控制器3根据输入参数,经过模糊推理获得燃料电池堆性能等级,所述输出显示模块4由LED显示器构成,用于显示燃料电池性能等级,所述氧气储存装置5和氢气储存装置11为高压储存罐,所述温度传感器8由热电偶构成,用于检测燃料电池堆的运行温度,BP神经网络控制器13的结构为3-5-1结构,即三输入,单输出结构,中间隐含层节点数为5,根据采集到的实际工况数值,获得该工况下的参比电压。
所述模糊控制器3的控制结构为2输入、单输出结构,模糊算法控制器3的算法为:输入变量x1:当前电压Vt与标准电压Vo的差值,即ΔV=Vt-Vo;输入变量x2:电压每小时衰减率s的公式为
Figure BDA0002647015370000081
Vt为电池堆当前电压值,Vo为电池堆标准电压,Vt1为前一小时的电池堆电压值,输出量为性能输出等级u,输入输出变量论域和量化因子,输入变量x1的基本论域设计为(-1V,+1V),输入变量x2的基本论域设计为(0,0.5%),然后将两个输入量分为5个语言变量,即正大(PB)、正中(PM)、零(ZE)、负中(NM)、负大(NB),两个输入量的5个语言变量在基本论域中的隶属度函数为三角形与梯形组合式隶属度函数;输出变量u分为5个语言变量,即正大(PB)、正中(PM)、零(ZE)、负中(NM)、负大(NB);输出变量的5个语言变量分别代表电池性能参数等级。
所述监控与评估系统在非标准工况运行条件下,监控与评估算法为BP神经网络算法,算法过程如下:
步骤一:网络初始化输入层与隐含层的连接权ωij,隐含层与输出层神经元之间的连接权ωj,初始化隐含层阈值a和输出层阈值b,连接权值与阈值随机生成,定义学习速率(η=0.8)和神经元激励函数;
步骤二:隐含层输出计算:根据输入向量X=[x1,x2,x3]T,输入层和隐含层连接权ωij以及隐含层阈值a,计算隐含层输出H:
Figure BDA0002647015370000091
式中f为隐含层激励函数,该函数为:
Figure BDA0002647015370000092
步骤三:输出层输出计算,根据隐含层输出H,连接权ωj和阈值b,计算BP神经网络输出Vto:
Figure BDA0002647015370000093
步骤四:误差计算,根据网络输出Vto和期望输出Y,计算网络输出误差e:e=Y-Vto;
步骤五:权值更新,根据网络输出误差e更新网络连接权ωij和ωj:ωij=ωij+ηHj(1-Hj)x(i)ωje i=1,2,3;j=1,2,3,4,5,ωj=ωj+ηHje j=1,2,3,4,5,式中η为学习速率,η=0.8;
步骤六:阈值更新,根据网络输出误差e更新网络节点阈值a,b:aj=aj+ηHj(1-Hjje j=1,2,3,4,5,b=b+e;
步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。如权利要求5所述的一种燃料电池全生命周期监控与评估系统,其特征在于:所述参比电压Vto作为模糊算法所需要的参比电压,经过模糊算法,获得在该工况下的性能评估值。
本发明的模糊算法中输入变量x1的基本论域设计为(-1V,+1V),输入变量x2的基本论域设计为(0,0.5%),该基本论域仅供设计参考及算法演示,实际应用的基本论域根据现场情况设计合理的基本论域。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域内的技术人员,在不脱离本发明的构思和原则的前提下所作出的等同变化与修改,均应属于本发明保护的范围。

Claims (6)

1.一种燃料电池全生命周期监控与评估系统,其特征在于:包括燃料电池堆(1)、电压采集模块(2)、模糊算法控制器(3)、输出显示模块(4)、氧气储存装置(5)、氧气减压阀(6)、氧气流量电控流量计(7)、温度传感器(8)、氢气流量电控流量计(9)、氢气减压阀(10)、氢气储存装置(11)、信号采集模块(12)和BP神经网络控制器(13),所述燃料电池堆(1)的输出正极与负极与电压采集模块(2)的输入连接,电压采集模块(2)的输出与模糊算法控制器(3)的输入连接,模糊算法控制器(3)的输出与输出显示模块(4)输入连接;所述氢气储存装置(11)的输出口与氢气减压阀(10)的输入连接,氢气减压阀(10)的输出与氢气流量电控流量计(9)连接,氢气流量电控流量计(9)的信号输出与信号采集模块(12)输入连接,氢气流量电控流量计(9)气体输出端口与燃料电池堆(1)的阳极进气口连接;所述氧气储存装置(5)的输出口与氧气减压阀(6)的输入连接,氧气减压阀(6)的输出与氧气流量电控流量计(7)的输入连接,氧气流量电控流量计(7)的信号输出与信号采集模块(12)输入连接,氧气流量电控流量计(7)气体输出端口与燃料电池堆(1)的阳极进气口连接,所述信号采集模块(12)的输入端口还与温度传感器(8)连接,信号采集模块(12)的输出与BP神经网络控制器(13)的输入连接,所述BP神经网络控制器(13)的输出与模糊算法控制器(3)的输入连接。
2.如权利要求1所述的一种燃料电池全生命周期监控与评估系统,其特征在于:所述燃料电池堆(1)为固体氧化物燃料电池,由阴极、阳极、电解质、连接体、电极板构成,阳极通入氢气,阴极通入氧气,在运行温度为600度左右将存储在氢气中的化学能高效的转化为电能,排放物为水。
3.如权利要求1所述的一种燃料电池全生命周期监控与评估系统,其特征在于:所述电压采集模块(2)用于采集燃料电池堆输出端口两端的输出电压,模糊算法控制器(3)根据输入参数,经过模糊推理获得燃料电池堆性能等级,所述输出显示模块(4)由LED显示器构成,用于显示燃料电池性能等级,所述氧气储存装置(5)和氢气储存装置(11)为高压储存罐,所述温度传感器(8)由热电偶构成,用于检测燃料电池堆的运行温度,BP神经网络控制器(13)的结构为3-5-1结构,即三输入,单输出结构,中间隐含层节点数为5,根据采集到的实际工况数值,获得该工况下的参比电压。
4.如权利要求1所述的一种燃料电池全生命周期监控与评估系统,其特征在于:所述模糊控制器(3)的控制结构为2输入、单输出结构,模糊算法控制器(3)的算法为:输入变量x1:当前电压Vt与标准电压Vo的差值,即ΔV=Vt-Vo;输入变量x2:电压每小时衰减率s的公式为
Figure FDA0002647015360000021
Vt为电池堆当前电压值,Vo为电池堆标准电压,Vt1为前一小时的电池堆电压值,输出量为性能输出等级u,输入输出变量论域和量化因子,输入变量x1的基本论域设计为(-1V,+1V),输入变量x2的基本论域设计为(0,0.5%),然后将两个输入量分为5个语言变量,即正大(PB)、正中(PM)、零(ZE)、负中(NM)、负大(NB),两个输入量的5个语言变量在基本论域中的隶属度函数为三角形与梯形组合式隶属度函数;输出变量u分为5个语言变量,即正大(PB)、正中(PM)、零(ZE)、负中(NM)、负大(NB);输出变量的5个语言变量分别代表电池性能参数等级。
5.如权利要求1所述的一种燃料电池全生命周期监控与评估系统,其特征在于:所述监控与评估系统在非标准工况运行条件下,监控与评估算法为BP神经网络算法,算法过程如下:
步骤一:网络初始化输入层与隐含层的连接权ωij,隐含层与输出层神经元之间的连接权ωj,初始化隐含层阈值a和输出层阈值b,连接权值与阈值随机生成,定义学习速率(η=0.8)和神经元激励函数;
步骤二:隐含层输出计算:根据输入向量X=[x1,x2,x3]T,输入层和隐含层连接权ωij以及隐含层阈值a,计算隐含层输出H:
Figure FDA0002647015360000031
式中f为隐含层激励函数,该函数为:
Figure FDA0002647015360000032
步骤三:输出层输出计算,根据隐含层输出H,连接权ωj和阈值b,计算BP神经网络输出Vto:
Figure FDA0002647015360000033
步骤四:误差计算,根据网络输出Vto和期望输出Y,计算网络输出误差e:e=Y-Vto;
步骤五:权值更新,根据网络输出误差e更新网络连接权ωij和ωj:ωij=ωij+ηHj(1-Hj)x(i)ωje i=1,2,3;j=1,2,3,4,5,ωj=ωj+ηHje j=1,2,3,4,5,式中η为学习速率,η=0.8;
步骤六:阈值更新,根据网络输出误差e更新网络节点阈值a,b:aj=aj+ηHj(1-Hjje j=1,2,3,4,5,b=b+e;
步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。
6.如权利要求5所述的一种燃料电池全生命周期监控与评估系统,其特征在于:所述参比电压Vto作为模糊算法所需要的参比电压,经过模糊算法,获得在该工况下的性能评估值。
CN202010857634.4A 2020-08-24 2020-08-24 一种燃料电池全生命周期监控与评估系统 Active CN111948562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010857634.4A CN111948562B (zh) 2020-08-24 2020-08-24 一种燃料电池全生命周期监控与评估系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010857634.4A CN111948562B (zh) 2020-08-24 2020-08-24 一种燃料电池全生命周期监控与评估系统

Publications (2)

Publication Number Publication Date
CN111948562A true CN111948562A (zh) 2020-11-17
CN111948562B CN111948562B (zh) 2023-06-16

Family

ID=73359418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010857634.4A Active CN111948562B (zh) 2020-08-24 2020-08-24 一种燃料电池全生命周期监控与评估系统

Country Status (1)

Country Link
CN (1) CN111948562B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467176A (zh) * 2020-12-04 2021-03-09 上海燃锐新能源汽车技术有限公司 一种燃料电池发动机系统的氢气压力控制方法及装置
CN113422088A (zh) * 2021-06-28 2021-09-21 太原理工大学 一种氢燃料电池空气供给系统及其解耦控制方法
CN114759227A (zh) * 2022-05-07 2022-07-15 中国第一汽车股份有限公司 燃料电池性能衰减的确定方法以及确定装置
CN114759233A (zh) * 2022-05-24 2022-07-15 苏州溯驭技术有限公司 一种适用于氢燃料系统的排氮阀控制方法及其排氮阀系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030022040A1 (en) * 2001-07-25 2003-01-30 Ballard Power Systems Inc. Fuel cell anomaly detection method and apparatus
CN102663219A (zh) * 2011-12-21 2012-09-12 北京理工大学 基于混合模型的燃料电池输出预测方法和系统
CN202501870U (zh) * 2012-03-05 2012-10-24 浙江大学城市学院 Pem燃料电池综合测试分析仪
CN104133369A (zh) * 2014-06-24 2014-11-05 上海电力学院 一种质子交换膜燃料电池动态特性的控制方法
KR101481310B1 (ko) * 2013-08-21 2015-01-09 현대자동차주식회사 연료전지 시스템의 수소 퍼지 장치 및 방법
CN105137806A (zh) * 2015-08-04 2015-12-09 温州大学 基于Matlab的燃料电池系统过氧量模糊PID控制方法
US20160344048A1 (en) * 2015-05-20 2016-11-24 General Electric Company Fuel cell system and controlling method thereof
CN107180983A (zh) * 2017-05-16 2017-09-19 华中科技大学 一种固体氧化物燃料电池电堆故障诊断方法和系统
CN109240078A (zh) * 2018-10-29 2019-01-18 东南大学 一种燃料电池电压的模糊自适应pid控制方法
KR20190024278A (ko) * 2017-08-31 2019-03-08 현대자동차주식회사 연료전지 시스템 및 이를 포함하는 차량, 연료전지 시스템의 제어 방법
CN109860667A (zh) * 2019-04-03 2019-06-07 南京机电职业技术学院 燃料电池电动汽车启停过程智能控制装置及控制方法
CN109884526A (zh) * 2019-01-30 2019-06-14 广东工业大学 基于纵横交叉优化模糊bp神经网络的电池故障诊断方法
CN110399928A (zh) * 2019-07-29 2019-11-01 集美大学 固体氧化物燃料电池电压预测方法、终端设备及存储介质
CN111339712A (zh) * 2020-02-24 2020-06-26 电子科技大学 质子交换膜燃料电池剩余寿命预测方法
CN111428913A (zh) * 2020-03-06 2020-07-17 中国科学技术大学 一种质子交换膜燃料电池的性能预测方法及性能预测系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030022040A1 (en) * 2001-07-25 2003-01-30 Ballard Power Systems Inc. Fuel cell anomaly detection method and apparatus
CN102663219A (zh) * 2011-12-21 2012-09-12 北京理工大学 基于混合模型的燃料电池输出预测方法和系统
CN202501870U (zh) * 2012-03-05 2012-10-24 浙江大学城市学院 Pem燃料电池综合测试分析仪
KR101481310B1 (ko) * 2013-08-21 2015-01-09 현대자동차주식회사 연료전지 시스템의 수소 퍼지 장치 및 방법
CN104133369A (zh) * 2014-06-24 2014-11-05 上海电力学院 一种质子交换膜燃料电池动态特性的控制方法
US20160344048A1 (en) * 2015-05-20 2016-11-24 General Electric Company Fuel cell system and controlling method thereof
CN105137806A (zh) * 2015-08-04 2015-12-09 温州大学 基于Matlab的燃料电池系统过氧量模糊PID控制方法
CN107180983A (zh) * 2017-05-16 2017-09-19 华中科技大学 一种固体氧化物燃料电池电堆故障诊断方法和系统
KR20190024278A (ko) * 2017-08-31 2019-03-08 현대자동차주식회사 연료전지 시스템 및 이를 포함하는 차량, 연료전지 시스템의 제어 방법
CN109240078A (zh) * 2018-10-29 2019-01-18 东南大学 一种燃料电池电压的模糊自适应pid控制方法
CN109884526A (zh) * 2019-01-30 2019-06-14 广东工业大学 基于纵横交叉优化模糊bp神经网络的电池故障诊断方法
CN109860667A (zh) * 2019-04-03 2019-06-07 南京机电职业技术学院 燃料电池电动汽车启停过程智能控制装置及控制方法
CN110399928A (zh) * 2019-07-29 2019-11-01 集美大学 固体氧化物燃料电池电压预测方法、终端设备及存储介质
CN111339712A (zh) * 2020-02-24 2020-06-26 电子科技大学 质子交换膜燃料电池剩余寿命预测方法
CN111428913A (zh) * 2020-03-06 2020-07-17 中国科学技术大学 一种质子交换膜燃料电池的性能预测方法及性能预测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
戚志东等: "基于模糊PID的质子交换膜燃料电池输出电压控制", 《南京理工大学学报》 *
王小川 等: "《MATLAB神经网络43个案例分析》", 31 August 2013 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467176A (zh) * 2020-12-04 2021-03-09 上海燃锐新能源汽车技术有限公司 一种燃料电池发动机系统的氢气压力控制方法及装置
CN113422088A (zh) * 2021-06-28 2021-09-21 太原理工大学 一种氢燃料电池空气供给系统及其解耦控制方法
CN113422088B (zh) * 2021-06-28 2023-02-17 太原理工大学 一种氢燃料电池空气供给系统及其解耦控制方法
CN114759227A (zh) * 2022-05-07 2022-07-15 中国第一汽车股份有限公司 燃料电池性能衰减的确定方法以及确定装置
CN114759233A (zh) * 2022-05-24 2022-07-15 苏州溯驭技术有限公司 一种适用于氢燃料系统的排氮阀控制方法及其排氮阀系统
CN114759233B (zh) * 2022-05-24 2024-01-26 苏州溯驭技术有限公司 一种适用于氢燃料系统的排氮阀控制方法及其排氮阀系统

Also Published As

Publication number Publication date
CN111948562B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN111948562B (zh) 一种燃料电池全生命周期监控与评估系统
CN107180983B (zh) 一种固体氧化物燃料电池电堆故障诊断方法和系统
Chen et al. Performance analysis of PEM fuel cell in mobile application under real traffic and environmental conditions
Becker et al. Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems
CN108957335B (zh) 2kW/10kW·h全钒液流电池的SOC在线估算方法
Wu et al. A hybrid prognostic model applied to SOFC prognostics
Alyakhni et al. A comprehensive review on energy management strategies for electric vehicles considering degradation using aging models
CN110116625B (zh) 一种用于电控车辆的汽车蓄电池故障监测方法
CN116384823A (zh) 氢电耦合系统可靠性评估方法及系统
CN116840720A (zh) 燃料电池剩余寿命预测方法
Jin et al. Remaining useful life prediction of PEMFC based on cycle reservoir with jump model
CN113657024A (zh) 一种燃料电池寿命预测方法
Huangfu et al. An optimal energy management strategy with subsection bi-objective optimization dynamic programming for photovoltaic/battery/hydrogen hybrid energy system
CN115598536A (zh) 基于模糊c均值聚类和概率神经网络的pemfc故障诊断方法
Zhang et al. Degradation prediction model of PEMFC based on multi-reservoir echo state network with mini reservoir
CN114919752A (zh) 一种基于ecms-mpc的氢燃料混合动力无人机能量管理方法
CN113459902A (zh) 一种实现燃料电池阵列最大效率运行的功率分配方法
CN116050461A (zh) 运用卷积神经网络确定模糊控制理论隶属度函数的改进法
CN115716469A (zh) 一种混合动力系统的输出功率分配控制方法
Wang et al. A data-driven approach to lifespan prediction for vehicle fuel cell systems
Noura et al. An online identification based energy management strategy for a fuel cell hybrid electric vehicle
Ren et al. Modeling of proton exchange membrane fuel cell based on lstm neural network
Huang et al. Evaluation index of battery pack of energy storage station based on RB recession mechanism
Wang et al. Design of a fault diagnosis system for PEM Fuel cells
Zadehbagheri et al. Investigation of the Effects of Fuel Cells on VQ & VP Characteristics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant