CN109240078A - 一种燃料电池电压的模糊自适应pid控制方法 - Google Patents

一种燃料电池电压的模糊自适应pid控制方法 Download PDF

Info

Publication number
CN109240078A
CN109240078A CN201811268954.5A CN201811268954A CN109240078A CN 109240078 A CN109240078 A CN 109240078A CN 201811268954 A CN201811268954 A CN 201811268954A CN 109240078 A CN109240078 A CN 109240078A
Authority
CN
China
Prior art keywords
fuzzy
battery voltage
fuel battery
pid
adaptive pid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811268954.5A
Other languages
English (en)
Inventor
秦宇枭
孙立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201811268954.5A priority Critical patent/CN109240078A/zh
Publication of CN109240078A publication Critical patent/CN109240078A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.

Abstract

本发明公开了一种燃料电池电压的模糊自适应PID控制方法,包括如下步骤:搭建燃料电池的动态模型;对燃料电池动态模型做阶越响应试验,并基于所得到的响应数据采用最小二乘法进行传递函数辨识,然后利用辨识得到的模型进行PID控制器的参数整定;设计模糊控制器,根据电压误差以及电压误差的变化率,对其进行模糊化处理,利用模糊规则进行模糊推理以及去模糊化,得到修正参数,对比例系数与积分系数进行修正,微分作用以微分先行的算法实现。本发明能够有效抑制燃料电池非线性的影响,减小超调量,缩短过渡时间,克服积分饱和现象与微分作用的突跳现象,拥有理想的控制性能。

Description

一种燃料电池电压的模糊自适应PID控制方法
技术领域
本发明属于燃料电池控制领域,具体涉及一种燃料电池电压的模糊自适应PID控制方法。
背景技术
燃料电池是一种能将化学能直接转化为电能的电化学装置,其具有高效率、低污染与便于携带的特点,被广泛应用于各种发电领域,并有希望取代传统的化石能源。在所有的燃料电池中,燃料电池(固体氧化物燃料电池)因其较高的效率与较强的稳定性,同时不需要贵金属作为原材料的优势而备受瞩目,为了提高燃料电池的供电品质,对燃料电池输出电压的精确控制有着重要的意义。
如今,传统PID控制器因其工作的高可靠性和结构的简单性被广泛应用于工业控制系统中。传统PID控制器的三个参数Kp、Ki、Kd是固定不变的,然而,由于燃料电池强烈的非线性,随着工况的变化,燃料电池内部的参数将会发生一些变化,原先的三个控制参数将不再适用,传统PID控制器的控制性能将会出现恶化,控制品质下降。同时,由于燃料电池燃料入口流量的限幅问题,传统PID控制器在控制作用中将会出现积分饱和的现象,这将会引起较大的超调与振荡,影响燃料电池的供电品质。此外,燃料电池还存在着负载扰动快速变化的问题,这就要求控制器需要具备快速响应,准确控制的能力,对控制器的控制性能有着较高的要求。
目前燃料电池输出电压控制研究的主流思路是采用模型预测控制方法,并以该方法取得了较好的控制效果。然而,该方法需要进行大量的计算,且需要较多的硬件支持,这将导致其在工业现场难以实现。因此,设计一种结构较为简单的,同时能够达到理想的控制效果的控制器,来实现对燃料电池的输出电压的控制,是亟待我们解决的问题。
发明内容
发明目的:为了克服现有技术中存在的不足,提供一种能够实现PID控制器参数的在线整定、缩短过渡时间、减小超调量、抑制积分饱和的燃料电池电压的模糊自适应PID控制方法。
技术方案:为实现上述目的,本发明提供一种燃料电池电压的模糊自适应PID控制方法,包括如下步骤:
1)基于Matlab的Simulink仿真平台,搭建燃料电池的动态模型;
2)对步骤1中燃料电池动态模型做阶越响应试验,并基于所得到的响应数据采用最小二乘法进行传递函数辨识,然后利用辨识得到的模型进行PID控制器的参数整定;
3)设计模糊控制器,根据电压误差以及电压误差的变化率,对其进行模糊化处理,利用模糊规则进行模糊推理以及去模糊化,得到修正参数Kp1、Ki1,对比例系数与积分系数进行修正,微分作用以微分先行的算法实现,实现对燃料电池输出电压的控制。
进一步地,所述步骤3中的模糊控制器的隶属函数的语言变量采用七个等级,语言值分别是“(NB)”、“(NM)”、“(NS)”、“(ZO)”、“(PS)”、“(PM)”、“(PB)”,其中“(NB)”代表负大,“(NM)”代表负中,“(NS)”代表负小,“(ZO)”代表无差,“(PS)”代表正小,“(PM)”代表正中,“(PB)”代表正大,所述七个等级的语言变量中“(NB)”和“(PB)”的隶属函数为π型函数,“(NM)”、“(NS)”、“(ZO)”、“(PS)”、“(PM)”为三角型函数。
进一步地,所述步骤3中的模糊控制器采用的是两个输入和两个输出的模式,其输入为误差e与误差的变化率ec,输出为比例系数的修正值Kp1与积分系数的修正值Ki1,所述误差e与误差的变化率ec的表达式如下:
e(k)=r(k)-y(k) (1)
ec(k)=e(k)-e(k-1) (2)
其中,r(k)表示电压设定值,y(k)表示电压输出值。
所述步骤3中模糊规则为:
R1:if(e isNB)and(ec is NB)then(Kp is PB)(Ki isNB)
R2:if(e isNB)and(ec is NM)then(Kp is PB)(KiisNB)
R3:if(e isNB)and(ec is NS)then(Kp is PM)(Ki is NM)
R4:if(e isNB)and(ec is ZO)then(Kp is PM)(Ki isNM)
R5:if(e isNB)and(ec is PS)then(Kp is PS)(Ki isNS)
R6:if(e isNB)and(ec is PM)then(Kp is ZO)(Ki isNS)
R7:if(e isNB)and(ec is PB)then(Kp is ZO)(Kiis ZO)
R8:if(e isNM)and(ec isNB)then(Kp is PB)(KiisNB)
R9:if(e isNM)and(ec isNM)then(Kp is PB)(KiisNB)
R10:if(e isNM)and(ec isNS)then(Kp is PM)(Ki isNM)
R11:if(e isNM)and(ec is ZO)then(Kp is PS)(KiisNS)
R12:if(e isNM)and(ec is PS)then(Kp is PS)(KiisNS)
R13:if(e isNM)and(ec is PM)then(Kp is ZO)(Kiis ZO)
R14:if(e isNM)and(ec is PB)then(Kp isNS)(Kiis ZO)
R15:if(e is NS)and(ec is NB)then(Kp is PM)(Ki is NB)
R16:if(e is NS)and(ec is NM)then(Kp is PM)(Ki is NM)
R17:if(e is NS)and(ec is NS)then(Kp is PM)(Ki is NS)
R18:if(e is NS)and(ec is ZO)then(Kp is PS)(Ki is NS)
R19:if(e is NS)and(ec is PS)then(Kp is ZO)(Ki is ZO)
R20:if(e is NS)and(ec is PM)then(Kp is NS)(Ki is PS)
R21:if(e is NS)and(ec is PB)then(Kp is NS)(Ki is PS)
R22:if(e is ZO)and(ec is NB)then(Kp is PM)(Ki is NM)
R23:if(e is ZO)and(ec is NM)then(Kp is PM)(Ki is NM)
R24:if(e is ZO)and(ec is NS)then(Kp is PS)(Ki is NS)
R25:if(e is ZO)and(ec is ZO)then(Kp is ZO)(Ki is ZO)
R26:if(e is ZO)and(ec is PS)then(Kp is NS)(Ki is PS)
R27:if(e is ZO)and(ec is PM)then(Kp is NM)(Ki is PM)
R28:if(e is ZO)and(ec is PB)then(Kp is NM)(Ki is PM)
R29:if(e is PS)and(ec is NB)then(Kp is PS)(Ki is NM)
R30:if(e is PS)and(ec is NM)then(Kp is PS)(Ki is NS)
R31:if(e is PS)and(ec is NS)then(Kp is ZO)(Ki is ZO)
R32:if(e is PS)and(ec is ZO)then(Kp is NS)(Ki is PS)
R33:if(e is PS)and(ec is PS)then(Kp is NS)(Ki is PS)
R34:if(e is PS)and(ec is PM)then(Kp is NM)(Ki is PM)
R35:if(e is PS)and(ec is PB)then(Kp is NM)(Ki is PB)
R36:if(e is PM)and(ec is NB)then(Kp is PS)(Ki is ZO)
R37:if(e is PM)and(ec is NM)then(Kp is ZO)(Ki is ZO)
R38:if(e is PM)and(ec is NS)then(Kp is NS)(Ki is PS)
R39:if(e is PM)and(ec is ZO)then(Kp is NM)(Ki is PS)
R40:if(e is PM)and(ec is PS)then(Kp is NM)(Ki is PM)
R41:if(e is PM)and(ec is PM)then(Kp is NM)(Ki is PB)
R42:if(e is PM)and(ec is PB)then(Kp is NB)(Ki is PB)
R43:if(e is PB)and(ec is NB)then(Kp is ZO)(Ki is ZO)
R44:if(eisPB)and(ecisNM)then(KpisZO)(KiisZO)
R45:if(eisPB)and(ecisNS)then(KpisNM)(KiisPS)
R46:if(eisPB)and(ecisZO)then(KpisNM)(KiisPM)
R47:if(eisPB)and(ecisPS)then(KpisNM)(KiisPM)
R48:if(eisPB)and(ecisPM)then(KpisNB)(KiisPB)
R49:if(eisPB)and(ecisPB)then(KpisNB)(KiisPB)
针对上述第Ri条模糊规则,所述隶属度以Mamdani型模糊推理来计算,其计算公式如下:
其中,cp,ci分别是Kp1和Ki1模糊集合的中心值,μKp1(cp),μKi1(ci)是cp和ci的隶属度。
进一步地,所述步骤3中PID控制器的修正参数Kp1、Ki1按重心法计算,计算公式如下:
进一步地,所述的PID控制器的控制参数Kp,Ki,Kd计算公式如下:
Kp=Kp0+K1·Kp1 (7)
Ki=Ki0+K2·Ki1 (8)
Kd=1 (9)
其中,Kp0是比例系数的初始值,Ki0是积分系数的初始值,K1和K2都是常数,用以对Kp1和Ki1加以调整。
进一步地,所述步骤3中微分过程以微分先行的算法实现,微分器的输入为输出电压值y(t),微分环节采用一阶实际微分,其传递函数如下:
针对上述燃料电池电压的模糊自适应PID控制方法中存在的燃气入口流量的限幅问题,提供一种基于反向计算的模糊PID抗饱和方法,包括如下步骤:
A)获取限幅前的控制量u0与限幅后的控制量u1
B)计算反馈的控制量u2=u1-u0
C)计算积分器输入的误差量e1=e0+u2
其原理如下:u2为限幅后的控制量u1与控制量u0之差。若u0过高,则u2为负,其乘以一系数K后反馈到积分器之前,对积分器输入起削弱作用;若u0过低,则u2为正,其乘以一系数K后反馈到积分器之前,对积分器输入起增强作用;若u0适中,则u2为0,对积分器输入不起作用。由此实现模糊PID抗饱和,解决燃气入口流量的限幅问题。
有益效果:本发明与现有技术相比,具备如下优点:
1、快速调整输出电压跟随设定值变化,且无超调量;
2、能够实现在负载扰动的情况下使输出电压快速响应并回到设定值;
3、以模糊控制器改变PID控制器的控制参数,有效抑制工况的非线性对于输出电压控制的影响,控制性能随工况变化恶化小;
4、利用了基于反算法的抗饱和方法,有效解决了燃料入口流量限幅引发的饱和问题。
附图说明
图1为本发明的原理图;
图2为本发明的基于Matlab建立的燃料电池动态模型的结构图;
图3为本发明的基于Matlab建立的燃料电池模型的热模块的结构图;
图4为本发明的基于Matlab建立的模糊自适应PID控制器的结构图;
图5为本发明的模糊PID控制参数整定表。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
如图1所示,本实施例提供一种燃料电池电压的模糊自适应PID控制方法,包括如下步骤:
1)基于Matlab的Simulink仿真平台,搭建燃料电池的动态模型,如图2和图3所示为建立的动态模型和燃料电池模型的热模块;
2)对步骤1中燃料电池动态模型做阶越响应试验,并基于所得到的响应数据采用最小二乘法进行传递函数辨识,然后利用辨识得到的模型进行PID控制器的参数整定;
3)设计模糊控制器,根据电压误差以及电压误差的变化率,对其进行模糊化处理,利用模糊规则进行模糊推理以及去模糊化,得到修正参数Kp1、Ki1,对比例系数与积分系数进行修正,微分作用以微分先行的算法实现,实现对燃料电池输出电压的控制。
步骤3中的模糊控制器的隶属函数的语言变量采用七个等级,语言值分别是“(NB)”、“(NM)”、“(NS)”、“(ZO)”、“(PS)”、“(PM)”、“(PB)”,其中“(NB)”代表负大,“(NM)”代表负中,“(NS)”代表负小,“(ZO)”代表无差,“(PS)”代表正小,“(PM)”代表正中,“(PB)”代表正大,所述七个等级的语言变量中“(NB)”和“(PB)”的隶属函数为π型函数,“(NM)”、“(NS)”、“(ZO)”、“(PS)”、“(PM)”为三角型函数。
步骤3中的模糊控制器采用的是两个输入和两个输出的模式,其输入为误差e与误差的变化率ec,输出为比例系数的修正值Kp1与积分系数的修正值Ki1,所述误差e与误差的变化率ec的表达式如下:
e(k)=r(k)-y(k) (1)
ec(k)=e(k)-e(k-1) (2)
其中,r(k)表示电压设定值,y(k)表示电压输出值。
如图5所示,步骤3中模糊规则为:
R1:if(e isNB)and(ec is NB)then(Kp is PB)(Ki isNB)
R2:if(e isNB)and(ec is NM)then(Kp is PB)(KiisNB)
R3:if(e isNB)and(ec is NS)then(Kp is PM)(Ki is NM)
R4:if(e isNB)and(ec is ZO)then(Kp is PM)(Ki isNM)
R5:if(e isNB)and(ec is PS)then(Kp is PS)(Ki isNS)
R6:if(e isNB)and(ec is PM)then(Kp is ZO)(Ki isNS)
R7:if(e isNB)and(ec is PB)then(Kp is ZO)(Kiis ZO)
R8:if(e isNM)and(ec isNB)then(Kp is PB)(KiisNB)
R9:if(e isNM)and(ec isNM)then(Kp is PB)(KiisNB)
R10:if(e isNM)and(ec isNS)then(Kp is PM)(Ki isNM)
R11:if(e isNM)and(ec is ZO)then(Kp is PS)(KiisNS)
R12:if(e isNM)and(ec is PS)then(Kp is PS)(KiisNS)
R13:if(e isNM)and(ec is PM)then(Kp is ZO)(Kiis ZO)
R14:if(e isNM)and(ec is PB)then(Kp isNS)(Kiis ZO)
R15:if(e isNS)and(ec isNB)then(Kp is PM)(Ki is NB)
R16:if(e isNS)and(ec isNM)then(Kp is PM)(Ki isNM)
R17:if(e isNS)and(ec isNS)then(Kp is PM)(Ki isNS)
R18:if(e isNS)and(ec is ZO)then(Kp is PS)(KiisNS)
R19:if(e is NS)and(ec is PS)then(Kp is ZO)(Ki is ZO)
R20:if(e is NS)and(ec is PM)then(Kp is NS)(Ki is PS)
R21:if(e is NS)and(ec is PB)then(Kp is NS)(Ki is PS)
R22:if(e is ZO)and(ec is NB)then(Kp is PM)(Ki is NM)
R23:if(e is ZO)and(ec is NM)then(Kp is PM)(Ki is NM)
R24:if(e is ZO)and(ec is NS)then(Kp is PS)(Ki is NS)
R25:if(e is ZO)and(ec is ZO)then(Kp is ZO)(Ki is ZO)
R26:if(e is ZO)and(ec is PS)then(Kp is NS)(Ki is PS)
R27:if(e is ZO)and(ec is PM)then(Kp is NM)(Ki is PM)
R28:if(e is ZO)and(ec is PB)then(Kp is NM)(Ki is PM)
R29:if(e is PS)and(ec is NB)then(Kp is PS)(Ki is NM)
R30:if(e is PS)and(ec is NM)then(Kp is PS)(Ki is NS)
R31:if(e is PS)and(ec is NS)then(Kp is ZO)(Ki is ZO)
R32:if(e is PS)and(ec is ZO)then(Kp is NS)(Ki is PS)
R33:if(e is PS)and(ec is PS)then(Kp is NS)(Ki is PS)
R34:if(e is PS)and(ec is PM)then(Kp is NM)(Ki is PM)
R35:if(e is PS)and(ec is PB)then(Kp is NM)(Ki is PB)
R36:if(e is PM)and(ec is NB)then(Kp is PS)(Ki is ZO)
R37:if(e is PM)and(ec is NM)then(Kp is ZO)(Ki is ZO)
R38:if(e is PM)and(ec is NS)then(Kp is NS)(Ki is PS)
R39:if(e is PM)and(ec is ZO)then(Kp is NM)(Ki is PS)
R40:if(e is PM)and(ec is PS)then(Kp is NM)(Ki is PM)
R41:if(e is PM)and(ec is PM)then(Kp is NM)(Ki is PB)
R42:if(e is PM)and(ec is PB)then(Kp is NB)(Ki is PB)
R43:if(e is PB)and(ec is NB)then(Kp is ZO)(Ki is ZO)
R44:if(e is PB)and(ec is NM)then(Kp is ZO)(Ki is ZO)
R45:if(e is PB)and(ec is NS)then(Kp is NM)(Ki is PS)
R46:if(e is PB)and(ec is ZO)then(Kp is NM)(Ki is PM)
R47:if(e is PB)and(ec is PS)then(Kp is NM)(Ki is PM)
R48:if(eisPB)and(ecisPM)then(KpisNB)(KiisPB)
R49:if(eisPB)and(ecisPB)then(KpisNB)(KiisPB)
针对上述第Ri条模糊规则,所述隶属度以Mamdani型模糊推理来计算,其计算公式如下:
其中,cp,ci分别是Kp1和Ki1模糊集合的中心值,μKp1(cp),μKi1(ci)是cp和ci的隶属度。
步骤3中PID控制器的修正参数Kp1、Ki1按重心法计算,计算公式如下:
PID控制器的控制参数Kp,Ki,Kd计算公式如下:
Kp=Kp0+K1·Kp1 (7)
Ki=Ki0+K2·Ki1 (8)
Kd=1 (9)
其中,Kp0是比例系数的初始值,Ki0是积分系数的初始值,K1和K2都是常数,用以对Kp1和Ki1加以调整。
步骤3中微分过程以微分先行的算法实现,微分器的输入为输出电压值y(t),微分环节采用一阶实际微分,其传递函数如下:
如图4所示为模糊自适应PID控制器结构图,该控制器可通过模糊推理改变PID控制器的参数,以适应燃料电池的非线性。该控制器还采用了一种基于反算法的抗饱和方法,以解决燃料入口流量限幅的问题。
针对上述燃料电池电压的模糊自适应PID控制方法中存在的燃气入口流量的限幅问题,提供一种基于反向计算的模糊PID抗饱和方法,包括如下步骤:
A)获取限幅前的控制量u0与限幅后的控制量u1
B)计算反馈的控制量u2=u1-u0
C)计算积分器输入的误差量e1=e0+u2
u2为限幅后的控制量u1与控制量u0之差。若u0过高,则u2为负,其乘以一系数K后反馈到积分器之前,对积分器输入起削弱作用;若u0过低,则u2为正,其乘以一系数K后反馈到积分器之前,对积分器输入起增强作用;若u0适中,则u2为0,对积分器输入不起作用。由此实现模糊PID抗饱和,解决燃气入口流量的限幅问题。

Claims (10)

1.一种燃料电池电压的模糊自适应PID控制方法,其特征在于:包括如下步骤:
1)基于Matlab的Simulink仿真平台,搭建燃料电池的动态模型;
2)对步骤1中燃料电池动态模型做阶越响应试验,并基于所得到的响应数据采用最小二乘法进行传递函数辨识,然后利用辨识得到的模型进行PID控制器的参数整定;
3)设计模糊控制器,根据电压误差以及电压误差的变化率,对其进行模糊化处理,利用模糊规则进行模糊推理以及去模糊化,得到修正参数Kp1、Ki1,对比例系数与积分系数进行修正,微分作用以微分先行的算法实现,实现对燃料电池输出电压的控制。
2.根据权利要求1所述的一种燃料电池电压的模糊自适应PID控制方法,其特征在于:所述步骤3中的模糊控制器的隶属函数的语言变量采用七个等级,语言值分别是“(NB)”、“(NM)”、“(NS)”、“(ZO)”、“(PS)”、“(PM)”、“(PB)”,其中“(NB)”代表负大,“(NM)”代表负中,“(NS)”代表负小,“(ZO)”代表无差,“(PS)”代表正小,“(PM)”代表正中,“(PB)”代表正大。
3.根据权利要求2所述的一种燃料电池电压的模糊自适应PID控制方法,其特征在于:所述七个等级的语言变量中“(NB)”和“(PB)”的隶属函数为π型函数,“(NM)”、“(NS)”、“(ZO)”、“(PS)”、“(PM)”为三角型函数。
4.根据权利要求1所述的一种燃料电池电压的模糊自适应PID控制方法,其特征在于:所述步骤3中的模糊控制器采用的是两个输入和两个输出的模式,其输入为误差e与误差的变化率ec,输出为比例系数的修正值Kp1与积分系数的修正值Ki1,所述误差e与误差的变化率ec的表达式如下:
e(k)=r(k)-y(k) (1)
ec(k)=e(k)-e(k-1) (2)
其中,r(k)表示电压设定值,y(k)表示电压输出值。
5.根据权利要求1所述的一种燃料电池电压的模糊自适应PID控制方法,其特征在于:所述步骤3中模糊规则为:
R1:if(e is NB)and(ec is NB)then(Kp is PB)(Ki is NB)
R2:if(e is NB)and(ec is NM)then(Kp is PB)(Ki is NB)
R3:if(e is NB)and(ec is NS)then(Kp is PM)(Ki is NM)
R4:if(e is NB)and(ec is ZO)then(Kp is PM)(Ki is NM)
R5:if(e is NB)and(ec is PS)then(Kp is PS)(Ki is NS)
R6:if(e is NB)and(ec is PM)then(Kp is ZO)(Ki is NS)
R7:if(e is NB)and(ec is PB)then(Kp is ZO)(Ki is ZO)
R8:if(e is NM)and(ec is NB)then(Kp is PB)(Ki is NB)
R9:if(e is NM)and(ec is NM)then(Kp is PB)(Ki is NB)
R10:if(e is NM)and(ec is NS)then(Kp is PM)(Ki is NM)
R11:if(e is NM)and(ec is ZO)then(Kp is PS)(Ki is NS)
R12:if(e is NM)and(ec is PS)then(Kp is PS)(Ki is NS)
R13:if(e is NM)and(ec is PM)then(Kp is ZO)(Ki is ZO)
R14:if(e is NM)and(ec is PB)then(Kp is NS)(Ki is ZO)
R15:if(e is NS)and(ec is NB)then(Kp is PM)(Ki is NB)
R16:if(e is NS)and(ec is NM)then(Kp is PM)(Ki is NM)
R17:if(e is NS)and(ec is NS)then(Kp is PM)(Ki is NS)
R18:if(e is NS)and(ec is ZO)then(Kp is PS)(Ki is NS)
R19:if(e is NS)and(ec is PS)then(Kp is ZO)(Ki is ZO)
R20:if(e is NS)and(ec is PM)then(Kp is NS)(Ki is PS)
R21:if(e is NS)and(ec is PB)then(Kp is NS)(Ki is PS)
R22:if(e is ZO)and(ec is NB)then(Kp is PM)(Ki is NM)
R23:if(e is ZO)and(ec is NM)then(Kp is PM)(Ki is NM)
R24:if(e is ZO)and(ec is NS)then(Kp is PS)(Ki is NS)
R25:if(e is ZO)and(ec is ZO)then(Kp is ZO)(Ki is ZO)
R26:if(e is ZO)and(ec is PS)then(Kp is NS)(Ki is PS)
R27:if(e is ZO)and(ec is PM)then(Kp is NM)(Ki is PM)
R28:if(e is ZO)and(ec is PB)then(Kp is NM)(Ki is PM)
R29:if(e is PS)and(ec is NB)then(Kp is PS)(Ki is NM)
R30:if(e is PS)and(ec is NM)then(Kp is PS)(Ki is NS)
R31:if(e is PS)and(ec is NS)then(Kp is ZO)(Ki is ZO)
R32:if(e is PS)and(ec is ZO)then(Kp is NS)(Ki is PS)
R33:if(e is PS)and(ec is PS)then(Kp is NS)(Ki is PS)
R34:if(e is PS)and(ec is PM)then(Kp is NM)(Ki is PM)
R35:if(e is PS)and(ec is PB)then(Kp is NM)(Ki is PB)
R36:if(e is PM)and(ec is NB)then(Kp is PS)(Ki is ZO)
R37:if(e is PM)and(ec is NM)then(Kp is ZO)(Ki is ZO)
R38:if(e is PM)and(ec is NS)then(Kp is NS)(Ki is PS)
R39:if(e is PM)and(ec is ZO)then(Kp is NM)(Ki is PS)
R40:if(e is PM)and(ec is PS)then(Kp is NM)(Ki is PM)
R41:if(e is PM)and(ec is PM)then(Kp is NM)(Ki is PB)
R42:if(e is PM)and(ec is PB)then(Kp is NB)(Ki is PB)
R43:if(e is PB)and(ec is NB)then(Kp is ZO)(Ki is ZO)
R44:if(e is PB)and(ec is NM)then(Kp is ZO)(Ki is ZO)
R45:if(e is PB)and(ec is NS)then(Kp is NM)(Ki is PS)
R46:if(e is PB)and(ec is ZO)then(Kp is NM)(Ki is PM)
R47:if(e is PB)and(ec is PS)then(Kp is NM)(Ki is PM)
R48:if(e is PB)and(ec is PM)then(Kp is NB)(Ki is PB)
R49:if(e is PB)and(ec is PB)then(Kp is NB)(Ki is PB)。
6.根据权利要求5所述的一种燃料电池电压的模糊自适应PID控制方法,其特征在于:针对第Ri条模糊规则,所述隶属度以Mamdani型模糊推理来计算,其计算公式如下:
其中,cp,ci分别是Kp1和Ki1模糊集合的中心值,μKp1(cp),μKi1(ci)是cp和ci的隶属度。
7.根据权利要求5所述的一种燃料电池电压的模糊自适应PID控制方法,其特征在于:所述步骤3中PID控制器的修正参数Kp1、Ki1按重心法计算,计算公式如下:
8.根据权利要求1所述的一种燃料电池电压的模糊自适应PID控制方法,其特征在于:所述的PID控制器的控制参数Kp,Ki,Kd计算公式如下:
Kp=Kp0+K1·Kp1 (7)
Ki=Ki0+K2·Ki1 (8)
Kd=1 (9)
其中,Kp0是比例系数的初始值,Ki0是积分系数的初始值,K1和K2都是常数,用以对Kp1和Ki1加以调整。
9.根据权利要求1所述的一种燃料电池电压的模糊自适应PID控制方法,其特征在于:所述步骤3中微分过程以微分先行的算法实现,微分器的输入为输出电压值y(t),微分环节采用一阶实际微分,其传递函数如下:
10.根据权利要求1所述的一种燃料电池电压的模糊自适应PID控制方法中基于反向计算的模糊PID抗饱和方法,其特征在于:包括如下步骤:
A)获取限幅前的控制量u0与限幅后的控制量u1
B)计算反馈的控制量u2=u1-u0
C)计算积分器输入的误差量e1=e0+u2
CN201811268954.5A 2018-10-29 2018-10-29 一种燃料电池电压的模糊自适应pid控制方法 Pending CN109240078A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811268954.5A CN109240078A (zh) 2018-10-29 2018-10-29 一种燃料电池电压的模糊自适应pid控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811268954.5A CN109240078A (zh) 2018-10-29 2018-10-29 一种燃料电池电压的模糊自适应pid控制方法

Publications (1)

Publication Number Publication Date
CN109240078A true CN109240078A (zh) 2019-01-18

Family

ID=65079018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811268954.5A Pending CN109240078A (zh) 2018-10-29 2018-10-29 一种燃料电池电压的模糊自适应pid控制方法

Country Status (1)

Country Link
CN (1) CN109240078A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110086364A (zh) * 2019-05-29 2019-08-02 中国计量大学 一种铝空气电池电力变换器
CN110597052A (zh) * 2019-09-24 2019-12-20 武汉理工大学 面向快速动态响应的燃料电池空气供给控制器及控制方法
CN111948562A (zh) * 2020-08-24 2020-11-17 南京机电职业技术学院 一种燃料电池全生命周期监控与评估系统
CN112736268A (zh) * 2020-12-17 2021-04-30 华中科技大学 一种提高sofc系统寿命的控制优化方法和系统
CN112965365A (zh) * 2021-02-23 2021-06-15 浙江中智达科技有限公司 Pid控制回路的模型辨识方法、装置、系统及存储介质
CN113741178A (zh) * 2021-10-26 2021-12-03 柳州赛克科技发展有限公司 一种pid抗饱和的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764417A (zh) * 2009-05-19 2010-06-30 甘肃卓越电子科技有限公司 一种锂聚合物蓄电池智能自适应充电管理装置及控制系统
CN103309233A (zh) * 2013-05-13 2013-09-18 陕西国防工业职业技术学院 一种模糊pid控制器的设计方法
CN104037898A (zh) * 2014-07-02 2014-09-10 东南大学 一种车载动力电池自适应充电方法
CN105137806A (zh) * 2015-08-04 2015-12-09 温州大学 基于Matlab的燃料电池系统过氧量模糊PID控制方法
CN107957742A (zh) * 2017-10-20 2018-04-24 宝沃汽车(中国)有限公司 电动汽车的供电方法、装置、光伏控制器及电动汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764417A (zh) * 2009-05-19 2010-06-30 甘肃卓越电子科技有限公司 一种锂聚合物蓄电池智能自适应充电管理装置及控制系统
CN103309233A (zh) * 2013-05-13 2013-09-18 陕西国防工业职业技术学院 一种模糊pid控制器的设计方法
CN104037898A (zh) * 2014-07-02 2014-09-10 东南大学 一种车载动力电池自适应充电方法
CN105137806A (zh) * 2015-08-04 2015-12-09 温州大学 基于Matlab的燃料电池系统过氧量模糊PID控制方法
CN107957742A (zh) * 2017-10-20 2018-04-24 宝沃汽车(中国)有限公司 电动汽车的供电方法、装置、光伏控制器及电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUXIAO QIN 等: "A Fuzzy Adaptive PID Controller Design for Fuel Cell Power Plant", 《SUSTAINABILITY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110086364A (zh) * 2019-05-29 2019-08-02 中国计量大学 一种铝空气电池电力变换器
CN110597052A (zh) * 2019-09-24 2019-12-20 武汉理工大学 面向快速动态响应的燃料电池空气供给控制器及控制方法
CN111948562A (zh) * 2020-08-24 2020-11-17 南京机电职业技术学院 一种燃料电池全生命周期监控与评估系统
CN112736268A (zh) * 2020-12-17 2021-04-30 华中科技大学 一种提高sofc系统寿命的控制优化方法和系统
CN112965365A (zh) * 2021-02-23 2021-06-15 浙江中智达科技有限公司 Pid控制回路的模型辨识方法、装置、系统及存储介质
CN113741178A (zh) * 2021-10-26 2021-12-03 柳州赛克科技发展有限公司 一种pid抗饱和的方法

Similar Documents

Publication Publication Date Title
CN109240078A (zh) 一种燃料电池电压的模糊自适应pid控制方法
Baroud et al. Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems
CN105137806A (zh) 基于Matlab的燃料电池系统过氧量模糊PID控制方法
Mohammedi et al. Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source
CN104089270B (zh) 一种发电机组锅炉负荷控制优化调整试验方法
CN105180135A (zh) 单元机组协调控制方法及系统
Dhanalakshmi et al. Load frequency control of wind diesel hydro hybrid power system using conventional PI controller
CN110048438B (zh) 一种基于模型预测控制的配电网馈线级负荷功率控制方法
CN111009674B (zh) 一种基于自抗扰控制方法的质子交换膜燃料电池湿度控制方法
CN110212799A (zh) 用于抑制模块化多电平变换器环流的无源反步控制方法
Wang et al. Robust adaptive control of PEMFC air supply system based on radical basis function neural network
CN108954286A (zh) 一种锅炉输入动态加速指令的计算方法及系统
Zhao et al. The design and simulation of fuzzy PID controller
Vanjani et al. Takagi-sugeno (TS)-type fuzzy logic controller for three-phase four-wire shunt active power filter for unbalanced load
CN111208734B (zh) 一种控制增益未知不确定系统的数据驱动抗干扰控制结构
Baroud et al. Air flow regulation in fuel cells: an efficient design of hybrid fuzzy-PID control
Thangavelusamy et al. Elimination of chattering using fuzzy sliding mode controller for drum boiler turbine System
Li et al. Temperature control of PEMFC stack based on BP neural network
CN112271759A (zh) 多调频资源框架下风电调频参数的优化方法、系统及装置
Wang et al. Hybrid active power filter DC bus control based on double fuzzy control
Abid et al. Direct fuzzy adaptive control based on sliding surface for a class of SISO non-linear systems
Patil et al. Review on Exponential Growth of Different Controllers for Brushless DC Motor
CN116388240B (zh) 一种基于pso优化双层云控制器的风电场储能控制方法
Zhao et al. A Stable Multi-Objective Economic MPC Scheme for Boiler-Turbine Units
CN111663032B (zh) 一种非晶铁芯退火炉自抗扰温度控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190118