CN111934635A - 微机电无线信号唤醒接收器及其制备方法 - Google Patents

微机电无线信号唤醒接收器及其制备方法 Download PDF

Info

Publication number
CN111934635A
CN111934635A CN202010608952.7A CN202010608952A CN111934635A CN 111934635 A CN111934635 A CN 111934635A CN 202010608952 A CN202010608952 A CN 202010608952A CN 111934635 A CN111934635 A CN 111934635A
Authority
CN
China
Prior art keywords
transformer
metal
etching
electrode
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010608952.7A
Other languages
English (en)
Other versions
CN111934635B (zh
Inventor
邵率
罗智方
吴涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShanghaiTech University
Original Assignee
ShanghaiTech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShanghaiTech University filed Critical ShanghaiTech University
Priority to CN202010608952.7A priority Critical patent/CN111934635B/zh
Publication of CN111934635A publication Critical patent/CN111934635A/zh
Application granted granted Critical
Publication of CN111934635B publication Critical patent/CN111934635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0073Integration with other electronic structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0076Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
    • H03H3/0077Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients by tuning of resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • H04B1/1615Switching on; Switching off, e.g. remotely
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/022Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0485Resonance frequency during the manufacture of a cantilever
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Micromachines (AREA)

Abstract

本发明提供了一种用于零功耗的无线信号唤醒接收的基于压电材料的微机电系统的无线信号唤醒接收器,其特征在于,初始压电层和结构压电层固定于硅衬底上,无线信号通过天线进行接收,接收到的信号激励变压器使其发生谐振,变压器会放大天线接收的调制信号,被放大的调制信号连接微机电谐振开关的栅极端,当信号幅值大于谐振开关的阈值时便可激励开关发生谐振,使电源与负载电容间形成通路,负载电容进行充电。微机电谐振开关用于判断是否将信号传到下一级。当信号强度大于阈值时,开关闭合,电容器充电并唤醒下一级电路,反之则不将信号传到下一级电路,完成零功耗的无线信号唤醒接收过程。并提供了两种唤醒接收器的具体制备工艺。

Description

微机电无线信号唤醒接收器及其制备方法
技术领域
本发明涉及一种基于射频压电变压器的微机电无线信号唤醒接收器,可用于零功耗的无线信号唤醒接收,更具体地涉及一种高机电耦合系数的无线信号唤醒接收器及两种制备工艺,该唤醒器包含两种器件:射频压电变压器和低驱动电压的微机电谐振开关。
背景技术
随着科技的进步,物联网和无线网络得到了极大地发展,因此大量的无线收发器需要应用于各种网络节点当中。虽然目前的无线接收器的通信速率很高,技术也越来越先进,但大多数无线接收器处于无人值守的环境并且更换电池困难。因此,基于无源器件的唤醒接收器能够有效的降低系统总功耗。
发明内容
本发明要解决的技术问题是:如何降低由传统基于CMOS器件的唤醒接收器的功耗,进一步提高无线接收器的电池寿命。
为了解决上述技术问题,本发明旨在利用基于压电薄膜的无源器件替换CMOS器件降低唤醒接收器的功耗,通过采用掺杂氮化铝薄膜进一步提高压电变压器的增益,优化工艺和设计降低谐振开关的闭合电压,实现超低静态功耗的无线信号唤醒接收器。
具体而言,本发明的技术方案是提供了一种用于零功耗的无线信号唤醒接收的基于压电材料的微机电系统的无线信号唤醒接收器,其特征在于,包括:
固定于硅衬底上的压电层,基于压电层形成射频压电变压器和低驱动电压的微机电谐振开关,由刻蚀在压电层上的刻蚀开孔一和刻蚀开孔二定义射频压电变压器和微机电谐振开关的边界,射频压电变压器通过外部的天线进行接收无线调制信号,射频压电变压器被接收到的无线信号激励发生谐振从而将无线调制信号放大,被放大的无线调制信号连接微机电谐振开关,当微机电谐振开关接收到的无线调制信号的信号幅值大于开关阈值时便可激励微机电谐振开关发生谐振,使连接在微机电谐振开关两端的外部的电源与负载电容间形成通路,电源对负载电容充电,当负载电容充电至一定电压后唤醒下一级电路;
射频压电变压器包括:
压电层,作为射频压电变压器的谐振主体;
位于谐振主体下方的空腔,由刻蚀开孔一和刻蚀开孔二为形成该空腔提供刻蚀槽;
分别固定在压电层上、下表面的变压器上电极及变压器下电极,变压器下电极均为接地电极,同一极性的变压器上电极或变压器下电极根部相通,变压器上电极及变压器下电极被用作变压器输入电极及变压器输出电极,用于激发谐振模态并输出调制频率,电极与部分变压器下电极相连,将输入端引出;
压电层上刻蚀形成的通孔一,用于将作为变压器输入电极使用的变压器下电极引出;
微机电谐振开关包括:
形成有开关悬臂结构的压电层,开关悬臂结构通过刻蚀牺牲层形成;
位于压电层上的通孔,为刻蚀牺牲层提供刻蚀槽;
带有金属触点的金属开关悬臂,金属开关悬臂固定在开关悬臂结构上,金属触点为微机电谐振开关的栅极,位于金属开关悬臂自由端的顶部;
位于压电层的金属走线,金属走线位于金属触点的下方,分别与电源及负载电容相连;
固定在压电层上的金属电极一及金属电极二,金属电极一接地,射频压电变压器的作为变压器输出电极使用的变压器下电极与金属电极二相连;
压电层上刻蚀形成的通孔,金属电极二通过通孔与微机电谐振开关的栅极相连;
压电层上刻蚀形成的通孔二,用于将金属走线引出。
优选地,所述压电层包括固定于所述硅衬底上的较薄的初始压电层和沉积在初始压电层上的较厚的结构压电层。
优选地,所述压电层与所述硅衬底之间有隔离层。
优选地,所述压电层的材质为掺杂氮化铝、氮化铝、铌酸锂、钽酸锂或锆钛酸铅。
优选地,所述变压器上电极、所述变压器下电极、所述金属电极一及所述金属电极二的材质均为金属材料。
本发明的另一个技术方案是提供了使用二维兰姆波谐振模态或横向谐振模态的上述的基于压电材料的微机电系统的无线信号唤醒接收器的制备方法,其特征在于,包括以下步骤:
步骤1):在硅衬底沉积所述变压器下电极、所述电极及所述金属电极二并图形化电极;在所述变压器下电极及所述金属电极二上方沉积第一层较薄的压电薄膜作为射频压电变压器和微机电谐振开关的初始压电层;
步骤2):刻蚀初始压电层,形成所述通孔;在初始压电层上沉积金属并图形化金属形成所述金属电极一和所述金属走线;
步骤3):在初始压电层、金属电极一和金属走线上方沉积牺牲层,并刻蚀出浅槽来确定微机电谐振开关的接触点及接触间隔;
步骤4):图形化牺牲层,定义所述开关悬臂结构的尺寸;
步骤5):在图形化后的牺牲层上沉积金属并图形化金属,形成所述金属开关悬臂;
步骤6):沉积第二层较厚的压电薄膜作为射频压电变压器和微机电谐振开关的结构压电层;
步骤7):刻蚀初始压电层及结构压电层,形成所述通孔一及所述通孔二;
步骤8):在压电层上方沉积金属并图形化金属,形成所述变压器上电极;
步骤9):刻蚀压电层形成定义器件的边界的刻蚀开孔一和刻蚀开孔二,并形成通孔,刻蚀开孔一、刻蚀开孔二及通孔为刻蚀牺牲层的槽;
步骤10):使用各向同性刻蚀对硅衬底进行刻蚀,形成位于射频压电变压器下方的空腔;再使用各向同性刻蚀对牺牲层进行刻蚀,形成微机电谐振开关结构,即获得上述的微机电无线信号唤醒接收器;
步骤11):对步骤10获得的器件进行封装。
本发明的另一个技术方案是提供了一种使用二维兰姆波谐振模态或横向谐振模态的上述的基于压电材料的微机电系统的无线信号唤醒接收器的制备方法,其特征在于,包括以下步骤:
步骤1):在硅衬底沉积隔离层,在隔离层上沉积并图形化所述通孔的金属连接线、所述金属电极一和所述金属走线;
步骤2):沉积牺牲层,刻蚀牺牲层形成所述通孔和形成所述金属触点的浅槽;
步骤3):沉积并图形化下所述变压器下电极、所述电极及所述金属开关悬臂;
步骤4):沉积压电薄膜作为射频压电变压器和微机电谐振开关的压电层;
步骤5):刻蚀压电层,形成所述通孔一及所述通孔二;
步骤6):沉积金属并图形化所述变压器上电极和所述通孔一及所述通孔二的金属连接线;
步骤7):刻蚀压电层,形成所述刻蚀开孔一、所述刻蚀开孔二及所述通孔;
步骤8):使用各向同性刻蚀对牺牲层进行刻蚀,形成位于射频压电变压器下方的空腔和所述开关悬臂结构,即上所述的微机电无线信号唤醒接收器;
步骤9):对步骤8获得的器件进行封装。
本发明使用微机电系统(MEMS)的零功耗无线信号唤醒接收器来降低无线接收系统的功耗。无线信号通过天线进行接收,接收到的信号激励变压器使其发生谐振,变压器会放大天线接收的调制信号,被放大的调制信号连接微机电谐振开关的栅极端,激励谐振开关悬臂发生谐振,当信号幅值大于谐振开关的阈值时便可开关闭合,使电源与负载电容间形成通路,负载电容进行充电。负载电容的电压大于阈值时,使下一级电路连通。进一步地,这样的接收系统中,核心的组成部分之一就是射频压电变压器。为了实现更高的变压器开路增益,本发明创新地使用了新型的掺杂氮化铝薄膜,其制作成的变压器的机电耦合系数比基于氮化铝的变压器高一倍以上,这样的性能提升和零功耗的特性,对于新一代无线信号唤醒器来说至关重要。本发明另一核心器件是微机电谐振开关,过去使用的开关需要较大的驱动电压,而本发明采用的微机电谐振开关则只需要很小的驱动电压,能够实现更高的灵敏度和可靠性。采用这样的无线信号唤醒接收器,可以使电路不包含直流通路,实现几乎为零的静态功耗。
附图说明
图1a为本发明微机电无线信号唤醒接收器的工作示意图,其使用的是微机电谐振检测开关;
图1b为实施例1提供的基于微机电无线信号唤醒接收器的截面图;
图1c为本发明微机电无线信号唤醒接收器的工作示意图,其使用的是低漏电流MOS管作为开关;
图2a为本发明的射频微机电变压器的示意图;
图2b为本发明的微机电变压器的截面图;
图3a为本发明的微机电谐振开关的示意图;
图3b为本发明的折叠悬臂微机电谐振开关的示意图;
图4a为利用有限元仿真软件仿真得到的在2.4GHz频段下工作的二维兰姆波谐振模态变压器的导纳曲线;
图4b为利用有限元仿真软件仿真得到的在5GHz频段下工作的二维兰姆波谐振模态变压器的导纳曲线;
图4c为二维兰姆波谐振模态变压器的主模(n=1)的总位移示意图;
图4d为二维兰姆波谐振模态变压器的主模(n=1)的横向位移示意图;
图4e为二维兰姆波谐振模态变压器的主模(n=1)的纵向位移示意图;
图5为沉积氮化铝薄膜时改变射频偏置功率对薄膜平均应力的影响的示意图;
图6a至6k为本发明提供的一种微机电无线信号唤醒接收器的制备方法中不同步骤时状态的示意图;
图7a至7i为本发明提供的一种微机电无线信号唤醒接收器的制备方法中不同步骤时状态的示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
如图1a所示,本实例提供的一种微机电无线信号唤醒接收器主要包括射频压电变压器和低驱动电压的微机电谐振开关。射频压电变压器通过外部的天线进行接收无线调制信号,射频压电变压器被接收到的无线信号激励发生谐振从而将无线调制信号放大,被放大的无线调制信号连接微机电谐振开关,当微机电谐振开关接收到的无线调制信号的信号幅值大于开关阈值时便可激励微机电谐振开关发生谐振,使连接在微机电谐振开关两端的外部的电源与负载电容间形成通路,电源对负载电容充电,当负载电容充电至一定电压后唤醒下一级电路。
如图1c所示,为完整的微机电无线信号唤醒接收器示意图,无线信号通过天线进行接收,接收到的信号激励射频压电变压器使其发生谐振,射频压电变压器会放大天线接收的调制信号,被放大的调制信号连接低漏电流MOS管的栅极端,低漏电流MOS管作为开关用于判断是否将信号传到下一级。当信号强度大于阈值时,MOS管导通,电容器被电源充电并唤醒下一级电路,反之则断开,不将信号传到下一级电路。
如图1b所示,本实施例提供的基于微机电无线信号唤醒接收器包括用于固定电极的压电层6,压电层6固定于硅衬底4上。压电层6一方面作为射频压电变压器的谐振主体,另一方面压电层6具有开关悬臂结构7,可以作为微机电谐振开关的开关悬臂7。刻蚀开孔5a、5b位于压电层6上,用于定义出射频压电变压器和微机电谐振开关的边界。
对于射频压电变压器部分的压电层6而言,通过刻蚀开孔5a、5b形成位于压电层6下方的空腔压。电层6上方和下方的电极被图形化为叉指电极,分别为变压器上电极1a、1b、1c、1d、1c、1e以及变压器下电极2a、2b、2c、2d、2e,其中变压器上电极1a、1c、1e及变压器下电极2a、2c、2e为输入电极,用于激励射频压电变压器产生轮廓谐振模态或兰姆波谐振模态,电极15与变压器下电极2a、2c、2e相连,将输入端引出,变压器下电极2b、2d为输出电极。射频压电变压器部分的压电层6上的通孔3用于将变压器下电极2a、2c、2e引出。微机电谐振开关的金属电极二16与变压器下电极2b、2d相连。
如图2a和2b所示,本发明实施例提供的射频压电变压器包括压电层6和叉指电极,包括位于压电层6上表面的变压器上电极和下表面的变压器下电极。变压器上电极分为叉指的输入和输出电极,其中,变压器上电极1a、1c、1e为输入电极,变压器上电极1b、1d为输出电极,电极宽度分别为Win和Wout,电极高度均为Te,相同极性的电极根部相连。变压器下电极均为接地电极。压电层6的厚度为TPiezo
对于微机电谐振开关部分的压电层6而言,压电层6形成有开关悬臂结构7,开关悬臂结构7通过刻蚀牺牲层19形成。压电层6上的通孔14为刻蚀牺牲层19提供刻蚀槽。开关悬臂结构7上固定有金属开关悬臂8,金属开关悬臂8带有金属触点9,金属触点9为微机电谐振开关的栅极,金属触点9位于金属开关悬臂8自由端的顶部,用于低粘附性地与金属走线12a、12b接触。压电层6上有金属走线12a、12b,金属走线12a、12b位于金属触点9的下方,压电层6上刻蚀形成的通孔二13,金属走线12a、12b通过通孔二13引出后分别与电源及负载电容相连。压电层6上固定有金属电极一11及金属电极二16,金属电极一11接地,金属电极一11构成了静电力电容驱动结构。金属电极二16与变压器下电极2b、2d相连。压电层6上刻蚀形成通孔10,金属电极二16通过通孔10与微机电谐振开关的栅极相连。
如图3a所示,为微机电谐振开关的三维模型,开关悬臂结构7上固定有金属开关悬臂8,金属开关悬臂8带有金属触点9。金属电极11与地相连,金属12a、12b分别与电源和负载电容相连。
如图3b所示,为开槽的折叠悬臂微机电谐振开关,开关悬臂结构7上固定有金属开关悬臂8,金属开关悬臂8带有金属触点9。金属电极11与地相连,金属12a、12b分别与电源和负载电容相连。如图3b所示的设计可以降低压电薄膜的残余应力对开关悬臂平整度的影响。
如图4a和4b所示,为不同工作频率的变压器的二维兰姆波谐振模态导纳曲线,通过调整变压器结构的相邻电极中心的间隔和压电材料的厚度,能够实现对天线不同射频信号的调制。使用二维兰姆波谐振模态的变压器能够获得最佳的机电耦合系数,实现最大的电压增益。
如图4c至4e所示,分别为二维兰姆波谐振模态变压器的主模的总位移、横向位移和纵向位移。二维兰姆波谐振模态将横向(d31)和纵向(d33)的机电耦合系数耦合叠加,使其机电耦合系数远高于横向或纵向谐振模态的变压器的机电耦合系数。
如图5所示,为沉积压电薄膜时改变射频偏置功率对薄膜平均应力的影响的示意图。为降低压电薄膜的残余应力对器件性能的影响,本发明提供了在压电薄膜中调整薄膜应力的工艺方法。通过调整射频偏置功率的工艺参数,可以有效的调控薄膜应力,从而控制悬臂的梁曲率和接触间隔。类似的,通过改变气体流量等工艺参数,也可以有效调控薄膜的应力,从而调节开关悬臂的梁曲率和接触间隔。
本发明提供了使用二维兰姆波谐振模态或横向谐振模态的基于压电材料的微机电系统的无线信号唤醒接收器的制备方法,其特征在于,包括以下步骤:
步骤1):如图6a所示,在硅衬底4沉积所述变压器下电极2a、2b、2c、2d、2e,所述金属电极二16及所述电极15并图形化电极;在所述变压器下电极及所述金属电极二16上方沉积第一层较薄的压电薄膜作为射频压电变压器和微机电谐振开关的初始压电层;
步骤2):如图6b所示,刻蚀初始压电层,形成所述通孔10;在初始压电层上沉积金属并图形化金属形成所述金属电极一11和所述金属走线12a、12b;
步骤3):如图6c所示,在初始压电层、金属电极一11和金属走线12a、12b上方沉积牺牲层19,并刻蚀出浅槽来确定微机电谐振开关的接触点及接触间隔;
步骤4):如图6d所示,图形化牺牲层19,定义所述开关悬臂结构7的尺寸;
步骤5):如图6e所示,在图形化后的牺牲层19上沉积金属并图形化金属,形成所述金属开关悬臂8;
步骤6):如图6f所示,沉积第二层较厚的压电薄膜作为射频压电变压器和微机电谐振开关的结构压电层;
步骤7):如图6g所示,刻蚀初始压电层及结构压电层,形成所述通孔一3及所述通孔二13;
步骤8):如图6h所示,在压电层6上方沉积金属并图形化金属,形成所述变压器上电极;
步骤9):如图6i所示,刻蚀压电层6形成定义器件的边界的刻蚀开孔一5a和刻蚀开孔二5b,并形成通孔14,刻蚀开孔一5a、刻蚀开孔二5b及通孔14为刻蚀牺牲层的槽;
步骤10):如图6j所示,使用各向同性刻蚀对硅衬底4进行刻蚀,形成位于射频压电变压器下方的空腔;再使用各向同性刻蚀对牺牲层19进行刻蚀,形成微机电谐振开关结构,即获得微机电无线信号唤醒接收器;
步骤11):如图6k所示,对步骤10获得的器件进行封装17。
本发明还提供了使用二维兰姆波谐振模态或横向谐振模态的基于压电材料的微机电系统的无线信号唤醒接收器的制备方法,包括以下步骤:
步骤1):如图7a所示,在硅衬底4沉积隔离层18,在隔离层18上沉积并图形化所述通孔10的金属连接线、所述金属电极一11和所述金属走线12a、12b;
步骤2):如图7b所示,沉积牺牲层19,刻蚀牺牲层19形成所述通孔10和形成所述金属触点9的浅槽;
步骤3):如图7c所示,沉积并图形化下所述变压器下电极2a、2b、2c、2d、2e,所述电极15及所述金属开关悬臂8;
步骤4):如图7d所示,沉积压电薄膜作为射频压电变压器和微机电谐振开关的压电层6;
步骤5):如图7e所示,刻蚀压电层6,形成所述通孔一3及所述通孔二13;
步骤6):如图7f所示,沉积金属并图形化所述变压器上电极和所述通孔一3及所述通孔二13的金属连接线;
步骤7):如图7g所示,刻蚀压电层6,形成所述刻蚀开孔一5a、所述刻蚀开孔二5b及所述通孔14;
步骤8):如图7h所示,使用各向同性刻蚀对牺牲层19进行刻蚀,形成位于射频压电变压器下方的空腔和所述开关悬臂结构7,即微机电无线信号唤醒接收器;
步骤9):如图7i所示,对步骤8获得的器件进行封装17。

Claims (7)

1.一种用于零功耗的无线信号唤醒接收的基于压电材料的微机电系统的无线信号唤醒接收器,其特征在于,包括:
固定于硅衬底(4)上的压电层(6),基于压电层(6)形成射频压电变压器和低驱动电压的微机电谐振开关,由刻蚀在压电层(6)上的刻蚀开孔一(5a)和刻蚀开孔二(5b)定义射频压电变压器和微机电谐振开关的边界,射频压电变压器通过外部的天线进行接收无线调制信号,射频压电变压器被接收到的无线信号激励发生谐振从而将无线调制信号放大,被放大的无线调制信号连接微机电谐振开关,当微机电谐振开关接收到的无线调制信号的信号幅值大于开关阈值时便可激励微机电谐振开关发生谐振,使连接在微机电谐振开关两端的外部的电源与负载电容间形成通路,电源对负载电容充电,当负载电容充电至一定电压后唤醒下一级电路;
射频压电变压器包括:
压电层(6),作为射频压电变压器的谐振主体;
位于谐振主体下方的空腔,由刻蚀开孔一(5a)和刻蚀开孔二(5b)为形成该空腔提供刻蚀槽;
分别固定在压电层(6)上、下表面的变压器上电极及变压器下电极,变压器下电极均为接地电极,同一极性的变压器上电极或变压器下电极根部相通,变压器上电极及变压器下电极被用作变压器输入电极及变压器输出电极,用于激发谐振模态并输出调制频率,电极(15)与部分变压器下电极相连,将输入端引出;
压电层(6)上刻蚀形成的通孔一(3),用于将作为变压器输入电极使用的变压器下电极引出;
微机电谐振开关包括:
形成有开关悬臂结构(7)的压电层(6),开关悬臂结构(7)通过刻蚀牺牲层(19)形成;
位于压电层(6)上的通孔(14),为刻蚀牺牲层(19)提供刻蚀槽;
带有金属触点(9)的金属开关悬臂(8),金属开关悬臂(8)固定在开关悬臂结构(7)上,金属触点(9)为微机电谐振开关的栅极,位于金属开关悬臂(8)自由端的顶部;
位于压电层(6)的金属走线(12a、12b),金属走线(12a、12b)位于金属触点(9)的下方,分别与电源及负载电容相连;
固定在压电层(6)上的金属电极一(11)及金属电极二(16),金属电极一(11)接地,射频压电变压器的作为变压器输出电极使用的变压器下电极与金属电极二(16)相连;
压电层(6)上刻蚀形成的通孔(10),金属电极二(16)通过通孔(10)与微机电谐振开关的栅极相连;
压电层(6)上刻蚀形成的通孔二(13),用于将金属走线(12a、12b)引出。
2.如权利要求1所述的一种用于零功耗的无线信号唤醒接收的基于压电材料的微机电系统的无线信号唤醒接收器,其特征在于,所述压电层(6)包括固定于所述硅衬底(4)上的较薄的初始压电层和沉积在初始压电层上的较厚的结构压电层。
3.如权利要求1所述的一种用于零功耗的无线信号唤醒接收的基于压电材料的微机电系统的无线信号唤醒接收器,其特征在于,所述压电层(6)与所述硅衬底(4)之间有隔离层(18)。
4.如权利要求1所述的一种用于零功耗的无线信号唤醒接收的基于压电材料的微机电系统的无线信号唤醒接收器,其特征在于,所述压电层(6)的材质为掺杂氮化铝、氮化铝、铌酸锂、钽酸锂或锆钛酸铅。
5.如权利要求1所述的一种用于零功耗的无线信号唤醒接收的基于压电材料的微机电系统的无线信号唤醒接收器,其特征在于,所述变压器上电极、所述变压器下电极、所述金属电极一(11)及所述金属电极二(16)的材质均为金属材料。
6.使用二维兰姆波谐振模态或横向谐振模态的如权利要求1-5中任一项所述的基于压电材料的微机电系统的无线信号唤醒接收器的制备方法,其特征在于,包括以下步骤:
步骤1):在硅衬底(4)沉积所述变压器下电极、所述电极及所述金属电极二(16)并图形化电极;在所述变压器下电极及所述金属电极二(16)上方沉积第一层较薄的压电薄膜作为射频压电变压器和微机电谐振开关的初始压电层;
步骤2):刻蚀初始压电层,形成所述通孔(10);在初始压电层上沉积金属并图形化金属形成所述金属电极一(11)和所述金属走线(12a、12b);
步骤3):在初始压电层、金属电极一(11)和金属走线(12a、12b)上方沉积牺牲层(19),并刻蚀出浅槽来确定微机电谐振开关的接触点及接触间隔;
步骤4):图形化牺牲层(19),定义所述开关悬臂结构(7)的尺寸;
步骤5):在图形化后的牺牲层(19)上沉积金属并图形化金属,形成所述金属开关悬臂(8);
步骤6):沉积第二层较厚的压电薄膜作为射频压电变压器和微机电谐振开关的结构压电层;
步骤7):刻蚀初始压电层及结构压电层,形成所述通孔一(3)及所述通孔二(13);
步骤8):在压电层(6)上方沉积金属并图形化金属,形成所述变压器上电极;
步骤9):刻蚀压电层(6)形成定义器件的边界的刻蚀开孔一(5a)和刻蚀开孔二(5b),并形成通孔(14),刻蚀开孔一(5a)、刻蚀开孔二(5b)及通孔(14)为刻蚀牺牲层的槽;
步骤10):使用各向同性刻蚀对硅衬底(4)进行刻蚀,形成位于射频压电变压器下方的空腔;再使用各向同性刻蚀对牺牲层(19)进行刻蚀,形成微机电谐振开关结构,即获得如权利要求1-5中任一项所述的微机电无线信号唤醒接收器;
步骤11):对步骤10获得的器件进行封装(17)。
7.使用二维兰姆波谐振模态或横向谐振模态的如权利要求1-5中任一项所述的基于压电材料的微机电系统的无线信号唤醒接收器的制备方法,其特征在于,包括以下步骤:
步骤1):在硅衬底(4)沉积隔离层(18),在隔离层(18)上沉积并图形化所述通孔(10)的金属连接线、所述金属电极一(11)和所述金属走线(12a、12b);
步骤2):沉积牺牲层(19),刻蚀牺牲层(19)形成所述通孔(10)和形成所述金属触点(9)的浅槽;
步骤3):沉积并图形化下所述变压器下电极、所述电极及所述金属开关悬臂(8);
步骤4):沉积压电薄膜作为射频压电变压器和微机电谐振开关的压电层(6);
步骤5):刻蚀压电层(6),形成所述通孔一(3)及所述通孔二(13);
步骤6):沉积金属并图形化所述变压器上电极和所述通孔一(3)及所述通孔二(13)的金属连接线;
步骤7):刻蚀压电层(6),形成所述刻蚀开孔一(5a)、所述刻蚀开孔二(5b)及所述通孔(14);
步骤8):使用各向同性刻蚀对牺牲层(19)进行刻蚀,形成位于射频压电变压器下方的空腔和所述开关悬臂结构(7),即如权利要求1-5中任一项所述的微机电无线信号唤醒接收器;
步骤9):对步骤8获得的器件进行封装(17)。
CN202010608952.7A 2020-06-30 2020-06-30 微机电无线信号唤醒接收器及其制备方法 Active CN111934635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010608952.7A CN111934635B (zh) 2020-06-30 2020-06-30 微机电无线信号唤醒接收器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010608952.7A CN111934635B (zh) 2020-06-30 2020-06-30 微机电无线信号唤醒接收器及其制备方法

Publications (2)

Publication Number Publication Date
CN111934635A true CN111934635A (zh) 2020-11-13
CN111934635B CN111934635B (zh) 2024-03-01

Family

ID=73316843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010608952.7A Active CN111934635B (zh) 2020-06-30 2020-06-30 微机电无线信号唤醒接收器及其制备方法

Country Status (1)

Country Link
CN (1) CN111934635B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825665A (zh) * 2022-05-19 2022-07-29 东南大学 一种近零功耗rf mems传感唤醒系统
CN114825665B (zh) * 2022-05-19 2024-06-07 东南大学 一种近零功耗rf mems传感唤醒系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864951A1 (fr) * 2004-01-14 2005-07-15 Suisse Electronique Microtech Dispositif de type microsysteme electromecanique a film mince piezoelectrique
US20130214877A1 (en) * 2012-02-21 2013-08-22 International Business Machines Corporation Switchable filters and design structures
WO2017172059A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Piezoelectric package-integrated switching devices
CN108281363A (zh) * 2018-01-17 2018-07-13 上海科技大学 一种低成本的压电谐振器/传感器封装工艺方法
CN110166012A (zh) * 2019-05-15 2019-08-23 上海科技大学 二维耦合的射频压电谐振器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864951A1 (fr) * 2004-01-14 2005-07-15 Suisse Electronique Microtech Dispositif de type microsysteme electromecanique a film mince piezoelectrique
US20130214877A1 (en) * 2012-02-21 2013-08-22 International Business Machines Corporation Switchable filters and design structures
WO2017172059A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Piezoelectric package-integrated switching devices
CN108281363A (zh) * 2018-01-17 2018-07-13 上海科技大学 一种低成本的压电谐振器/传感器封装工艺方法
CN110166012A (zh) * 2019-05-15 2019-08-23 上海科技大学 二维耦合的射频压电谐振器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔡金标;吴涛;陈勇;: "基于压电阻抗技术监测混凝土强度发展的实验研究" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825665A (zh) * 2022-05-19 2022-07-29 东南大学 一种近零功耗rf mems传感唤醒系统
CN114825665B (zh) * 2022-05-19 2024-06-07 东南大学 一种近零功耗rf mems传感唤醒系统

Also Published As

Publication number Publication date
CN111934635B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US7005946B2 (en) MEMS piezoelectric longitudinal mode resonator
US10263598B2 (en) Acoustic resonator and method of manufacturing the same
US7023065B2 (en) Capacitive resonators and methods of fabrication
US6909221B2 (en) Piezoelectric on semiconductor-on-insulator microelectromechanical resonators
US7215061B2 (en) Micromechanical electrostatic resonator
EP1742356B1 (en) Electromechanical filter
US7671427B2 (en) Method of manufacturing film bulk acoustic resonator using internal stress of metallic film and resonator manufactured thereby
KR100787233B1 (ko) 집적 소자 및 그 제조 방법
EP1777816A1 (en) MEMS resonator and method of enhancing an output signal current from a MEMS resonator
KR20050088207A (ko) 음향 검출 기구
Song et al. Spurious mode suppression in SH0 lithium niobate laterally vibrating MEMS resonators
US6894586B2 (en) Radial bulk annular resonator using MEMS technology
CN213602620U (zh) 微机电系统谐振器设备和谐振器结构
JP2011135576A (ja) エレクトレットを備える音響共振器、および前記共振器を製造する方法、切り替え可能な結合共振器フィルターへの応用
CN103414446A (zh) 薄膜体声波谐振器及其制备方法
US9077060B2 (en) Microelectromechanical system (MEMS) resonant switches and applications for power converters and amplifiers
JP4458081B2 (ja) フラップ振動子およびフラップ振動子を含む集積回路
EP1610459A1 (en) Mechanical resonator
Hung et al. Capacitive-piezo transducers for higher Q contour-mode AlN resonators at 1.2 GHz
US8246846B1 (en) Method for fabricating integrated MEMS switches and filters
CN111934635B (zh) 微机电无线信号唤醒接收器及其制备方法
JP2005167546A (ja) 電気機械フィルタ
JP5225840B2 (ja) 振動子、これを用いた共振器およびこれを用いた電気機械フィルタ
US8268660B2 (en) Process for fabricating micromachine
US9017561B2 (en) Piezo-resistive MEMS resonator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant