CN111934019A - 一种动力软包聚合物锂离子电池快速化成方法 - Google Patents

一种动力软包聚合物锂离子电池快速化成方法 Download PDF

Info

Publication number
CN111934019A
CN111934019A CN202010612313.8A CN202010612313A CN111934019A CN 111934019 A CN111934019 A CN 111934019A CN 202010612313 A CN202010612313 A CN 202010612313A CN 111934019 A CN111934019 A CN 111934019A
Authority
CN
China
Prior art keywords
pressure
battery
lithium ion
battery cell
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010612313.8A
Other languages
English (en)
Inventor
李海望
李埃荣
王军
蒲泉钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Keli'an New Energy Technology Co ltd
Ningbo New Strongteck Electrical Technology Shares Ltd
Original Assignee
Ningbo Keli'an New Energy Technology Co ltd
Ningbo New Strongteck Electrical Technology Shares Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Keli'an New Energy Technology Co ltd, Ningbo New Strongteck Electrical Technology Shares Ltd filed Critical Ningbo Keli'an New Energy Technology Co ltd
Priority to CN202010612313.8A priority Critical patent/CN111934019A/zh
Publication of CN111934019A publication Critical patent/CN111934019A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂电池技术领域,具体涉及一种动力软包聚合物锂离子电池快速化成方法。本发明先将注液后的电芯常温搁置1‑3h,再将电芯放入化成柜中,设置电芯的长度和宽度,对电芯施加梯度压力,以电流A0进行充放电循环,在温度T下搁置1‑2h;所述梯度压力设置为第一阶段压力P1=(25‑35%)×P3,第二阶段压力P2=(40‑75%)×P3,第三阶段压力为P3,其中P3=电芯面积×电芯数量×面压系数,所述面压系数为0.4‑0.7Mpa;温度T为40‑60℃;电流A0为0.5‑1C。本发明的化成方法不需要高温静置,通过梯度施压和大电流充电,确保电芯极片紧密贴合,形成均匀致密的SEI膜,提高电池的循环稳定性和安全性能,设备周转利用率高,相比于传统的化成工艺周期可缩短20‑30h,大大提高了工序效率。

Description

一种动力软包聚合物锂离子电池快速化成方法
技术领域
本发明属于锂电池技术领域,具体涉及一种动力软包聚合物锂离子电池快速化成方法。
背景技术
动力软包聚合物锂离子电池能量密度高、安全性好,且具有小型化、超薄化和轻量化的特征,可配合不同产品的需要,制成各种形状与容量的电池。随着电动汽车、储能设备、便携式电子产品、可移动设备等领域的技术发展,对动力锂电池的研究和应用也备受关注。
锂离子电池的制备通常都要经过化成工艺以激活电池,在使用过程中实现正常的充放电。通过对注液后的电芯进行小电流充放电,使电极活性材料与电解液在固液相界面发生反应,在负极表面形成一层固态电解质膜(SEI膜),允许锂离子自由通过实现嵌入和脱嵌,同时又可防止电解液进一步侵蚀电极,保证锂离子电池具有良好的循环稳定性和安全性,延长使用寿命。在化成中形成的SEI膜对电池的电化学性能起到重要作用,而其形成过程也受到多方面因素的影响,包括电极材料、电解液以及化成温度、化成压力、化成电流等参数。但由于化成工艺复杂,耗时长,条件参数控制不易控制,实际中往往导致成膜不稳定,均匀性差。因此,对于软包聚合物锂离子电池而言,化成过程中参数的设置至关重要,通过化成工艺的优化可得到致密均匀的SEI膜,可进一步保证锂电池的循环性能和稳定性。
传统的化成工艺需要先将注液后的电芯进行高温静置24-48h,然后电芯上柜,以梯度小电流进行充放电循环,化成时间通常需要6-10h,总生产周期过长,且设备需长期运行,能耗高,成本大,易造成资源浪费,且形成的SEI膜质量难以保证,影响电池的性能。公开号为CN110970678A的中国专利申请公开了一种提高聚合物锂离子电池性能的快速化成分容方法,先将注液后的电池在45-65℃环境下静置12-36h;再对电池进行化成,对电芯表面施加10-15kg/cm2的压力,同时使电芯处于80-90℃恒定温度中,采用阶梯式化成流程对电池进行充电;化成后静置10-30min,同时对电芯表面施加5-8kg/cm2的压力,使电芯处于25-35℃的恒定温度中;最后在分容流程下对电池进行容量测试。可见该方案中的化成步骤仍然较为复杂,化成所需温度要求高且静置时间长,实际总生产周期仍然较长,工序效率过低,且不利于节能。
发明内容
本发明的目的是针对上述技术问题,提供一种不需高温静置、操作简单、工序效率高的动力软包聚合物锂离子电池快速化成方法,该方法比传统的化成时间缩短20-30h,还可实现节能降耗。
本发明的上述目的通过以下技术方案得以实施:
一种动力软包聚合物锂离子电池快速化成方法,包括如下步骤:先将注液后的电芯常温搁置1-3h,再将电芯放入化成柜中,设置电芯的长度和宽度、电芯数量、面压系数及化成温度,升温后对电芯施加梯度压力,恒流充电至截止电压,取出电芯,即结束化成。
优选地,本发明的化成方法中从开始升温到取出电芯的总时长为1-2h。
本申请中,注液后的电芯经常温搁置1-3h和高温化成1-2h后,即可直接排气封装,总时长不超过5h,而传统的化成工艺往往需要耗时数十个小时,严重影响工序效率。相比之下,本发明的化成方法所用时长比传统方法缩短20-30个小时,既提高了设备周转效率,又可节能降耗,减少成本,大大增加了生产效益。
本发明的化成方法不需要高温静置,直接将电芯装入周转盒,在常温下与水平面呈30-60°搁置,既可以促使电芯极片和隔膜快速、均匀地浸润电解液,在短时间内实现充分浸润,又不需要控温,减少资源浪费和能源消耗,提高设备周转利用率。
进一步优选,本发明所述常温搁置为将电芯装入周转盒,在常温下呈与水平面呈45°搁置。
优选地,本发明所述梯度压力的设置具体为:
第一阶段在电芯表面施加压力P1,施压时间为t1
第二阶段在电芯表面施加压力P2,施压时间为t2
第三阶段在电芯表面施加压力P3,施压时间为t3
所述梯度压力的设置与总压力P满足如下关系:P1=(25%~35%)×P,P2=(40%~75%)×P,P3=100%×P;
其中,总压力P=电芯面积×电芯数量×面压系数。
优选地,本发明所述面压系数(L)为0.4~0.7MPa。
本发明所述面压系数是指对电芯表面单位面积施加的压力。由于软包电池在化成过程中会产生气体,加大正极、隔膜、负极间的距离,阻碍锂离子的传输以及电解液与正负极的接触,增大阻抗,影响电池容量和充放电性能。在化成过程中施加一定压力有助于排气,使正极、负极、隔膜贴合更紧密,电解液浸润更充分,同时避免负极片产生析锂现象。本发明的化成工艺采用梯度施压的方式,根据电芯的面积尺寸、数量和面压系数,设置压力逐渐由小增大,使电芯内极片和隔膜在三个阶段不同压力下更好地浸透聚合物电解液,形成更加均匀、稳定的SEI膜。其中总压力P还与面压系数相关,而第一和第二阶段的压力又与P满足一定的比例关系,从而可根据不同电芯规格和面压系数调整压力大小,保证实际化成过程中形成的SEI膜的质量以及电池的电性能,有效提高倍率放电性能和循环寿命。但如果施加压力过大,会破坏极片,直接影响电芯负极的成膜质量,反而导致电性能下降。
进一步优选,本发明所述梯度压力的设置满足P1=30%×P,P2=50%×P。
进一步优选,本发明所述面压系数L为0.6MPa。
优选地,上述第一阶段的施压时间t1=1-3min。
优选地,上述第二阶段的施压时间t2=1-10min。
优选地,上述第三阶段的施压时间t1=1-3min。
优选地,本发明所述化成温度为40-60℃。
优选地,本发明所述恒流充电的电流为0.5~1C,截止电压为3.6~4.2V。
传统化成方法多为采用小电流预充方式,但长时间的小电流充电会导致形成的SEI膜阻抗增大,影响电池的循环和倍率性能。化成时间长短也会影响电池SEI膜的形成,由于充电可使电池内部电压升高并产生气体,而当产气速率高于注液孔的排气速率时,气体就会在电池内部隔膜间聚集,从而影响负极表面SEI膜的形成,因此化成中充电电流和时间对成膜质量有着重要影响。本发明中电芯经过常温30-60°角度搁置和梯度施压后,采用较大电流直接充电至截止电压,在2h内完成化成充电,大大缩短了化成时间,提高效率,同时有利于提高SEI膜的稳定性。
优选地,本发明中锂离子电池的正极活性材料包括但不限于磷酸铁锂、锰酸锂、三元活性材料中的一种或多种;负极活性材料包括但不限于天然石墨、人造石墨、石墨化碳纤维、中间相碳微珠、无定形碳材料中的一种或多种。
进一步优选,当以磷酸铁锂为正极活性材料时,化成中充电截止电压为3.6V;当以三元材料或锰酸锂为正极活性材料时,化成中充电截止电压为4.2V。
本发明与现有技术相比具有如下有益效果:
1、本发明的化成方法不需要高温静置,在上柜前只需常温搁置即能使电极材料快速、充分浸润电解液,操作简单、设备周转利用率高,还可实现节能降耗的目标。
2、本发明在电芯化成过程中施加由小加大的梯度压力,并根据电芯的实际尺寸、数量和面压系数设置压力,确保电芯极片紧密贴合,形成均匀、致密的SEI膜,提高电池的电性能和安全性能。
3、本发明采用了常温搁置和梯度施压的方式,并经过大电流恒流充电,促使化成过程化成过程中产生的气体排出,在保证电解液充分浸润的同时避免极化现象对锂离子传输的影响,提高SEI膜的致密度和稳定性,有利于制得内阻低、循环寿命长、稳定性好的动力电池。
4、本发明的化成工艺总时长不超过5h,相比于传统的化成工艺,周期可缩短20-30h,大大提高了工序效率,降低能耗和成本,增大生产效益。
附图说明
图1为实施例1和对比例1以1C/1C进行充放电的循环性能图。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步描述说明。如果无特殊说明,本发明的实施例中所采用的原料均为本领域常用的原料,实施例中所采用的方法均为本领域的常规方法。
实施例1
本实施例提供一种动力软包聚合物锂离子电池快速化成方法,其中锂离子电池的正极活性材料为磷酸铁锂,负极活性材料为人造石墨,导电剂为导电炭黑和碳纳米管(质量比1:1)混合的复配导电剂,粘结剂为PVDF,电解质为含LiPF6的有机电解液,溶剂为DMC、DEC、EMC和EP(体积比1:1:1:1)的混合物。本实施例先将正负极材料制成电芯,再进行注液、化成、分容制得动力电池,所述化成具体包括如下步骤:
1)取烘干的聚合物锂离子电池电芯I,注液后放入周转盒中,将电芯与水平面呈45°常温搁置2h;
2)将电芯放入化成柜中,输入电芯的尺寸(长×宽×厚=192.0mm×65.0mm×8.8mm)、电芯个数(10)以及面压系数0.6MPa;升温至45℃;
3)对电芯施加梯度压力,具体为:
第一阶段压力P1为224.6MPa,施压时间为2min;
第二阶段压力P2为374.4MPa,施压时间为5min;
第三阶段压力P3为748.8MPa,施压时间为3min;
4)再以0.6C恒流充电至截止电压3.6V,充电时间为65min;
5)充电完成后取出,结束化成。
实施例2
本实施例提供一种动力软包聚合物锂离子电池快速化成方法,其中锂离子电池的正极活性材料为镍钴锰酸锂三元材料,负极活性材料、导电剂、粘结剂、电解液均与实施例1相同。本实施例先将正负极材料制成电芯,再进行注液、化成、分容制得动力电池,所述化成具体包括如下步骤:
1)取烘干的聚合物锂离子电池电芯I,注液后放入周转盒中,将电芯与水平面呈45°常温搁置2h;
2)将电芯放入化成柜中,输入电芯的尺寸(长×宽×厚=192.0mm×65.0mm×8.8mm)、电芯个数(10)以及面压系数0.6MPa;升温至50℃;
3)对电芯施加梯度压力,具体为:
第一阶段压力P1为224.6MPa,施压时间为2min;
第二阶段压力P2为374.4MPa,施压时间为5min;
第三阶段压力P3为748.8MPa,施压时间为3min;
4)再以1C恒流充电至截止电压4.2V,充电时间为60min;
5)充电完成后取出,结束化成。
实施例3
本实施例提供一种动力软包聚合物锂离子电池快速化成方法,其中锂离子电池的正极活性材料为锰酸锂,负极活性材料、导电剂、粘结剂、电解液均与实施例1相同。本实施例先将正负极材料制成电芯,再进行注液、化成、分容制得动力电池,所述化成具体包括如下步骤:
1)取烘干的聚合物锂离子电池电芯I,注液后放入周转盒中,将电芯与水平面呈45°常温搁置2h;
2)将电芯放入化成柜中,输入电芯的尺寸(长×宽×厚=192.0mm×65.0mm×8.8mm)、电芯个数(10)以及面压系数0.6MPa;升温至50℃;
3)对电芯施加梯度压力,具体为:
第一阶段压力P1为224.6MPa,施压时间为2min;
第二阶段压力P2为374.4MPa,施压时间为6min;
第三阶段压力P3为748.8MPa,施压时间为3min;
4)再以1C恒流充电至截止电压4.2V,充电时间为60min;
5)充电完成后取出,结束化成。
实施例4
本实施例提供一种动力软包聚合物锂离子电池快速化成方法,所用材料与实施例1相同,此处不再赘述。其中化成具体包括如下步骤:
1)取烘干的聚合物锂离子电池电芯II,注液后放入周转盒中,将电芯与水平面呈45°常温搁置2h;
2)将电芯放入化成柜中,输入电芯的尺寸(长×宽×厚=102.0mm×57.0mm×9.8mm)、电芯个数(10)以及面压系数0.5MPa;升温至45℃;
3)对电芯施加梯度压力,具体为:
第一阶段压力P1为96.9MPa,施压时间为3min;
第二阶段压力P2为145.3MPa,施压时间为10min;
第三阶段压力P3为290.7MPa,施压时间为5min;
4)再以0.6C恒流充电至截止电压3.6V,充电时间为78min;
5)充电完成后取出,结束化成。
实施例5
本实施例提供一种动力软包聚合物锂离子电池快速化成方法,所用材料与实施例1相同,此处不再赘述。其中化成具体包括如下步骤:
1)取烘干的聚合物锂离子电池电芯I,注液后放入周转盒中,将电芯与水平面呈30°常温搁置1.5h;
2)将电芯放入化成柜中,输入电芯的尺寸(长×宽×厚=192.0mm×65.0mm×8.8mm)、电芯个数(10)以及面压系数0.4MPa;升温至60℃;
3)对电芯施加梯度压力,具体为:
第一阶段压力P1为174.7MPa,施压时间为1min;
第二阶段压力P2为299.5MPa,施压时间为6min;
第三阶段压力P3为499.2MPa,施压时间为3min;
4)再以0.5C恒流充电至截止电压3.6V,充电时间为95min;
5)充电完成后取出,结束化成。
对比例1
对比例1提供一种动力软包聚合物锂离子电池的化成方法,所用材料与实施例1相同,此处不再赘述。其中化成具体包括如下步骤:
1)取烘干的聚合物锂离子电池电芯I,注液后放入周转盒中,将电芯与水平面呈45°常温搁置2h;
2)将电芯放入化成柜中,输入电芯的尺寸(长×宽×厚=192.0mm×65.0mm×8.8mm)、电芯个数(10)以及面压系数0.6MPa;升温至45℃;
3)对电芯施加748.8MPa压力;
4)再以0.6C恒流充电至截止电压3.6V,充电时间为65min;
5)充电完成后取出,结束化成。
对比例2
对比例2提供一种动力软包聚合物锂离子电池的化成方法,所用材料与实施例1相同,此处不再赘述。其中化成具体包括如下步骤:
1)取烘干的聚合物锂离子电池电芯I,注液后放入周转盒中,将电芯与水平面呈45°常温搁置2h;
2)将电芯放入化成柜中,输入电芯的尺寸(长×宽×厚=192.0mm×65.0mm×8.8mm)、电芯个数(10)以及面压系数0.6MPa;升温至45℃;
3)对电芯施加224.6MPa压力;
4)再以0.6C恒流充电至截止电压3.6V,充电时间为65min;
5)充电完成后取出,结束化成。
对比例3
对比例3提供一种动力软包聚合物锂离子电池的化成方法,所用材料与实施例1相同,此处不再赘述。其中化成具体包括如下步骤:
1)取烘干的聚合物锂离子电池电芯I,注液后放入周转盒中,将电芯与水平面呈45°常温搁置2h;
2)将电芯放入化成柜中,输入电芯的尺寸(长×宽×厚=192.0mm×65.0mm×8.8mm)、电芯个数(10)以及面压系数0.6MPa;升温至45℃;
3)对电芯施加梯度压力,具体为:
第一阶段压力P1为224.6MPa,施压时间为2min;
第二阶段压力P2为374.4MPa,施压时间为5min;
第三阶段压力P3为748.8MPa,施压时间为3min;
4)进行恒流充电,先以0.05C恒流充电60min,再以0.1C恒流充电120min,接着以0.2C恒流充电180min;
5)充电完成后取出,结束化成。
对比例4
对比例4中动力软包聚合物锂离子电池的化成方法与实施例1的区别仅在于步骤1)中常温搁置为将电芯在常温下水平搁置24h,其余步骤和参数均与实施例1相同。
分别对以上实施例1-5和对比例1-4制得的软包聚合物锂离子电池的循环性能进行测试,以1C/1C进行充放电循环,放电截止电压为2.5V,充电截止电压为3.65V,同时测定电芯内阻和电池容量,性能测试结果如表1所示。
表1实施例1-5和对比例1-4锂离子电池性能测试结果
测试项目 电容量/Ah 内阻/mΩ 1000周循环容量保持率/%
实施例1 20.1 1.52 88.3
实施例2 21.8 1.35 92.1
实施例3 18.9 1.69 89.5
实施例4 18.5 1.40 88.6
实施例5 19.3 1.81 89.0
对比例1 17.6 3.95 86.9
对比例2 16.9 4.12 80.5
对比例3 18.2 3.26 86.2
对比例4 17.9 2.99 87.4
根据上述测试结果可知,本发明方法制得的软包电池在常温下循环1000次的容量保持率可达到88%以上,而对比例1-3的容量保持率均明显低于实施例1。对比例1-2未采用梯度压力,形成的SEI膜质量较差、性能不稳定,导致所得电池的内阻偏高。对比例3中采用小电流分阶段进行充电,充电时间较长,导致电芯内阻增大,从而进一步影响了电池的循环性能。尽管对比例4循环性能接近于实施例1,但该方法由于电芯为水平搁置,需花费更长时间以使极片充分浸润电解液,也会影响SEI膜的质量,增大内阻,相比本发明的方法效率大大降低,也不利于实现节能降耗。
图1为实施例1和对比例1的循环性能图,可见本发明采用常温搁置、梯度施压和大电流充电的方法比常规方法制得的电池循环性能更好,且本发明的化成工艺所用时间相比常规方法可缩短20-30h,大大提高工序效率。
以上实施例对本发明要求保护的技术方案参数范围内点值未穷尽之处以及在实施例技术方案中对单个或者多个技术特征的同等替换形成的新的技术方案,同样都在本发明要求的保护范围内,并且本发明方案所有涉及的参数间如无特别说明,则相互之间不存在不可替换的唯一组合。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明,并不用于限定本发明的保护范围。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

1.一种动力软包聚合物锂离子电池快速化成方法,其特征在于,包括如下步骤:先将注液后的电芯常温搁置1-3h,再将电芯放入化成柜中,设置电芯的长度和宽度、电芯数量、面压系数及化成温度,升温后对电芯施加梯度压力,恒流充电至截止电压,取出电芯,即结束化成。
2.根据权利要求1所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,所述常温搁置具体为将电芯在常温下与水平面呈30-60°搁置。
3.根据权利要求1所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,从升温到取出电芯的总时长为1-2h。
4.根据权利要求1所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,所述梯度压力的设置具体为:
第一阶段在电芯表面施加压力P1,施压时间为t1
第二阶段在电芯表面施加压力P2,施压时间为t2
第三阶段在电芯表面施加压力P3,施压时间为t3
所述梯度压力的设置与总压力P满足如下关系:P1=(25%~35%)×P,P2=(40%~75%)×P,P3=100%×P;
其中,总压力P=电芯面积×电芯数量×面压系数。
5.根据权利要求4所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,所述面压系数为0.4~0.7MPa。
6.根据权利要求4所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,t1=1-3min。
7.根据权利要求4所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,t2=1-10min。
8.根据权利要求4所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,t3=1-3min。
9.根据权利要求1所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,所述化成温度为40-60℃。
10.根据权利要求1所述的动力软包聚合物锂离子电池快速化成方法,其特征在于,所述恒流充电的电流为0.5~1C,截止电压为3.6~4.2V。
CN202010612313.8A 2020-06-29 2020-06-29 一种动力软包聚合物锂离子电池快速化成方法 Pending CN111934019A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010612313.8A CN111934019A (zh) 2020-06-29 2020-06-29 一种动力软包聚合物锂离子电池快速化成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010612313.8A CN111934019A (zh) 2020-06-29 2020-06-29 一种动力软包聚合物锂离子电池快速化成方法

Publications (1)

Publication Number Publication Date
CN111934019A true CN111934019A (zh) 2020-11-13

Family

ID=73317686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010612313.8A Pending CN111934019A (zh) 2020-06-29 2020-06-29 一种动力软包聚合物锂离子电池快速化成方法

Country Status (1)

Country Link
CN (1) CN111934019A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820945A (zh) * 2021-01-18 2021-05-18 贵州扬德新能源科技有限公司 一种提升聚合物锂离子电池保液系数的方式
CN113193236A (zh) * 2021-05-06 2021-07-30 合肥国轩高科动力能源有限公司 锂离子电池浸润化成方法
CN113363422A (zh) * 2021-03-31 2021-09-07 万向一二三股份公司 一种低负极膨胀、长循环的锂离子电池制备方法及锂离子电池
CN113675487A (zh) * 2021-06-28 2021-11-19 宁波维科电池有限公司 一种聚合物电芯的化成加压方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740816A (zh) * 2009-12-24 2010-06-16 苏州星恒电源有限公司 一种以钛酸锂为负极的锂离子二次电池化成方法
US20110206997A1 (en) * 2007-12-17 2011-08-25 Lg Chem Ltd Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
CN203536532U (zh) * 2013-11-25 2014-04-09 贵州航天电源科技有限公司 快速高效提升锂离子电池搁置的装置
CN106684457A (zh) * 2017-01-18 2017-05-17 合肥国轩高科动力能源有限公司 一种高电压锂离子软包电池的化成方法
CN107425198A (zh) * 2017-07-28 2017-12-01 深圳市博澳能源技术开发有限公司 单体超大容量的聚合物锂离子电池及其制造方法
CN107437606A (zh) * 2017-07-28 2017-12-05 深圳市博澳能源技术开发有限公司 一种单体大容量聚合物锂离子电池的注液方法
CN107565170A (zh) * 2017-08-24 2018-01-09 中国科学院宁波材料技术与工程研究所 一种锂离子电池的化成方法
CN109390640A (zh) * 2017-08-08 2019-02-26 深圳格林德能源有限公司 一种聚合物锂离子电池用充电容量筛选容量的工艺
CN110323481A (zh) * 2019-04-29 2019-10-11 宜宾茂泰业科技股份有限公司 一种高倍率软包电池的热压化成方法
CN210607503U (zh) * 2019-11-06 2020-05-22 深圳市信宇人科技股份有限公司 锂电池陈化承载盘

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206997A1 (en) * 2007-12-17 2011-08-25 Lg Chem Ltd Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
CN101740816A (zh) * 2009-12-24 2010-06-16 苏州星恒电源有限公司 一种以钛酸锂为负极的锂离子二次电池化成方法
CN203536532U (zh) * 2013-11-25 2014-04-09 贵州航天电源科技有限公司 快速高效提升锂离子电池搁置的装置
CN106684457A (zh) * 2017-01-18 2017-05-17 合肥国轩高科动力能源有限公司 一种高电压锂离子软包电池的化成方法
CN107425198A (zh) * 2017-07-28 2017-12-01 深圳市博澳能源技术开发有限公司 单体超大容量的聚合物锂离子电池及其制造方法
CN107437606A (zh) * 2017-07-28 2017-12-05 深圳市博澳能源技术开发有限公司 一种单体大容量聚合物锂离子电池的注液方法
CN109390640A (zh) * 2017-08-08 2019-02-26 深圳格林德能源有限公司 一种聚合物锂离子电池用充电容量筛选容量的工艺
CN107565170A (zh) * 2017-08-24 2018-01-09 中国科学院宁波材料技术与工程研究所 一种锂离子电池的化成方法
CN110323481A (zh) * 2019-04-29 2019-10-11 宜宾茂泰业科技股份有限公司 一种高倍率软包电池的热压化成方法
CN210607503U (zh) * 2019-11-06 2020-05-22 深圳市信宇人科技股份有限公司 锂电池陈化承载盘

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820945A (zh) * 2021-01-18 2021-05-18 贵州扬德新能源科技有限公司 一种提升聚合物锂离子电池保液系数的方式
CN113363422A (zh) * 2021-03-31 2021-09-07 万向一二三股份公司 一种低负极膨胀、长循环的锂离子电池制备方法及锂离子电池
CN113193236A (zh) * 2021-05-06 2021-07-30 合肥国轩高科动力能源有限公司 锂离子电池浸润化成方法
CN113675487A (zh) * 2021-06-28 2021-11-19 宁波维科电池有限公司 一种聚合物电芯的化成加压方法及系统

Similar Documents

Publication Publication Date Title
CN108598581B (zh) 一种软包锂离子电池的化成方法
CN111934019A (zh) 一种动力软包聚合物锂离子电池快速化成方法
JP7076495B2 (ja) 使用済み電池の迅速なグループ化と修復方法
CN109888290B (zh) 一种高倍率锂离子电池、陈化及化成方法
CN106785052B (zh) 一种钛酸锂电池的化成方法
CN104810557B (zh) 一种锂离子电池的制备方法
CN111769332B (zh) 一种预锂电池的化成方法及预锂化锂离子电池
CN109216809B (zh) 一种聚合物锂离子电池压力化成工艺
CN110854458A (zh) 一种高压软包锂离子电池的化成方法
CN113078363A (zh) 一种提升锂离子电池循环寿命的方法
CN107579301B (zh) 一种磷酸铁锂动力电池的化成工艺
CN115566170A (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
CN111682272A (zh) 锂离子电池化成方法及锂离子电池
CN112952226A (zh) 高压锂离子电池的化成方法及高压锂离子电池
CN112290104B (zh) 一种锂离子电池高温负压化成方法
CN108400396A (zh) 一种提高锂离子电池的首次充放电比容量及首效的方法
CN102270775B (zh) 一种锂离子电池的预充方法
CN115498287A (zh) 一种预嵌锂石墨负极极片及其制备方法和应用
CN114784401A (zh) 一种长循环寿命锂离子电池及一种延长锂离子电池循环寿命的方法
CN111162333B (zh) 方型功率型动力类锂离子电池预充电排气方法
CN111948554B (zh) 一种降低锂离子电池力学退化的方法
CN115775958A (zh) 一种锂离子电池的注液方法及用途
CN113161636A (zh) 一种磷酸铁锂电池的低温充电技术
CN109390634A (zh) 一种提高负极sei高温稳定性的快速化成方法
CN113964293B (zh) 一种循环稳定快充型锂离子电池负极及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination