CN111910155B - 一种薄膜材料的改性方法及改性薄膜材料 - Google Patents
一种薄膜材料的改性方法及改性薄膜材料 Download PDFInfo
- Publication number
- CN111910155B CN111910155B CN202010611122.XA CN202010611122A CN111910155B CN 111910155 B CN111910155 B CN 111910155B CN 202010611122 A CN202010611122 A CN 202010611122A CN 111910155 B CN111910155 B CN 111910155B
- Authority
- CN
- China
- Prior art keywords
- film
- film material
- hydrogen
- surface treatment
- hydrogen ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种薄膜材料的改性方法及改性薄膜材料,其包括在薄膜的至少一个表面蒸镀上纳米贵金属层,获得表面处理材料;对表面处理材料注入氢离子。本发明对薄膜材料通氢气热处理前进行贵金属蒸镀,使得薄膜材料表面的贵金属能够对氢离子获得更好吸附,使得氢离子可以注入薄膜材料中,从而实现对薄膜材料的改性。
Description
技术领域
本发明属于薄膜材料技术领域,尤其涉及一种薄膜材料的改性方法及改性薄膜材料。
背景技术
氢离子掺杂涉及到氢离子注入材料中的方法,通过氢离子掺杂可以实现新的物相以及调控材料新物性。近年来,通过氢掺杂获得材料新物相和新物性的方法得到研究人员的广泛关注。例如,通过对VO2薄膜注入氢离子可以用于制作高灵敏的红外探测器,对超晶格材料注入氢离子可以实现其结构相变、磁性和电学性质的调控,通过氢离子的注入还可以用于调控超导材料的超导转变温度。此外,通过注入氢离子对薄膜材料实现电学性质的调控使其在半导体器件领域也有广泛的应用,可以用于制作纳米级薄膜晶体管。因此,本发明针对材料的氢离子可控注入无论对前沿基础科学研究,还是工业界实际应用都具有重要意义。
目前,针对薄膜的氢离子注入方法有以下几种:(1)离子液体注入,通过离子液体施加电场把氢离子注入到薄膜中;(2)等离子体氢注入,在真空中将气体注入真空室,通过射频放电使气体电离,并在等离子体和衬底之间施加电场,利用电场加速等离子体中的氢离子到衬底上实现氢离子注入薄膜中;(3)高温退火注入,即样品在氢气环境中进行高温退火处理,从而将氢离子注入到薄膜中。这些氢离子注入材料的方法,仍存在一些问题,例如,离子液体注入氢的方法,难以实现大面积的氢注入,而且离子液体还对薄膜存在污染的情况;等离子体氢注入由于采用高能离子的轰击,故对薄膜样品存在损伤;高温退火注入氢的方法,通常温度较高,不仅存在安全隐患而且氢离子注入效率低。因此急需发展一种相对安全高效的氢离子注入材料的方法,对于实现相关新材料的开发、新物性的探索以及半导体中薄膜晶体管的应用具有重要意义和价值。
发明内容
本发明目的在于提供一种薄膜材料的改性方法及改性薄膜材料,搞了氢离子注入的效率与安全性。
一种薄膜材料的改性方法,其包括以下步骤:
(1)在薄膜的至少一个表面蒸镀上纳米贵金属层,得表面处理材料;
(2)对表面处理材料注入氢离子。
进一步方案,步骤(1)中蒸镀为电子束蒸镀、磁控溅射蒸镀或化学蒸镀。
进一步方案,步骤(1)中所述薄膜为包括VO2、SrCoO2.5、WO3、NiO、EuO、TiO2;所述贵金属为金或铂。
进一步方案,步骤(2)中注入氢离子是将表面处理材料置于管式炉中,抽真空后向管式炉中通入氢气,同时对其进行加热退火处理。
优选方案是,所述表面处理材料是置于放置在管式炉中的衬底上的;所述衬底为Al2O3、SrTiO3、Si或TiO2。
进一步方案,抽真空后管式炉中的压力为10-3-10-1Pa。
所述氢气的体积浓度为1%-4%。
所述加热退火处理的温度为100-300℃。
本发明的另一个发明目的是提供一种经上述改性方法制备的改性薄膜材料。
本发明利用贵金属具有吸附气体的性质,特别是对氢气的吸附性能,在薄膜的至少一个表面蒸镀上纳米贵金属层,薄膜被敏化,氢离子可以获得更高的活性,从而使得氢离子注入到薄膜材料中。所以薄膜材料在热处理前蒸镀一层贵金属层,当对其热处理时通入的氢气则被吸附在贵金属层表面,通过热处理吸附的氢离子获得能量注入到薄膜材料中,从而实现薄膜的改性。
本发明的加热处理的温度为100-300℃,相对于现有技术中离子液体注入对薄膜存在污染(AIP Adv.5,037114(2015))、微波等离子注入需要高功率(Adv.Funct.Mater.29,1907072(2019)文献中使用了1800瓦)等方法而言,具有温度低,制备过程洁净、节能。
另外,由于本发明先在薄膜的表面蒸镀上纳米贵金属层,其对氢有较强的吸附能力,所以注入氢气的体积浓度低,只要1%-4%。
其次,空气中氢气的体积浓度在4.0%~75.6%之间时,遇火源时就会爆炸,而本发明中氢气的体积浓度为1%-4%,相对于大浓度而言,具有反应条件温和、更加安全。
附图说明
图1为本发明改性装置示意图,
图2为实施例2中有无贵金属层沉积的VO2薄膜热处理后的XRD图,
图3为对比例中存在贵金属沉积时VO2薄膜的热处理后的XRD图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1:
一种改性SrCoO2.5薄膜材料,其改性方法包括以下步骤:
(1)样品为SrCoO2.5薄膜,衬底为SrTiO3。在洁净的SrCoO2.5薄膜2的上表面上采用电子束蒸镀上纳米铂金属层1,得表面处理材料;
(2)将上述处理后的样品置于管式炉6中,管式炉6的一端开有入口4、另一端开有出口5,通过出口5抽真空,使管式炉中的压力为10-3Pa,然后通过入口4向管式炉6中通入体积浓度为1%的氢气,同时对其进行加热退火处理,其温度为100℃。得到改性SrCoO2.5薄膜。
实施例2:
在本实施例中,采用的样品为VO2薄膜样品,衬底为蓝宝石衬底(Al2O3),改性方法如下:
(1)将洁净的VO2薄膜样品利用磁控溅射在其上表面蒸镀上1纳米的金层,作为氢离子注入的敏化层;
(2)将上述蒸镀好的VO2薄膜样品放在管式炉中,并对管式炉进行抽真空至真空度为0.1Pa;
(3)向管式炉中通入体积浓度为4%的氢气;
(4)对VO2薄膜样品进行加热到120℃进行退火处理30mins,即得改性VO2薄膜。
分别对蒸镀有金层的VO2薄膜样品和最终制备的改性VO2薄膜进行XRD测试,如图2所示。
从XRD的测量结果可以看到VO2薄膜峰有了明显的移动,并且还含有HxVO2,说明VO2薄膜注入了氢离子且含有H元素,说明本申请在VO2薄膜样品的表面蒸镀上金层能促进氢离子的注入。
对比例:
在本对比例中,采用的样品为VO2薄膜样品,衬底为蓝宝石衬底(Al2O3),改性方法如下:
(1)将洁净的VO2薄膜样品放在管式炉中的蓝宝石衬底上,并对管式炉抽真空至真空度为0.1Pa;
(2)向管式炉中通入体积浓度为4%的氢气;
(3)对管式炉加热到120℃,然后进行退火处理30mins,即得改性VO2薄膜。
分别对VO2薄膜样品和制备的改性VO2薄膜进行XRD测试,如图3所示。从XRD的测量结果可以看到VO2薄膜峰没有任何移动,说明氢离子难以注入VO2薄膜中,因而VO2薄膜的晶格参数没有发生变化。
对比图2、3发现,本发明实施例中由于在VO2薄膜的表面蒸镀了金层,其有利于氢离子的注入。
显然,上述所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。因此,基于本发明中的实施例,本领域中的技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
Claims (7)
1.一种薄膜材料的改性方法,其特征在于:包括以下步骤:
(1)在薄膜的至少一个表面蒸镀上纳米贵金属层,得表面处理材料;
(2)对表面处理材料注入氢离子,其中注入氢离子是将表面处理材料置于管式炉中,抽真空后向管式炉中通入氢气,同时对其进行加热退火处理;所述氢气的体积浓度为1%-4%。
2.根据权利要求1的改性方法,其特征在于:步骤(1)中蒸镀为电子束蒸镀、磁控溅射蒸镀或化学蒸镀。
3.根据权利要求1的改性方法,其特征在于:步骤(1)中所述薄膜包括VO2、SrCoO2.5、WO3、NiO、EuO、TiO2;所述贵金属为金或铂。
4.根据权利要求1的改性方法,其特征在于:所述表面处理材料是置于放置在管式炉中的衬底上的;所述衬底为Al2O3、SrTiO3、Si或TiO2。
5.根据权利要求1的改性方法,其特征在于:抽真空后管式炉中的压力为10-3-10-1Pa。
6.根据权利要求1的改性方法,其特征在于:所述加热退火处理的温度为100-300℃。
7.一种如权利要求1-6所述的改性方法制备的改性薄膜材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010611122.XA CN111910155B (zh) | 2020-06-30 | 2020-06-30 | 一种薄膜材料的改性方法及改性薄膜材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010611122.XA CN111910155B (zh) | 2020-06-30 | 2020-06-30 | 一种薄膜材料的改性方法及改性薄膜材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111910155A CN111910155A (zh) | 2020-11-10 |
CN111910155B true CN111910155B (zh) | 2022-05-31 |
Family
ID=73226250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010611122.XA Active CN111910155B (zh) | 2020-06-30 | 2020-06-30 | 一种薄膜材料的改性方法及改性薄膜材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111910155B (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5045165A (en) * | 1990-02-01 | 1991-09-03 | Komag, Inc. | Method for sputtering a hydrogen-doped carbon protective film on a magnetic disk |
CN1737185A (zh) * | 1999-12-23 | 2006-02-22 | 西南交通大学 | 用等离子体浸没离子注入方法在材料表面形成TiO2-x薄膜的方法及其应用 |
CN1739810A (zh) * | 2005-09-16 | 2006-03-01 | 中国科学院上海硅酸盐研究所 | 一种氢离子注入提高纳米氧化钛涂层生物活性的方法 |
CN1807320A (zh) * | 2006-01-10 | 2006-07-26 | 彩虹集团电子股份有限公司 | 一种改善MgO薄膜表面性能的方法 |
CN102031484A (zh) * | 2010-10-13 | 2011-04-27 | 中国科学院半导体研究所 | 金属催化脱氢提高镁掺杂氮化物激活效率的方法 |
CN102496577A (zh) * | 2005-09-06 | 2012-06-13 | 佳能株式会社 | 非晶氧化物膜的制造方法 |
WO2013039200A1 (ja) * | 2011-09-15 | 2013-03-21 | 信越化学工業株式会社 | 複合ウェーハの製造方法 |
JP2014078541A (ja) * | 2012-10-09 | 2014-05-01 | Fuji Electric Co Ltd | 半導体薄膜フィルムの製造方法 |
CN109943823A (zh) * | 2019-03-07 | 2019-06-28 | 上海米蜂激光科技有限公司 | 基于氢等离子体处理制备a-Si:H薄膜的方法 |
-
2020
- 2020-06-30 CN CN202010611122.XA patent/CN111910155B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5045165A (en) * | 1990-02-01 | 1991-09-03 | Komag, Inc. | Method for sputtering a hydrogen-doped carbon protective film on a magnetic disk |
CN1737185A (zh) * | 1999-12-23 | 2006-02-22 | 西南交通大学 | 用等离子体浸没离子注入方法在材料表面形成TiO2-x薄膜的方法及其应用 |
CN102496577A (zh) * | 2005-09-06 | 2012-06-13 | 佳能株式会社 | 非晶氧化物膜的制造方法 |
CN1739810A (zh) * | 2005-09-16 | 2006-03-01 | 中国科学院上海硅酸盐研究所 | 一种氢离子注入提高纳米氧化钛涂层生物活性的方法 |
CN1807320A (zh) * | 2006-01-10 | 2006-07-26 | 彩虹集团电子股份有限公司 | 一种改善MgO薄膜表面性能的方法 |
CN102031484A (zh) * | 2010-10-13 | 2011-04-27 | 中国科学院半导体研究所 | 金属催化脱氢提高镁掺杂氮化物激活效率的方法 |
WO2013039200A1 (ja) * | 2011-09-15 | 2013-03-21 | 信越化学工業株式会社 | 複合ウェーハの製造方法 |
JP2014078541A (ja) * | 2012-10-09 | 2014-05-01 | Fuji Electric Co Ltd | 半導体薄膜フィルムの製造方法 |
CN109943823A (zh) * | 2019-03-07 | 2019-06-28 | 上海米蜂激光科技有限公司 | 基于氢等离子体处理制备a-Si:H薄膜的方法 |
Non-Patent Citations (4)
Title |
---|
Contribution of Pt layer to hydrogen mediation in ZnCoO;Jong Moon Shin et al.;《Physica Status Solidi A-applications and materials science》;20110314;第208卷(第5期);第1027-1030页 * |
Jong Moon Shin et al..Contribution of Pt layer to hydrogen mediation in ZnCoO.《Physica Status Solidi A-applications and materials science》.2011,第208卷(第5期),第1027-1030页. * |
氢离子注入对La2/3Sr1/3MnO3薄膜性能影响的研究;伍展文等;《低温物理学报》;20080215;第30卷(第1期);第14-17页 * |
退火温度对氢掺杂AZO薄膜热稳定性的影响;李乐等;《真空科学与技术学报》;20180515;第38卷(第5期);第380-383页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111910155A (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200423185A (en) | Method of introducing impurity | |
EP2311066A1 (de) | Vorrichtung und verfahren zur erzeugung dielektrischer schichten im mikrowellenplasma | |
TW200415668A (en) | Plasma doping method | |
Abdulrahman et al. | Impact of radio frequency plasma power on the structure, crystallinity, dislocation density, and the energy band gap of ZnO nanostructure | |
CN111910155B (zh) | 一种薄膜材料的改性方法及改性薄膜材料 | |
KR101179936B1 (ko) | 다이아몬드막 및 그 제조방법 | |
CN108987214B (zh) | 一种提升碳纳米管阵列场发射性能的方法 | |
CN112281141B (zh) | 一种基于可控碳纳米镀层的介质表面二次电子发射系数抑制方法 | |
CN108031832B (zh) | 一种具有多孔结构的铂族合金纳米颗粒及其制备方法 | |
TWI418047B (zh) | Ib-iiia-via2化合物半導體薄膜之製造裝置 | |
CN108987215B (zh) | 一种提升石墨烯片-碳纳米管阵列复合材料场发射性能的方法 | |
Park et al. | Fabrication, Structure, and Gas Sensing of Multiple-Networked Pt-Functionalized Bi2O3 Nanowires | |
Cho et al. | New insights into mechanism of surface reactions of ZnO nanorods during electrons beam irradiation | |
Yadian et al. | Significant enhancement of UV emission in ZnO nanorods subject to Ga+ ion beam irradiation | |
US4329418A (en) | Organometallic semiconductor devices | |
CN112017945B (zh) | 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法 | |
US7714248B2 (en) | Microwave plasma generator | |
CN103964417B (zh) | 一种含锗元素的掺杂石墨烯的制备方法 | |
CN112724710A (zh) | 等离子石墨烯粉体表面改性工艺 | |
CN108987218B (zh) | 一种提升石墨烯片-硅纳米线阵列复合材料场发射性能的方法 | |
Mittal et al. | Investigation of structural and optical properties of ZnTiO3 thin films irradiated with 50 MeV oxygen ions | |
Greenberg | Conductive networks of plasma-synthesized zinc oxide nanocrystals | |
CN105161288B (zh) | 一种增强ZnO基稀磁半导体薄膜室温铁磁性的方法 | |
Farhadian-Azizi et al. | Investigation of plasma process in deposition of cupric oxide film produced by radio frequency magnetron sputtering | |
CN117947505B (zh) | 一种管状钼单晶基体表面钨单晶涂层及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |