CN111908924B - 一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法 - Google Patents

一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法 Download PDF

Info

Publication number
CN111908924B
CN111908924B CN202010709632.0A CN202010709632A CN111908924B CN 111908924 B CN111908924 B CN 111908924B CN 202010709632 A CN202010709632 A CN 202010709632A CN 111908924 B CN111908924 B CN 111908924B
Authority
CN
China
Prior art keywords
silicon nitride
modified
copper
ceramic chip
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010709632.0A
Other languages
English (en)
Other versions
CN111908924A (zh
Inventor
葛荘
贺贤汉
王斌
欧阳鹏
孙泉
张恩荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Fulehua Semiconductor Technology Co ltd
Original Assignee
Jiangsu Fulehua Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Fulehua Semiconductor Technology Co ltd filed Critical Jiangsu Fulehua Semiconductor Technology Co ltd
Priority to CN202010709632.0A priority Critical patent/CN111908924B/zh
Publication of CN111908924A publication Critical patent/CN111908924A/zh
Application granted granted Critical
Publication of CN111908924B publication Critical patent/CN111908924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法,其中氮化硅瓷片界面改性方法包括如下步骤:1)改性溶液制备:将粒径为20~20000nm的α‑氮化硅粉末与分散剂加入至溶剂中搅拌均匀,得到α‑氮化硅粉末含量为0.003~0.02g/mL的改性溶液;2)改性瓷片制备:将步骤1)中的改性溶液均匀涂覆在氮化硅瓷片上并在80~220℃条件下烘干。根据上述方法改性后的氮化硅瓷片可直接用于覆铜陶瓷基板的活性钎焊,提高了氮化硅瓷片钎焊时反应活性,进行真空烧结时,能够在瓷片与金属焊片界面层形成更致密的结构,能够提高产品的剥离强度。此外,未反应的α‑氮化硅粉末能够嵌入近瓷界面层中,降低界面层的热膨胀系数,可提高瓷片与界面层在冷热冲击条件下的结合可靠性。

Description

一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法
技术领域
本发明属于半导体基板制备技术领域,涉及一种覆铜陶瓷基板制备技术,具体而言涉及一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法。
背景技术
IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)功率模块是目前性能最为优良的半导体器件之一。覆铜陶瓷基板主要用作IGBT芯片的衬板。因覆铜陶瓷基板生产加工工艺的不同主要可分为直接覆铜陶瓷基板(DCB或称DBC)和活性金属钎焊陶瓷基板(AMB),DCB工艺是指利用铜的含氧共晶液直接将铜敷接在陶瓷上,AMB是指钎焊料将陶瓷板和金属铜箔烧结在一起。相较而言,AMB覆铜板具有更高的可靠性和更优异的性能。
冷热循环可靠性及剥离强度是AMB覆铜陶瓷基板最基础也是最重要的性能,尤其是针对大功率模块,更高的冷热循环可靠性意味着器件性能更稳定,寿命更长。活性金属钎焊陶瓷基板基础性能是由烧结工艺(烧结制度、材料(焊片、瓷片、铜片))决定的,而活性钎焊形成的界面结合层能直接反映其基础性能。
随着IGBT大功率模块技术的进一步发展,要求AMB覆铜陶瓷基板具备更高的冷热循环可靠性,而活性钎焊烧结制度的优化对可靠性的提升是有限的。因此,寻找一种成本低廉、效果良好的界面改性覆铜陶瓷基板的制备方法对提升覆铜板冷热循环可靠性具有重要意义。
发明内容
本发明是为解决上述不足进行的,提供了一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法。
本发明的技术改进原理如下:针对氮化硅的金属焊片AMB钎焊工艺,在氮化硅陶瓷上引入一层离散的α-氮化硅粉末,亚微米甚至纳米级的α-氮化硅粉末相比于氮化硅瓷片中所含的β-氮化硅具有更高的活性,能在更低的温度下与活性金属反应,可在界面层形成更致密的结构。同时部分未完全反应的氮化硅粉末会嵌入近瓷界面层中,降低界面层的热膨胀系数,从而提高瓷片与界面层在冷热冲击条件下的结合可靠性。为了实现上述目的,本发明所采用的技术方案如下:
本发明第一方面,提供了一种氮化硅瓷片界面改性方法,采用超细α-氮化硅粉末对AMB覆铜陶瓷基板中的氮化硅瓷片进行界面改性,包括如下步骤:1)改性溶液制备:将粒径为20~20000nm的α-氮化硅粉末与分散剂加入至溶剂中搅拌均匀,得到α-氮化硅粉末含量为0.003~0.02g/mL的改性溶液;2)改性瓷片制备:将步骤1)中的改性溶液均匀涂覆在氮化硅瓷片上并在80~220℃条件下烘干。
优选的,步骤1)中,α-氮化硅粉末的粒径优选为20~100nm,改性溶液中α-氮化硅粉末含量为0.005~0.01g/mL,经过实验验证,α-氮化硅粉末含量在0.005~0.01g/mL范围内时在溶剂中达到很好的分散效果。
优选的,步骤1)中,分散剂为聚丙烯酸铵,其与α-氮化硅粉末的质量比为0.5%-3%;溶剂为乙醇、丙酮、纯水中的一种或者几种混合。
优选的,步骤2)中,涂覆方式包括喷涂、丝网印刷或涂布,改性后瓷片的烘干条件为在80~220℃条件下烘干10~30min。
本发明的第二方面,提供了一种AMB覆铜陶瓷基板用界面改性氮化硅瓷片,该氮化硅瓷片的界面改性方法如上所述。改性后的氮化硅瓷片可直接用于覆铜陶瓷基板的活性钎焊。
因此,本发明的第三方面,提供了一种采用上述改性后的氮化硅瓷片进行界面改性覆铜陶瓷基板的制备,即、将金属焊片与改性瓷片、铜片进行层叠堆垛后放入真空钎焊炉中进行真空烧结,烧结工艺与常规AMB覆铜陶瓷基板的活性钎焊工艺相同。
其中,金属焊片厚度为8-30μm,该金属焊片中活性金属元素为Ti、Zr、Hf、Cr、V、Si、Al中的一种或者两种以上的组合。
本发明的第四方面,提供了根据上述界面改性覆铜陶瓷基板的制备方法制备得到的覆铜陶瓷基板。
本发明的有益效果如下:
采用超细α-氮化硅粉末对AMB覆铜陶瓷基板中的氮化硅瓷片进行界面改性,提高了氮化硅瓷片钎焊时反应活性,进行真空烧结时,能够在瓷片与金属焊片界面层形成更致密的结构,能够提高产品的剥离强度;
此外,未反应的α-氮化硅粉末能够嵌入近瓷界面层中,降低界面层的热膨胀系数,可提高瓷片与界面层在冷热冲击条件下的结合可靠性。
附图说明
图1为本发明实施例1中的覆铜陶瓷基板制备方法的流程图;
图2为本发明实施例2的改性瓷片在不同粉末浓度下的表面状态图。
具体实施方式
下面结合本发明的附图和实施例对本发明的实施作详细说明,以下实施例是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。
本发明所用试剂和原料均市售可得或可按文献方法制备。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
实施例1氮化硅瓷片界面改性
1)氮化硅粉末改性溶液制备
将粒径为20~20000nm的α-氮化硅粉末与分散剂加入至溶剂中搅拌均匀,得到α-氮化硅粉末含量为0.003~0.02g/mL的改性溶液。
通过实验验证,为了增加氮化硅粉末的分散均匀性,α-氮化硅粉末的粒径优选为20~100nm,当该α-氮化硅粉末含量在0.005~0.01g/mL范围内时,在溶剂中的分散效果最优。
此外,分散剂为聚丙烯酸铵,其与α-氮化硅粉末的质量比为0.5%-3%时分散效果最优,小于0.5%时,分散剂电离出的离子不足以覆盖全部的氮化硅颗粒,颗粒表面离子分布不均匀,空间阻位机制比较弱,容易导致氮化硅粉末团聚;当聚丙烯酸铵含量大于3%时,过量分散剂电离出的离子剩余在悬浮液中,降低静电排斥产生的稳定作用,同样会影响浆料的稳定性。
溶剂为乙醇、丙酮、纯水中的一种或者几种混合,优选纯水。几种溶剂效果基本一致,在陶瓷粉料分散后成型,多采用纯水作为溶剂,乙醇、丙酮为常用试剂。
2)改性瓷片制备:
将步骤1)中的改性溶液均匀涂覆在氮化硅瓷片上并在80~220℃条件下烘干。涂覆方式包括喷涂、丝网印刷或涂布,改性后瓷片的烘干条件为在80~220℃条件下烘干10~30min。
根据上述两个步骤改性后的氮化硅瓷片可直接用于覆铜陶瓷基板的活性钎焊。
实施例2α-氮化硅粉末含量选择
本实施例为α-氮化硅粉末含量对粉末在瓷片上分散的影响。为了清晰观察,使用在金相显微镜下呈黑色的氮化钛粉末替代氮化硅粉末进行粉末含量对粉末分散的影响,所用溶剂为纯水,粉末浓度分别为a):0.02g/ml;b):0.01g/ml;c):0.005g/ml。
实验结果如图1所示:使用0.005g/ml及0.01g/ml到达了较好的分散效果,氮化硅粉末和氮化钛粉末性质相近,因此氮化硅粉末含量在0.005g/ml及0.01g/ml时也能达到较好效果。
实施例3界面改性覆铜陶瓷基板的制备
根据图2,界面改性覆铜陶瓷基板的制备包括如下四个流程:1)氮化硅粉末改性溶液制备;2)氮化硅粉末涂覆改性瓷片制备;3)铜瓷片装夹;4)真空活性钎焊,其中步骤1)和2)组成了氮化硅瓷片界面改性方法。下仅对后两个流程进行描述:
3)铜瓷片装夹;
将金属焊片与改性瓷片、铜片进行层叠堆垛后放入真空钎焊炉中。其中,金属焊片厚度为8-30μm,该金属焊片中活性金属元素为Ti、Zr、Hf、Cr、V、Si、Al中的一种或者两种以上的组合,根据实际情况进行金属焊片选择。
4)真空活性钎焊
烧结工艺与常规AMB覆铜陶瓷基板的活性钎焊工艺相同。
实施例4新旧方法对比
本实施例为实施例3所述方法(下称为新方法)制备覆铜陶瓷基板及不采用改性瓷片制备覆铜陶瓷基板(旧方法,即本领域常规AMB方法),旧方法除瓷片不作处理外,其余均与新方法一致,新旧方法双面覆铜铜瓷比均为0.3/0.32/0.3mm。
两种方法所制覆铜板基本性能测试对比见表1。从表中可知:新方法较旧方法能小幅提高产品性能,本领域相关人员应当明白作为新技术,新方法尚不完善,有很大的性能提升空间,本发明也仅对新方法做探究性试验,但结果可以说明,新方法有利于产品性能的提高。
表1新旧方法所制覆铜板性能测试对比
编号 剥离强度/N·mm<sup>-1</sup> 出现翘曲、开裂失效时冷热冲击次数/次
旧方法 12.30 100
新方法 13.28 110
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

1.一种氮化硅瓷片界面改性方法,其特征在于,采用超细α-氮化硅粉末对AMB覆铜陶瓷基板中的氮化硅瓷片进行界面改性,包括如下步骤:
1)改性溶液制备
将粒径为20~20000nm的α-氮化硅粉末与分散剂聚丙烯酸铵加入至溶剂中搅拌均匀,得到α-氮化硅粉末含量为0.003~0.02g/mL的改性溶液;
2)改性瓷片制备
将步骤1)中的改性溶液均匀涂覆在氮化硅瓷片上并在80~220℃条件下烘干。
2.根据权利要求1所述的氮化硅瓷片界面改性方法,其特征在于:
其中,步骤1)中,α-氮化硅粉末的粒径为20~100nm,改性溶液中α-氮化硅粉末含量为0.005~0.01g/mL。
3.根据权利要求1所述的氮化硅瓷片界面改性方法,其特征在于:
其中,步骤1)中,聚丙烯酸铵与α-氮化硅粉末的质量比为0.5%-3%。
4.采用权利要求1中的氮化硅瓷片界面改性方法,其特征在于:
其中,步骤1)中,溶剂为乙醇、丙酮、纯水中的一种或者几种混合。
5.根据权利要求4所述的氮化硅瓷片界面改性方法,其特征在于:
其中,步骤2)中,涂覆方式包括喷涂、丝网印刷或涂布,
改性后瓷片在80~220℃条件下烘干10~30min。
6.一种AMB覆铜陶瓷基板用界面改性氮化硅瓷片,其特征在于,该氮化硅瓷片的界面改性方法如权利要求1~5任一项所述。
7.一种界面改性覆铜陶瓷基板的制备方法,其特征在于,包括如下步骤:指将金属焊片与改性瓷片、铜片进行层叠堆垛后放入真空钎焊炉中进行真空烧结,
其中,所述改性瓷片为权利要求6所述的AMB覆铜陶瓷基板用界面改性氮化硅瓷片。
8.根据权利要求7所述的界面改性覆铜陶瓷基板的制备方法,其特征在于:
其中,所述金属焊片厚度为8-30μm,该金属焊片中活性金属元素为Ti、Zr、Hf、Cr、V、Si、Al中的一种或者两种以上的组合。
9.根据权利要求7或8所述的界面改性覆铜陶瓷基板的制备方法制备得到的覆铜陶瓷基板。
CN202010709632.0A 2020-07-22 2020-07-22 一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法 Active CN111908924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010709632.0A CN111908924B (zh) 2020-07-22 2020-07-22 一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010709632.0A CN111908924B (zh) 2020-07-22 2020-07-22 一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法

Publications (2)

Publication Number Publication Date
CN111908924A CN111908924A (zh) 2020-11-10
CN111908924B true CN111908924B (zh) 2022-02-18

Family

ID=73281527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010709632.0A Active CN111908924B (zh) 2020-07-22 2020-07-22 一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法

Country Status (1)

Country Link
CN (1) CN111908924B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114571021A (zh) * 2021-10-12 2022-06-03 祥博传热科技股份有限公司 一种高导热覆铜陶瓷基板制作方法
CN114478022B (zh) * 2021-12-31 2023-01-03 南通威斯派尔半导体技术有限公司 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549927A (en) * 1994-03-01 1996-08-27 Modine Manufacturing Company Modified substrate surface and method
US5912066A (en) * 1996-03-27 1999-06-15 Kabushiki Kaisha Toshiba Silicon nitride circuit board and producing method therefor
CN103762181B (zh) * 2014-01-02 2018-12-18 上海申和热磁电子有限公司 氮化铝覆铜陶瓷基板的制备方法
CN103819214B (zh) * 2014-01-10 2015-04-01 南京中江新材料科技有限公司 一种AlN陶瓷敷铜基板及其制备方法
CN104362099A (zh) * 2014-09-17 2015-02-18 上海申和热磁电子有限公司 高热导覆铜陶瓷基板的制备方法
CN105622126A (zh) * 2015-12-25 2016-06-01 上海申和热磁电子有限公司 一种Si3N4陶瓷覆铜基板及其制备方法
CN109336635A (zh) * 2018-12-06 2019-02-15 邢台职业技术学院 一种氮化铝陶瓷材料及其制备方法
CN109734470A (zh) * 2019-02-22 2019-05-10 上海产业技术研究院 覆铜氮化硅陶瓷基板及其制备方法
CN111403347B (zh) * 2020-03-03 2022-02-25 江苏富乐华半导体科技股份有限公司 一种高可靠性氮化硅覆铜陶瓷基板的铜瓷界面结构及其制备方法

Also Published As

Publication number Publication date
CN111908924A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN111908924B (zh) 一种氮化硅瓷片界面改性方法及覆铜陶瓷基板制备方法
KR100353387B1 (ko) 질화알루미늄 소결체 및 그 제조방법
CN105980331A (zh) 电介质材料及静电卡盘装置
WO2022156634A1 (zh) 一种覆铜板的氮化硅陶瓷基片的制备方法
KR101103821B1 (ko) 글래스 접합방식을 이용한 고순도 세라믹 정전척의 제조방법 및 그에 따른 정전척
CN111484335A (zh) 氮化硅陶瓷浆料用烧结助剂复合添加剂、氮化硅陶瓷浆料及其制备方法和应用
US7175714B2 (en) Electrode-built-in susceptor and a manufacturing method therefor
CN115028460B (zh) 一种高导热氮化硅陶瓷基片的制备方法
CN114466519A (zh) 一种预图形化覆铜陶瓷基板及其制备方法
CN102060573B (zh) 一种基于电子浆料的敷铜陶瓷基板制造方法
CN110736134A (zh) 一种高强度高导热氮化铝陶瓷基板及其制备方法
CN111154435B (zh) 一种导热压敏胶及其制备方法
CN116262666B (zh) 一种氮化铝基陶瓷复合材料的制备方法及其在静电吸盘上的应用
CN109678530A (zh) 一种隔离粉及其制作方法
CN115259889A (zh) 一种多孔碳化硅陶瓷及其制备方法和应用、铝碳化硅复合材料
CN115286409A (zh) 一种氮化硅晶须增强氮化铝的复合陶瓷材料及其制备方法
KR102047662B1 (ko) 신규한 질화규소 분말의 제조방법
TWI239039B (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
CN112738988A (zh) 陶瓷覆铜板及其制备方法、陶瓷电路板
CN111302806A (zh) 一种IC装备用静电卡盘AlN陶瓷及其制备方法
CN113429878B (zh) 一种低成本耐高温石墨烯复合散热涂料及制备方法
CN103617821A (zh) 一种低印刷湿重的太阳能电池背铝浆料
TWI760269B (zh) 散熱片之製法
CN114038640B (zh) 一种超高频射频电阻器及其生产方法
CN115417663B (zh) 一种ltcc电子陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 224200 No. 18 Hongda Road, Chengdong New District, Dongtai City, Yancheng City, Jiangsu Province

Applicant after: Jiangsu fulehua Semiconductor Technology Co.,Ltd.

Address before: 224200 No. 18 Hongda Road, Chengdong New District, Dongtai City, Yancheng City, Jiangsu Province

Applicant before: JIANGSU FULEDE SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant