CN111908913B - 一种耐高腐蚀的复合压电陶瓷材料及其制备方法 - Google Patents

一种耐高腐蚀的复合压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111908913B
CN111908913B CN202010807447.5A CN202010807447A CN111908913B CN 111908913 B CN111908913 B CN 111908913B CN 202010807447 A CN202010807447 A CN 202010807447A CN 111908913 B CN111908913 B CN 111908913B
Authority
CN
China
Prior art keywords
piezoelectric ceramic
ceramic material
composite piezoelectric
resistant composite
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010807447.5A
Other languages
English (en)
Other versions
CN111908913A (zh
Inventor
汤柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Yudeshui Electric Technology Co Ltd
Original Assignee
Suzhou Yudeshui Electric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Yudeshui Electric Technology Co Ltd filed Critical Suzhou Yudeshui Electric Technology Co Ltd
Priority to CN202110177686.1A priority Critical patent/CN112745116B/zh
Priority to CN202110177699.9A priority patent/CN112723880B/zh
Priority to CN202010807447.5A priority patent/CN111908913B/zh
Publication of CN111908913A publication Critical patent/CN111908913A/zh
Application granted granted Critical
Publication of CN111908913B publication Critical patent/CN111908913B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/064Silica aerogel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

本发明公开了一种耐高腐蚀的复合压电陶瓷材料的制备方法包括以下步骤:(1)称量组分:按化学计量比Ba1‑xMgxTi1‑2ySbyInyO3进行称量;其中x为0.5‑3mol%,y为0.2‑3mol%。(2)初步成型:将各组分所述原料混合后经过球磨、烘干、造粒、挤压成型、排胶、烧结等工艺处理得到压电陶瓷;(3)极化处理:将初步成型的压电陶瓷上下表面分别锡焊和磁控溅射银电极,最终得到所述耐高腐蚀的复合压电陶瓷材料。本发明的制备方法步骤简单,通过软硬兼施的方式对BT基陶瓷掺杂,既保证了压电常数d33,又提升了机械品质因数Qm和机电耦合系数Kp。本发明还提供一种该方法制备的耐高腐蚀的复合压电陶瓷材料。

Description

一种耐高腐蚀的复合压电陶瓷材料及其制备方法
技术领域
本发明涉及压电陶瓷领域,具体为一种耐高腐蚀的复合压电陶瓷材料及其制备方法。
背景技术
随着我国压电陶瓷材料的不断发展,人们对压电陶瓷的要求也越来越高,例如锆钛酸铅(PZT)陶瓷体系虽然具有具备较高的压电常数d33,但是PZT含的铅在使用或废弃处理时易对环境造成污染,因此对无铅压电陶瓷的开发便成了发展趋势。而钛酸钡(BaTiO3,BT)陶瓷虽然不会带来太大的污染,但传统方法制备的BT基陶瓷的压电常数通常只有200pC/N左右。由于BaTiO3基压电陶瓷是ABO3型钙钛矿铁电体,其A位离子可被Ca,Sr,La,Y等元素取代,其B位离子可被Zr,Sn,Nb,Ce等元素取代,现有技术中大多数是对BT基陶瓷掺杂来进行改性,但问题是改性的同时势必会带来一些副作用,例如提升介电系数和机电耦合系数会导致平质因数的下降,而机械品质因数Qm在滤波器、谐振换能器等器件中尤其重要,因此获得各项性能优异的陶瓷材料是当下的急切需求。
发明内容
本发明的目的在于提供一种耐高腐蚀的复合压电陶瓷材料及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种耐高腐蚀的复合压电陶瓷材料的制备方法包括以下步骤:
(1)称量组分:将原料BaCO3、TiO2、MgO、Sb2O5和In2O3,按化学计量比Ba1-xMgxTi1- 2ySbyInyO3进行称量;其中x为0.5-3mol%,y为0.2-3mol%;
采用Mg2+对Ba2+进行等价替换能够提升BT基陶瓷的压电常数d33,采用高价离子Sb5+对Ti4+进行替换为软性取代,低价离子In3+对Ti4+进行替换为硬性取代,等量的Sb5+和In3+替换Ti4+实现软硬兼施,提升了机械品质因数Qm和机电耦合系数Kp而不影响压电常数d33
(2)初步成型:将各组分所述原料混合后进行一次球磨、烘干、一次烧结,得到预烧结的压电陶瓷粉体;将预烧结后的压电陶瓷粉体进行二次球磨、烘干,再加入粘合剂研磨造粒、挤压成型、排胶、二次烧结,得到压电陶瓷;
(3)极化处理:将初步成型的压电陶瓷上下表面分别锡焊一层金属锡,压实后再磁控溅射一层银电极,并在75-85℃的油中极化20-30min,极化电场为2500-4000V/mm,最终得到所述耐高腐蚀的复合压电陶瓷材料。
锡焊一层金属锡是为了将初步成型的压电陶瓷表面微孔有效的填充,使得磁控溅射的银电极与压电陶瓷之间充分连接,减小接触电阻。
优选的,所述x+y为0.7-6mol%。
在总的掺杂量较少为0.7-6mol%的情况下,不会改变BT陶瓷的钙钛矿型结构,同时出现的晶格畸变使得自由能增加、电畴转向激活能降低,在极化处理时更利于电畴的充分偏转和保留,从而提升陶瓷的压电常数d33、介电系数ε和机电耦合系数Kp;而一旦掺杂量过多会产生晶界偏析,改变钙钛矿型结构的晶体结构,影响陶瓷的压电性能。
优选的,所述一次球磨和二次球磨的时间分别为12-14h、6-8h,转速均为400-450r/min,球磨介质均为水和玛瑙球。
优选的,以上所述烘干温度均为70-80℃,时间为3-6h。
优选的,所述一次烧结是以80-90℃/h的升温速率升温至800-900℃,保温3-4h。
优选的,所述粘合剂为浓度为4-8wt%的PVA水溶液。
优选的,所述挤压成型的压强为120-140MPa。
优选的,所述排胶是以40-50℃/h的升温速率升温至450-500℃,并保温50-60min。
排胶是为了在坯体烧成前将其中的有机粘合剂排除干净,以保证产品的形状、尺寸和质量的要求;升温速率应当控制在40-50℃/h,缓慢的升温速率是为了保证其不会因变形、裂纹等缺陷而破坏晶体结构。
优选的,所述二次烧结是以105-115℃/h的升温速率升温至1200-1300℃,保温110-130min。
升温速率过快不利于陶瓷在烧结时气孔的排除,进而会影响致密度,而80-90℃/h缓慢的升温速率可以有效避免烧结过程中产生的开裂问题以及极化处理产生的击穿问题。
本发明还提供一种如前所述方法制备获得的耐高腐蚀的复合压电陶瓷材料。
与现有技术相比,本发明的有益效果是:
(1)本发明采用Mg2+对Ba2+进行等价替换提升BT基陶瓷的压电常数d33,同时采用等量的Sb5+和In3+替换Ti4+实现软硬兼施,既保证了压电常数d33不会过度降低,又提升了复合压电陶瓷机械品质因数Qm和机电耦合系数Kp,改善了现有技术中掺杂高价离子导致的机械品质因数Qm低和掺杂低价离子导致的压电常数d33低和抗老化稳定性差的问题。
(2)现有技术中单独采用磁控溅射法制备电极只能在陶瓷表面沉积而无法深入微孔,而涂覆导电银浆的方式会造成银颗粒之间大多为点接触或面接触的问题,两者都会产生接触电阻,本发明采用锡焊加磁控溅射的方式制备电极能够将银电极与压电陶瓷之间充分接触,降低接触电阻,改善了极化处理时由于部分区域接触电阻过大导致的压电陶瓷极化不均匀的问题。
(3)本发明使用排胶、二次烧结两步缓慢升温的方式制备压电陶瓷可以有效排除有机物和气孔,提升压电陶瓷的致密度。同时多组分原料之间致密的结合也提升了压电陶瓷的强硬度和疏水性,避免了吸收酸碱液导致的腐蚀问题。
(4)本发明所使用的BaCO3、TiO2、MgO等材料来源广泛且经济,本发明的制备方法简单温和,制得的复合压电陶瓷材料性能均一。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明提供一种耐高腐蚀的复合压电陶瓷材料的制备方法包括以下步骤:
(1)称量组分:将原料BaCO3、TiO2、MgO、Sb2O5和In2O3,按化学计量比Ba1-xMgxTi1- 2ySbyInyO3进行称量;其中x为0.5mol%,y为0.2mol%;
(2)初步成型:将各组分所述原料混合后进行一次球磨、烘干、一次烧结,得到预烧结的压电陶瓷粉体;将预烧结后的压电陶瓷粉体进行二次球磨、烘干,再加入粘合剂研磨造粒、挤压成型、排胶、二次烧结,得到压电陶瓷;
(3)极化处理:将初步成型的压电陶瓷上下表面分别锡焊一层金属锡,压实后再磁控溅射一层银电极,并在75℃的油中极化20min,极化电场为2500V/mm,最终得到所述耐高腐蚀的复合压电陶瓷材料。
其中所述x+y为0.7mol%;所述一次球磨和二次球磨的时间分别为12h、6h,转速均为400r/min,球磨介质均为水和玛瑙球;以上所述烘干温度均为70℃,时间为3h;所述一次烧结是以80℃/h的升温速率升温至800℃,保温3h;所述粘合剂为浓度为4wt%的PVA水溶液;所述挤压成型的压强为120Mpa;所述排胶是以40℃/h的升温速率升温至450℃,并保温50min;所述二次烧结是以105℃/h的升温速率升温至1200℃,保温110min。
本发明还提供一种如前所述方法制备获得的耐高腐蚀的复合压电陶瓷材料。
实施例二
本发明提供一种耐高腐蚀的复合压电陶瓷材料的制备方法包括以下步骤:
(1)称量组分:将原料BaCO3、TiO2、MgO、Sb2O5和In2O3,按化学计量比Ba1-xMgxTi1- 2ySbyInyO3进行称量;其中x为3mol%,y为3mol%;
(2)初步成型:将各组分所述原料混合后进行一次球磨、烘干、一次烧结,得到预烧结的压电陶瓷粉体;将预烧结后的压电陶瓷粉体进行二次球磨、烘干,再加入粘合剂研磨造粒、挤压成型、排胶、二次烧结,得到压电陶瓷;
(3)极化处理:将初步成型的压电陶瓷上下表面分别锡焊一层金属锡,压实后再磁控溅射一层银电极,并在85℃的油中极化30min,极化电场为4000V/mm,最终得到所述耐高腐蚀的复合压电陶瓷材料。
其中所述x+y为6mol%;所述一次球磨和二次球磨的时间分别为14h、8h,转速均为450r/min,球磨介质均为水和玛瑙球;以上所述烘干温度均为80℃,时间为6h;所述一次烧结是以90℃/h的升温速率升温至900℃,保温4h;所述粘合剂为浓度为8wt%的PVA水溶液;所述挤压成型的压强为140Mpa;所述排胶是以50℃/h的升温速率升温至500℃,并保温60min;所述二次烧结是以115℃/h的升温速率升温至1300℃,保温130min。
本发明还提供一种如前所述方法制备获得的耐高腐蚀的复合压电陶瓷材料。
实施例三
本发明提供一种耐高腐蚀的复合压电陶瓷材料的制备方法包括以下步骤:
(1)称量组分:将原料BaCO3、TiO2、MgO、Sb2O5和In2O3,按化学计量比Ba1-xMgxTi1- 2ySbyInyO3进行称量;其中x为2mol%,y为1mol%;
(2)初步成型:将各组分所述原料混合后进行一次球磨、烘干、一次烧结,得到预烧结的压电陶瓷粉体;将预烧结后的压电陶瓷粉体进行二次球磨、烘干,再加入粘合剂研磨造粒、挤压成型、排胶、二次烧结,得到压电陶瓷;
(3)极化处理:将初步成型的压电陶瓷上下表面分别锡焊一层金属锡,压实后再磁控溅射一层银电极,并在80℃的油中极化25min,极化电场为3000V/mm,最终得到所述耐高腐蚀的复合压电陶瓷材料。
其中所述x+y为3mol%;所述一次球磨和二次球磨的时间分别为13h、7h,转速均为420r/min,球磨介质均为水和玛瑙球;以上所述烘干温度均为75℃,时间为4h;所述一次烧结是以85℃/h的升温速率升温至850℃,保温3.5h;所述粘合剂为浓度为6wt%的PVA水溶液;所述挤压成型的压强为130Mpa;所述排胶是以45℃/h的升温速率升温至480℃,并保温55min;所述二次烧结是以110℃/h的升温速率升温至1250℃,保温120min。
本发明还提供一种如前所述方法制备获得的耐高腐蚀的复合压电陶瓷材料。
为了检测各复合压电陶瓷材料的性能,本发明分别测试了各复合压电陶瓷材料的压电常数d33、介电系数ε、机电耦合系数Kp和机械品质因数Qm。将制备完成的复合压电陶瓷材料裁剪成大小为10mm×2mm×1mm的矩形,再使用阻抗分析仪确定陶瓷样品的阻抗的频率依赖性,由观察的共振频率和反共振频率计算压电常数d33、介电系数ε、和机械品质因数Qm。压电常数d33越大表示压电性能越高,机械品质因数Qm越大表示陶瓷在共振振动时的损失约小。将复合压电陶瓷裁剪成直径10mm、厚度2mm的圆片,再使用介电温谱仪自动完成材料的介电系数ε的测量。
通过对上述三组实施例进行对比实验,能够得出每组实施例均能够制备出性能优异的耐高腐蚀的复合压电陶瓷材料。其中实施例一所制得的耐高腐蚀的复合压电陶瓷材料的压电常数d33为389pC/N、介电系数ε为2487、机电耦合系数Kp为41%、机械品质因数Qm为334;实施例二所制得的耐高腐蚀的复合压电陶瓷材料的压电常数d33为393pC/N、介电系数ε为2271、机电耦合系数Kp为39%、机械品质因数Qm为312;实施例三所制得的耐高腐蚀的复合压电陶瓷材料的压电常数d33为410pC/N、介电系数ε为2418、机电耦合系数Kp为38%、机械品质因数Qm为326。可以看到本发明制备的耐高腐蚀的复合压电陶瓷材料的压电常数d33保持在380pC/N以上的同时机械品质因数Qm能够达到310,其中实施例三效果最佳。
对比例1:与实施例三的区别在于仅掺杂Mg2+对Ba2+进行等价替换,制得的复合压电陶瓷材料的压电常数d33为381pC/N、介电系数ε为1893、机电耦合系数Kp为32%、机械品质因数Qm为117。仅仅进行等价离子的少量掺杂可以进一步提升BT基陶瓷的压电常数d33,但是缺少软性或硬性取代的陶瓷晶体结构几乎不变,其致密度基本保留了原BT基陶瓷的特性,因此机械品质因数Qm较低。
对比例2:与实施例三的区别在于缺少高价离子Sb5+对Ti4+的软性取代,制得的复合压电陶瓷材料的压电常数d33为235pC/N、介电系数ε为1698、机电耦合系数Kp为31%、机械品质因数Qm为337。可以看到缺少高价离子对Ti4+进行替换的复合压电陶瓷材料虽然有Mg2+的掺杂而提升压电常数d33的作用,但是经过高价离子的软性取代后压电常数d33又复降低,仅仅提升了机械品质因数Qm。
对比例3:与实施例三的区别在于缺少低价离子In3+对Ti4+的硬性取代,制得的复合压电陶瓷材料的压电常数d33为414pC/N、介电系数ε为2474、机电耦合系数Kp为38%、机械品质因数Qm为109。等价离子和高价离子的掺杂都会对复合压电陶瓷的压电常数d33有所提升,但是经过软化之后的陶瓷材料的机械品质因数Qm反而降低,并无实质性的改善作用。
对比例4:与实施例三的区别在于x+y为20mol%,制得的复合压电陶瓷材料的压电常数d33为186pC/N、介电系数ε为934、机电耦合系数Kp为26%、机械品质因数Qm为53。适量的等价离子取代或软性或硬性取代可以在不改变钙钛矿型晶体结构的基础上进行改性,一旦杂质过多晶体结构遭到破坏,BT基陶瓷的压电性能就会下降甚至消失。
对比例5:与实施例三的区别在于使用导电银浆涂覆的方式制备电极,制得的复合压电陶瓷材料的压电常数d33为402pC/N、介电系数ε为2359、机电耦合系数Kp为32%、机械品质因数Qm为287。由于电极与复合压电陶瓷的连接不够充分导致接触电阻过大,在极化处理时部分区域的极化不充分,极化均匀性降低,因此机电耦合系数Kp和机械品质因数Qm都会下降。
对比例6:与实施例三的区别在于二次烧结的升温速率为200℃/h,制得的复合压电陶瓷材料的压电常数d33为376pC/N、介电系数ε为2127、机电耦合系数Kp为33%、机械品质因数Qm为265。由于升温速率过快导致陶瓷在烧结过程中的气孔无法有效排除,因此致密度大幅下降,机械品质因数降低。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种耐高腐蚀的复合压电陶瓷材料的制备方法,其特征在于包括以下步骤:
(1)称量组分:将原料BaCO3、TiO2、MgO、Sb2O5和In2O3,按化学计量比Ba1-xMgxTi1- 2ySbyInyO3进行称量;其中x为0.5-3mol%,y为0.2-3mol%;
(2)初步成型:将各组分所述原料混合后进行一次球磨、烘干、一次烧结,得到预烧结的压电陶瓷粉体;将预烧结后的压电陶瓷粉体进行二次球磨、烘干,再加入粘合剂研磨造粒、挤压成型、排胶、二次烧结,得到压电陶瓷;
(3)极化处理:将初步成型的压电陶瓷上下表面分别锡焊一层金属锡,压实后再磁控溅射一层银电极,并在75-85℃的油中极化20-30min,极化电场为2500-4000V/mm,最终得到所述耐高腐蚀的复合压电陶瓷材料;
所述一次烧结是以80-90℃/h的升温速率升温至800-900℃,保温3-4h;
所述二次烧结是以105-115℃/h的升温速率升温至1200-1300℃,保温110-130min。
2.根据权利要求1所述的一种耐高腐蚀的复合压电陶瓷材料的制备方法,其特征在于:所述一次球磨和二次球磨的时间分别为12-14h、6-8h,转速均为400-450r/min,球磨介质均为水和玛瑙球。
3.根据权利要求1所述的一种耐高腐蚀的复合压电陶瓷材料的制备方法,其特征在于:以上所述烘干温度均为70-80℃,时间为3-6h。
4.根据权利要求1所述的一种耐高腐蚀的复合压电陶瓷材料的制备方法,其特征在于:所述粘合剂为浓度为4-8wt%的PVA水溶液。
5.根据权利要求1所述的一种耐高腐蚀的复合压电陶瓷材料的制备方法,其特征在于:所述挤压成型的压强为120-140MPa。
6.根据权利要求1所述的一种耐高腐蚀的复合压电陶瓷材料的制备方法,其特征在于:所述排胶是以40-50℃/h的升温速率升温至450-500℃,并保温50-60min。
7.一种如权利要求1-6之一所述方法制备获得的耐高腐蚀的复合压电陶瓷材料。
CN202010807447.5A 2020-08-12 2020-08-12 一种耐高腐蚀的复合压电陶瓷材料及其制备方法 Active CN111908913B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110177686.1A CN112745116B (zh) 2020-08-12 2020-08-12 耐高腐蚀的复合压电陶瓷材料的制备方法
CN202110177699.9A CN112723880B (zh) 2020-08-12 2020-08-12 一种耐高腐蚀的复合压电陶瓷材料的制备方法
CN202010807447.5A CN111908913B (zh) 2020-08-12 2020-08-12 一种耐高腐蚀的复合压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010807447.5A CN111908913B (zh) 2020-08-12 2020-08-12 一种耐高腐蚀的复合压电陶瓷材料及其制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202110177686.1A Division CN112745116B (zh) 2020-08-12 2020-08-12 耐高腐蚀的复合压电陶瓷材料的制备方法
CN202110177699.9A Division CN112723880B (zh) 2020-08-12 2020-08-12 一种耐高腐蚀的复合压电陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN111908913A CN111908913A (zh) 2020-11-10
CN111908913B true CN111908913B (zh) 2021-04-23

Family

ID=73284393

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202110177686.1A Active CN112745116B (zh) 2020-08-12 2020-08-12 耐高腐蚀的复合压电陶瓷材料的制备方法
CN202110177699.9A Active CN112723880B (zh) 2020-08-12 2020-08-12 一种耐高腐蚀的复合压电陶瓷材料的制备方法
CN202010807447.5A Active CN111908913B (zh) 2020-08-12 2020-08-12 一种耐高腐蚀的复合压电陶瓷材料及其制备方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202110177686.1A Active CN112745116B (zh) 2020-08-12 2020-08-12 耐高腐蚀的复合压电陶瓷材料的制备方法
CN202110177699.9A Active CN112723880B (zh) 2020-08-12 2020-08-12 一种耐高腐蚀的复合压电陶瓷材料的制备方法

Country Status (1)

Country Link
CN (3) CN112745116B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651615B (zh) * 2021-09-23 2022-10-14 大连世达科技有限公司 一种压电陶瓷材料及高稳定性超声换能器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217541A (ja) * 1995-02-08 1996-08-27 Kasei Optonix Co Ltd 圧電セラミック組成物
JPH09202661A (ja) * 1996-01-26 1997-08-05 Toyota Motor Corp 圧電磁器組成物
US6818144B1 (en) * 2001-11-26 2004-11-16 The United States Of America As Represented By The Secretary Of The Army Ferroelectric/paraelectric materials, and phase shifter devices, true time delay devices and the like containing same
CN101767993A (zh) * 2010-01-26 2010-07-07 桂林理工大学 高压电常数锆钛酸镁钡系无铅压电陶瓷

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3426251A (en) * 1966-08-01 1969-02-04 Sprague Electric Co Donor-acceptor ion-modified barium titanate capacitor and process
JPS61239712A (ja) * 1985-04-17 1986-10-25 Matsushita Electric Ind Co Ltd 圧電磁器共振子
NL8902923A (nl) * 1989-11-27 1991-06-17 Philips Nv Keramisch lichaam uit een dielektrisch materiaal op basis van bariumtitanaat.
JP5343974B2 (ja) * 2008-09-24 2013-11-13 株式会社村田製作所 誘電体セラミック組成物および積層セラミックコンデンサ
DE102009049404B4 (de) * 2009-10-14 2022-08-18 Tdk Electronics Ag Keramikmaterial, Verfahren zur Herstellung des Keramikmaterials und Widerstandsbauelement umfassend das Keramikmaterial
JP5979992B2 (ja) * 2011-07-05 2016-08-31 キヤノン株式会社 圧電材料
JP6415337B2 (ja) * 2015-01-28 2018-10-31 太陽誘電株式会社 積層セラミックコンデンサ
JP6483466B2 (ja) * 2015-02-18 2019-03-13 日本化学工業株式会社 チタン酸バリウムの製造方法
CN106505144A (zh) * 2016-10-17 2017-03-15 奈申(上海)智能科技有限公司 多层电卡陶瓷元件及其制备方法
CN110272270B (zh) * 2019-07-01 2021-12-21 桂林电子科技大学 一种具有低介电损耗及高温稳定性的铁酸铋-钛酸钡基高温无铅压电陶瓷及其制备方法
CN111410527B (zh) * 2020-03-20 2021-06-22 广东风华高新科技股份有限公司 一种复相巨介电陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217541A (ja) * 1995-02-08 1996-08-27 Kasei Optonix Co Ltd 圧電セラミック組成物
JPH09202661A (ja) * 1996-01-26 1997-08-05 Toyota Motor Corp 圧電磁器組成物
US6818144B1 (en) * 2001-11-26 2004-11-16 The United States Of America As Represented By The Secretary Of The Army Ferroelectric/paraelectric materials, and phase shifter devices, true time delay devices and the like containing same
CN101767993A (zh) * 2010-01-26 2010-07-07 桂林理工大学 高压电常数锆钛酸镁钡系无铅压电陶瓷

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Dielectric and piezoelectric properties of low temperature synthesized iso-valent modified BT ceramics;Sonia Sharma;《Ceramics International》;20120416;第38卷(第7期);第5597-5603页 *
Effect of dopants (A=Mg2+, Ca2+ and Sr2+) on ferroelectric, dielectric and piezoelectric properties of (Ba1−xAx) (Ti0.98Zr0.02) O3 lead-free piezo ceramics;M. Chandraiah;《Ceramics International》;20150309;第41卷(第6期);第8040–8045页 *
Effect of MgO on piezoelectric, dielectric and ferroelectric properties of (Ba1−x Mgx) (Ti0.98 Zr0.02) O3 lead-free piezoceramics;M. Chandraiah;《Mater Electron》;20150605;第26卷(第9期);第6801-6806页 *

Also Published As

Publication number Publication date
CN111908913A (zh) 2020-11-10
CN112723880B (zh) 2023-04-07
CN112723880A (zh) 2021-04-30
CN112745116B (zh) 2023-05-12
CN112745116A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN103636018A (zh) 压电材料
JP5484506B2 (ja) セラミック粉末及び積層セラミックコンデンサ
CN109942292B (zh) 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN111908913B (zh) 一种耐高腐蚀的复合压电陶瓷材料及其制备方法
CN1719560A (zh) 单层电容器用晶界层陶瓷介质瓷料、基片的制造方法及其基片
CN113716956A (zh) 一种锆钛酸锶固溶改性钛酸铋钠基陶瓷材料及其制备方法
CN108558400B (zh) 一种锆钛酸钡钙基透明陶瓷的制备方法
CN102167585A (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
JP5629719B2 (ja) セラミック粉末及び積層セラミックコンデンサ
CN111807838B (zh) 一种Na0.25K0.25Bi2.5Nb2O9陶瓷的制备方法及其产品
CN112159227B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制作工艺
CN106986629B (zh) 一种钛酸铋基铋层状结构铁电陶瓷靶材的制备方法
JP7363966B2 (ja) 圧電セラミックス、セラミックス電子部品、及び、圧電セラミックスの製造方法
US9595399B2 (en) Solid-state ion capacitor
CN113213927B (zh) 一种化学计量失配的高储能铌酸银基陶瓷及其制备方法
CN1810711A (zh) 一种高居里点铌酸钾钠锂系无铅压电陶瓷及其制备方法
JP2011079720A (ja) 誘電体磁器組成物の製造方法
CN108997684B (zh) 高介电陶瓷/pvdf的复合材料及制备方法
CN1919791A (zh) 一种高Qm的铌酸钾钠基无铅压电陶瓷及其中频谐振器
CN112759385B (zh) 一种钙钛矿陶瓷材料及其制备方法与应用
CN103435344A (zh) 一种高频陶瓷滤波器用压电陶瓷材料
CN116082034B (zh) 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用
CN1420105A (zh) 陶瓷介质材料及其制备方法和用于生产陶瓷电容器的方法
CN110483034B (zh) 一种高介电常数np0型介质陶瓷
CN115215647A (zh) 一种用于加工覆铜板的陶瓷粉料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210407

Address after: Room 704, building 5, No. 556, Changjiang Road, high tech Zone, Suzhou, Jiangsu 215000

Applicant after: SUZHOU YUDESHUI ELECTRICAL TECHNOLOGY Co.,Ltd.

Address before: 215000 337 kejing Road, high tech Zone, Suzhou City, Jiangsu Province

Applicant before: Tang Ke

GR01 Patent grant
GR01 Patent grant