CN111898072B - 短索边界条件静力识别方法 - Google Patents

短索边界条件静力识别方法 Download PDF

Info

Publication number
CN111898072B
CN111898072B CN202010758877.2A CN202010758877A CN111898072B CN 111898072 B CN111898072 B CN 111898072B CN 202010758877 A CN202010758877 A CN 202010758877A CN 111898072 B CN111898072 B CN 111898072B
Authority
CN
China
Prior art keywords
section
cable
short
short cable
angular displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010758877.2A
Other languages
English (en)
Other versions
CN111898072A (zh
Inventor
彭曦
杨雨厚
王海华
毛晶
朱思蓉
蒋枫
王�华
李俊毅
韦宗志
玉开往
吴冬兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Jiaoke Group Co Ltd
Original Assignee
Guangxi Jiaoke Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Jiaoke Group Co Ltd filed Critical Guangxi Jiaoke Group Co Ltd
Priority to CN202010758877.2A priority Critical patent/CN111898072B/zh
Publication of CN111898072A publication Critical patent/CN111898072A/zh
Application granted granted Critical
Publication of CN111898072B publication Critical patent/CN111898072B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明属于工程技术领域,其公开了一种短索边界条件静力识别方法,该识别方法通过对短索施加一个垂直短索轴线的力,以作用点为分界线将短索分为两段,每段至少测试三个测试截面的角位移值,根据基本力学原理,即可推导得到简洁的短索边界条件表达式,从而识别获得短索边界条件;再者,本发明采用静力测试方法,利用高精度的角位移测试仪器,可进一步保证短索边界条件识别值的精度。

Description

短索边界条件静力识别方法
技术领域
本发明涉及工程技术领域,特别涉及一种短索边界条件静力识别方法。
背景技术
拉索是吊杆拱桥、斜拉桥和悬索桥等桥梁结构中受力最重要的组成部分,其安全性能将决定整个结构的安全。索力的变化会导致索结构的整体受力分布情况发生变化,严重的话甚至引起结构的实效、垮塌。近年来,连续有多座吊杆拱桥发生因拉索断裂而引发的桥梁垮塌事件,造成极大的人员伤亡与经济损失,也使桥梁的营运安全问题上升到全民关注的高度。索力测试是判断拉索是否正常工作的重要方式。
目前有不少关于索力的测试方法,如直接通过压力传感器进行测试,通过测试振动信号得到拉索的固有频率的振动法,通过动力测试与有限元进行计算对比,通过光纤传感器测试索的应变值得到索力,通过测试磁通量获得索力等。现有技术下,所得固有频率分析准确,可以认为测试得到的固有频率是相对准确的,因此虽然测试方法较多,但是振动法是在工程中应用最广泛。
索力的影响因素不少,刚度、边界条件及温度等,相应的,现有许多基于考虑拉索刚度和边界的索力精确解,但存在计算繁复、边界条件基本仅考虑简支或固支的问题。对于长索来说,不考虑抗弯刚度以及边界的影响,利用索力与振动频率之间建立的函数关系获得的索力仍有较高的精度,但对于短索索力识别则误差较大。
因此,本发明提出了一种快速准确的短索边界条件静力识别方法,此方法理论清晰、方便应用,且不需要在边界上布置测点,可以进一步解决使用振动法不能准确测量短索索力的问题。本发明的运用将大大提高短索索力测试精度和测试效率,使运用拉索承重的桥梁运营安全性得到保证。
发明内容
鉴于以上内容,有必要提供一种短索边界条件静力识别方法,该识别方法将短索看作是考虑抗弯刚度EI后的近似于轴向受拉的梁,然后通过短索变形与内力的关系,识别出短索的边界刚度。
为达到上述目的,本发明所采用的技术方案是:
一种短索边界条件静力识别方法,包括如下步骤:
第一步,对短索施加一个垂直的力F,以作用力的作用点为界限将短索分为OA段和OB段,以作用点为原点O,作用力方向为y轴,短索为x轴分别建立直角坐标系;
第二步,分别在OA段、OB段短索选取至少3个测试截面并布设角位移测试传感器,通过角位移测试传感器测量得到测试截面的角位移值;
第三步,用一元二次多项式分别拟合OA段、OB段测试截面角位移值,则有,OA段任意截面角位移θA关于x方向坐标xA的表达式为OB段任意截面角位移θB关于x方向坐标xB的表达式为/>即得到a0、a1、a2和b0、b1、b2
第四步,将上述a0、a1、a2和b0、b1、b2及短索两端边界x方向坐标值m、n带入如下公式即可计算得到短索边界条件识别值:
式中,krA表示OA段短索边界转动弹性刚度,krB表示OB段短索边界转动弹性刚度,EI表示短索抗弯刚度。
进一步地,在第一步中,施加的力F不宜过大,F作用下短索最大角位移不宜大于0.0175rad。
进一步地,在第二步中,角位移测试仪器精度不小于0.001°。
进一步地,在第三步中,一元二次多项式拟合方差应无限接近于1,最低不应小于0.999。
本发明通过对短索施加一个垂直短索轴线的力,将短索以作用点为界线分为两段,在每段短索至少选取三个测试截面,在测试截面处布置高精度角位移测试仪器,用测试截面的角位移值拟合角位移的多项式,最后利用基本力学原理,推导获得短索边界条件表达式。
与现有技术相比,本发明具有以下有益效果:
1、本发明针对拉索实际边界条件识别问题,提出了力学理论清晰、识别精度高、方便操作的方法,其只需对短索施加一个垂直力,测试短索测试截面的角位移值,即可通过简洁的表达式获得短索边界条件的识别值,提高短索索力的测试精度和测试效率。
2、本发明是一种静力测试方法,只需保证角位移值的测试精度和施加作用力的准确性,即可保证短索抗弯边界条件识别值的精度。
3、本发明提出的方法不需要在短索边界处布设传感器和获得短索振动特性等,适应性强,在实际工程中具有显著优势。
附图说明
图1是短索示意图。
图2是实施例短索有限元模型图。
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参阅图1,在本发明的一种较佳实施方式中,一种短索边界条件静力识别方法,包括如下步骤:
第一步,对短索施加一个垂直短索轴线的力F,以作用力的作用点为界限将短索分为OA段和OB段,以作用点为原点O,作用力方向为y轴,短索为x轴分别建立直角坐标系;施加作用力时,优选施加在短索的中部,且施加的力F不宜过大,F作用下短索最大角位移不宜大于0.0175rad。
第二步,分别在OA段、OB段短索选取至少3个测试截面并布设角位移测试传感器,通过角位移测试传感器(或者说倾角仪)测量得到测试截面的角位移值,优选使角位移测试仪器精度不小于0.001°。
第三步,用一元二次多项式分别拟合OA段、OB段测试截面角位移值,则有,OA段任意截面角位移θA关于x方向坐标xA的表达式为OB段任意截面角位移θB关于x方向坐标xB的表达式为/>即得到a0、a1、a2和b0、b1、b2
也就是,OA段短索任意截面x方向坐标用xA表示,角位移用θA表示,OB段短索任意截面x方向的坐标用xB表示,角位移用θB表示;OA段第i个测试截面x方向坐标表示为xAi,角位移测试值表示为θAi,则该测试截面的坐标为(xAi,θAi),同理OB段第i个角位移测试截面的坐标表示为(xBi,θBi);
代入短索OA段和OB段测试截面测试数据(xAi,θAi)、(xBi,θBi),用一元二次多项式分别拟合,则得到OA段任意截面角位移θA关于xA的表达式为
OB段任意截面角位移θB关于xB的表达式为
上式中,a0和b0分别为两个拟合函数的常数项,a1和b1分别为两个拟合函数的一次项系数,a2和b2分别为两个拟合函数的二次项系数。
每个拟合函数代入三个测试截面测试数据,即可得到a0、a1、a2和b0、b1、b2,在求取a0、a1、a2和b0、b1、b2时,需要注意,一元二次多项式拟合方差应无限接近于1,最低不应小于0.999。
第四步,将上述a0、a1、a2和b0、b1、b2及短索两端边界x方向坐标值m、n带入如下公式即可计算得到短索边界条件识别值:
式中,krA表示OA段短索边界转动弹性刚度,krB表示OB段短索边界转动弹性刚度,EI表示短索抗弯刚度。
上式第四步,可获得短索边界刚度的表达式,其基于如下得到的:
由于实际索的边界介于铰接和固接之间,因此,假定索两端边界为弹性嵌固,弹性支撑刚度无限大,仅转动刚度为未知量。根据理论力学原理有如下关系式:
式中,M表示弯矩,EI表示短索抗弯刚度。
联立式(1)、(2)、(3),则有,
式中,θA(m)和θ′A(m)表示OA段角位移表达式θA和其一阶导在xA=m处的计算值;θB(m)和θ′B(m)表示OB段角位移表达式θB和其一阶导在xB=n处的计算值;MA和MB分别表示A端和B端的弯矩。
实施例
某座桥梁短索长4.568m,采用抗拉强度标准值为1860MPa的钢绞线,弹性模量E为195GPa,惯性矩I为67.96561cm4。建立MIDAS有限元模型对该吊杆进行分析计算,A端约束转动刚度为600kN·m/[rad],B端约束转动刚度为150kN·m/[rad],在吊杆中间位置施加大小为5kN的水平力F,有限元模型见图2。
水平力施加位置设为坐标原点O,以O点位分界点并将短吊杆分为OA和OB两段,则有OA段、OB段长均为2.284m,取OA段四分点对应截面A1、A2、A3,取OB段四分点B1、B2、B3分别作为测试截面进行分析。OA段、OB段测试截面坐标见下表:
数据点 A1 A2 A3 B1 B2 B3
x(m) 0.571 1.142 1.713 0.571 1.142 1.713
θ(rad) 0.012739 0.016938 0.014341 0.009897 0.016035 0.016668
注:表中x对应值为测试截面在x轴方向的坐标值,θ为测试截面的角位移值。
则有A段拟合多项式为B段拟合多项式为/>即有a0=0.001744、a1=0.025206655、a2=-0.010422002和b0=-0.001746、b1=0.025211033、b2=-0.00844219。
使用本发明方法所给的式(4)计算所得的边界刚度和理论边界刚度见下表:
边界刚度 单位 计算值 理论值 相对误差(%)
A端转动刚度krA kN·m/[rad] 600 600 0
B端转动刚度krB kN·m/[rad] 150 150 0
从上表中所列值可知,使用本发明方法可以高精度地识别出短索两端边界条件,因此,本发明可以为采用振动频率法测试短索索力提供技术支持。
上述说明是针对本发明较佳可行实施例的详细说明,但实施例并非用以限定本发明的专利申请范围,凡本发明所提示的技术精神下所完成的同等变化或修饰变更,均应属于本发明所涵盖专利范围。

Claims (4)

1.一种短索边界条件静力识别方法,其特征在于,包括如下步骤:
第一步,对短索施加一个垂直的力F,以作用力的作用点为界限将短索分为OA段和OB段,以作用点为原点O,作用力方向为y轴,短索为x轴分别建立直角坐标系;
第二步,分别在OA段、OB段短索选取至少3个测试截面并布设角位移测试传感器,通过角位移测试传感器测量得到测试截面的角位移值;
第三步,用一元二次多项式分别拟合OA段、OB段测试截面角位移值,则有,OA段任意截面角位移θA关于x方向坐标xA的表达式为OB段任意截面角位移θB关于x方向坐标xB的表达式为/>即得到a0、a1、a2和b0、b1、b2
第四步,假定索两端边界为弹性嵌固,弹性支撑刚度无限大,仅转动刚度为未知量;根据理论力学原理有如下关系式:
式中,M表示弯矩,EI表示短索抗弯刚度;
由此得到如下计算公式以计算短索边界条件识别值:
式中,θA(m)和θ′A(m)表示OA段角位移表达式θA和其一阶导在xA=m处的计算值;θB(m)和θB′(m)表示OB段角位移表达式θB和其一阶导在xB=n处的计算值;MA和MB分别表示A端和B端的弯矩;krA表示OA段短索边界转动弹性刚度,krB表示OB段短索边界转动弹性刚度,EI表示短索抗弯刚度;
将上述a0、a1、a2和b0、b1、b2及短索两端边界x方向坐标值m、n带入上述计算短索边界条件识别值的计算公式即可计算得到短索边界条件识别值。
2.根据权利要求1所述的短索边界条件静力识别方法,其特征在于,在第一步中,施加的力F不宜过大,F作用下短索最大角位移不大于0.0175rad。
3.根据权利要求1所述的短索边界条件静力识别方法,其特征在于,在第二步中,角位移测试仪器精度不小于0.001°。
4.根据权利要求1所述的短索边界条件静力识别方法,其特征在于,在第三步中,一元二次多项式拟合方差应无限接近于1,最低不小于0.999。
CN202010758877.2A 2020-07-31 2020-07-31 短索边界条件静力识别方法 Active CN111898072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010758877.2A CN111898072B (zh) 2020-07-31 2020-07-31 短索边界条件静力识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010758877.2A CN111898072B (zh) 2020-07-31 2020-07-31 短索边界条件静力识别方法

Publications (2)

Publication Number Publication Date
CN111898072A CN111898072A (zh) 2020-11-06
CN111898072B true CN111898072B (zh) 2023-09-12

Family

ID=73182903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010758877.2A Active CN111898072B (zh) 2020-07-31 2020-07-31 短索边界条件静力识别方法

Country Status (1)

Country Link
CN (1) CN111898072B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787170A (zh) * 2016-02-26 2016-07-20 北京工业大学 一种基于全因子试验的组合簧片式空间可展结构优化设计方法
CN106894328A (zh) * 2017-02-20 2017-06-27 重庆大学 一种π形结合梁剪力滞的处理方法
CN108388716A (zh) * 2018-02-08 2018-08-10 长沙理工大学 一种空间斜拉索的平面等效分析方法及模型
KR101938352B1 (ko) * 2018-04-30 2019-01-14 김도빈 상시진동실험 데이터로 교량의 강성계수의 산출이 가능한 것을 특징으로 하는 교량의 강성계수 산출 방법 및 프로그램
CN109783840A (zh) * 2018-11-30 2019-05-21 华南理工大学 一种直齿圆柱齿轮内啮合齿轮副时变啮合刚度的计算方法
CN111307614A (zh) * 2020-03-31 2020-06-19 广西交科集团有限公司 连续梁分段抗弯及剪切刚度测定方法
CN111337212A (zh) * 2020-03-31 2020-06-26 广西交科集团有限公司 未知状态下基于转角的简支梁最大挠度测定方法
CN111428413A (zh) * 2020-03-31 2020-07-17 广西交科集团有限公司 连续梁分段抗弯刚度识别方法
CN111460558A (zh) * 2020-03-31 2020-07-28 广西交科集团有限公司 基于位移和转角的梁结构初始状态识别方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787170A (zh) * 2016-02-26 2016-07-20 北京工业大学 一种基于全因子试验的组合簧片式空间可展结构优化设计方法
CN106894328A (zh) * 2017-02-20 2017-06-27 重庆大学 一种π形结合梁剪力滞的处理方法
CN108388716A (zh) * 2018-02-08 2018-08-10 长沙理工大学 一种空间斜拉索的平面等效分析方法及模型
KR101938352B1 (ko) * 2018-04-30 2019-01-14 김도빈 상시진동실험 데이터로 교량의 강성계수의 산출이 가능한 것을 특징으로 하는 교량의 강성계수 산출 방법 및 프로그램
CN109783840A (zh) * 2018-11-30 2019-05-21 华南理工大学 一种直齿圆柱齿轮内啮合齿轮副时变啮合刚度的计算方法
CN111307614A (zh) * 2020-03-31 2020-06-19 广西交科集团有限公司 连续梁分段抗弯及剪切刚度测定方法
CN111337212A (zh) * 2020-03-31 2020-06-26 广西交科集团有限公司 未知状态下基于转角的简支梁最大挠度测定方法
CN111428413A (zh) * 2020-03-31 2020-07-17 广西交科集团有限公司 连续梁分段抗弯刚度识别方法
CN111460558A (zh) * 2020-03-31 2020-07-28 广西交科集团有限公司 基于位移和转角的梁结构初始状态识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
analysis of the tool tip radial stiffness of turn-milling centers;Olvera D 等;《The international journal of advanced manufacturing technology》;第60卷(第9-12期);883-891 *

Also Published As

Publication number Publication date
CN111898072A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2021036751A1 (zh) 支座反力影响线曲率的连续梁损伤识别方法
CN102735386B (zh) 考虑弯曲刚度的斜拉索索力数值计算方法
CN108195554B (zh) 六分量光纤气动力测量天平及输出信号组合方法
CN108846149B (zh) 一种基于多源不确定性的结构分布式动态载荷识别的方法
CN105241630A (zh) 应用于激波风洞测力试验的脉冲型杆式应变天平
CN110501126B (zh) 基于支座反力和挠度曲率的梁结构损伤识别方法
CN107389284B (zh) 一种基于应变的框架结构弹性变形的测量方法
CN110487576B (zh) 损伤状态倾角对称斜率的等截面梁损伤识别方法
CN112182697B (zh) 一种有阻尼吊杆系统张力的高精度动测法
CN108507753B (zh) 一种三分量光纤天平的输出信号组合方法
CN108268729B (zh) 输电导线的弹性模量频率灵敏度分析方法及系统
CN112985671A (zh) 基于全索系索力测试和误差自适应分析的损伤判定方法
CN111898072B (zh) 短索边界条件静力识别方法
CN110489916B (zh) 基于损伤状态倾角影响线曲率的等截面梁损伤识别方法
CN110887448B (zh) 一种基于光纤应变测量的梁结构形态重构方法
CN111896200B (zh) 短索抗弯刚度测试方法
CN104978464A (zh) 悬索桥吊索索力测定方法
CN110472369B (zh) 挠度曲率的梁结构损伤识别方法
CN110501127B (zh) 一种基于损伤状态倾角斜率的等截面梁损伤识别方法
CN110472368B (zh) 基于剪力和倾角影响线曲率的简支梁损伤识别方法
CN110487579B (zh) 一种基于倾角斜率的梁结构损伤识别方法
CN114370960B (zh) 拉杆载荷测量方法、装置、系统及存储介质
CN111506944A (zh) 考虑塔线耦合效应的杆塔风荷载脉动折减系数计算方法
CN110501177B (zh) 基于自由端倾角影响线曲率的悬臂梁损伤识别方法
CN110487574A (zh) 基于倾角影响线曲率的梁结构损伤识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant