CN108388716A - 一种空间斜拉索的平面等效分析方法及模型 - Google Patents

一种空间斜拉索的平面等效分析方法及模型 Download PDF

Info

Publication number
CN108388716A
CN108388716A CN201810127655.3A CN201810127655A CN108388716A CN 108388716 A CN108388716 A CN 108388716A CN 201810127655 A CN201810127655 A CN 201810127655A CN 108388716 A CN108388716 A CN 108388716A
Authority
CN
China
Prior art keywords
space
cable
suspension cable
plane
anchor point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810127655.3A
Other languages
English (en)
Other versions
CN108388716B (zh
Inventor
陈常松
李炎
董道福
裴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201810127655.3A priority Critical patent/CN108388716B/zh
Publication of CN108388716A publication Critical patent/CN108388716A/zh
Application granted granted Critical
Publication of CN108388716B publication Critical patent/CN108388716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/04Cable-stayed bridges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明公开了一种空间斜拉索的平面等效分析方法及模型,当表征各索面空间程度的参数小于阈值0.02时,按照平行索面等效计算方法表征斜拉桥空间索面的空间几何尺度;否则,按照空间斜拉索的平面等效方法表征斜拉桥空间索面的空间几何尺度。本发明能建立精确的平面等效理论,确保具有空间模型的准确度和平面模型的效率。

Description

一种空间斜拉索的平面等效分析方法及模型
技术领域
本发明涉及空间斜拉索分析领域,特别是一种空间斜拉索的平面等效分析方法及模型。
背景技术
在计算施工过程的斜拉桥时,由于工况多,而且要同时计入非线性效应、混凝土收缩徐变等效应,有限元模型的计算规模和计算时间是非常重要的考虑因素。斜拉桥的三维模型的计算分析对于计算用的内存空间是非常高的,要求同时计算时间也是比较长的,尤其对于大跨径斜拉桥的施工全过程计算,采用空间模型计算其计算速度或效率是非常低的比较占用内存空间的。实际上,对于大跨度斜拉桥,在恒载或活载的作用下其主要受力构件主梁和索塔仍以立面或竖平面的受力为主,因此工程上斜拉桥的施工全过程分析仍以平面有限元分析为主。对于空间索面斜拉桥,虽然单根斜拉索的变形和受力也发生在竖平面内,但每根斜拉索的竖平面是不同的,同时斜拉索的空间锚点与平面有限元模型的连接关系也是非常复杂的。因此空间斜拉索的平面等效方法是斜拉桥平面有限元模型建立的关键。
发明内容
本发明旨在提供一种空间斜拉索的平面等效分析方法及模型,建立精确的平面等效理论,确保具有空间模型的准确度和平面模型的效率。
为解决上述技术问题,本发明所采用的技术方案是:一种空间斜拉索的分析方法,当表征各索面空间程度的参数小于阈值0.02时,按照平行索面等效计算方法表征斜拉桥空间索面的空间几何尺度;否则,按照空间斜拉索的平面等效方法表征斜拉桥空间索面的空间几何尺度。
本发明中,其中cosαn为第i根斜拉索的水平投影线与桥面中心线的夹角;m为斜拉索根数。其中,yj为斜拉索钢臂末端结点的纵坐标,yi为斜拉索钢臂首端结点的纵坐标,l0为斜拉索在拖动坐标系轴上的投影长度;所述拖动坐标系的建立过程如下:以悬链线索元锚点i′、j′所在的竖平面为拖动系的平面,以锚点i′为坐标系原点,轴与Z轴平行,坐标系即随i′j′索元变形而拖动的单元拖动坐标系。
所述空间斜拉索的平面等效分析方法为:{ΔF}e=[KT]e{Δδ}e;其中,[KT]e为空间斜拉索在平面YZ内的等效索单元切线刚度矩阵;为空间斜拉索索端力的等效结点力, Δl为空间斜拉索在拖动坐标系X方向的投影长度变化量,K为组成刚度矩阵的系数;Δc为空间斜拉索在拖动坐标系Z方向的投影长度变化量;所述拖动坐标系建立过程如下:以悬链线索元锚点i′、j′所在的竖平面为拖动系的平面,以锚点i′为坐标系原点,轴与Z轴平行,坐标系即随i′j′索元变形而拖动的单元拖动坐标系,在整体坐标系XYZ内,锚点i′坐标为锚点j′坐标为Δzj表示j端钢臂在z方向上的投影长度,Δyj表示j端钢臂在y方向上的投影长度,同理Δzi、Δyi表示i钢臂在z和y方向上的投影长度, (uj,vjj)为结构变形时,空间斜拉索平面模型上主梁或索塔单元的末端结点j在YZ面内的水平位移,竖向位移,转角位移;(ui,vii)为结构变形时,空间斜拉索平面模型上主梁或索塔单元的首端结点i在YZ面内的水平位移,竖向位移,转角位移。
相应地,本发明还提供了一种空间斜拉索的分析模型,该模型表达式为:{ΔF}e=[KT]e{Δδ}e;其中,[KT]e为空间斜拉索在平面YZ内的等效索单元切线刚度矩阵;为空间斜拉索索端力的等效结点力,Δl为空间斜拉索在拖动坐标系X方向的投影长度变化量,K为组成刚度矩阵的系数;Δc为空间斜拉索在拖动坐标系Z方向的投影长度变化量;所述拖动坐标系建立过程如下:以悬链线索元锚点i′、j′所在的竖平面为拖动系的平面,以锚点i′为坐标系原点,轴与Z轴平行,坐标系即随i′j′索元变形而拖动的单元拖动坐标系,在整体坐标系XYZ内,锚点i′坐标为锚点j′坐标为 Δzj表示j端钢臂在z方向上的投影长度,Δyj表示j端钢臂在y方向上的投影长度,同理Δzi、Δyi表示i钢臂在z和y方向上的投影长度,(uj,vjj)为结构变形时,空间斜拉索平面模型上主梁或索塔单元的末端结点j在YZ面内的水平位移,竖向位移,转角位移;(ui,vii)为结构变形时,空间斜拉索平面模型上主梁或索塔单元的首端结点i在YZ面内的水平位移,竖向位移,转角位移。
与现有技术相比,本发明所具有的有益效果为:本发明能建立精确的平面等效理论,确保具有空间模型的准确度和平面模型的效率。
附图说明
图1为带刚臂的悬链线索元;
图2为钢臂示意图;
图3为拖动坐标系内的单根斜拉索示意图;
图4为空间斜拉索锚点的位移模式示意图;
图5为Δl与结点ij位移分量之间的关系图;
图6为空间斜拉索的平面布置图;
图7单根索斜拉桥计算模型示意图。
具体实施方式
1分析假设
在空间斜拉索的平面等效分析中,斜拉索锚点横桥向的变形忽略不计,只计竖向和顺桥向的变形,该假设对于斜拉桥是合适的;同时对于斜拉索采用4条假定:(1)主缆为线弹性材料,其应力应变关系符合胡克定律;(2)索是理想柔性的,只能承受拉力而不能受压和抗弯;(3)不考虑主缆横截面在变形前后的变化;(4)主缆的自重恒载集度沿索长为常量,但变形前后可以不同。根据上述假设,单根空间斜拉索仅在自重作用下的线型均在一竖平面内且为一悬链线。同时,由于斜拉桥主梁或索塔横桥向变形很小,结构变形主要发生在竖平面,因而忽略横向位移,并且斜拉索锚点与相邻主梁或索塔结点的局部变形也忽略不计,应该说,这种假设在斜拉桥整体计算分析时是可行的,因此基于该假设斜拉索的锚点与相邻结点之间可用刚臂来连接。
2拖动坐标系中的空间斜拉索
对于具有空间索面的斜拉桥,其斜拉索单元宜用拖动坐标系分析。虽然各拉索组成的索面是复杂的,但单根斜拉索仅在自重作用下的线型却均在各自的竖平面内,如图4所示。
因此索单元的拖动坐标轴按如下方式建立:以悬链线索元锚点i′、j′所在的竖平面为拖动系的平面,以锚点i′为坐标系原点,轴与Z轴平行,平面与XY平面平行,很显然坐标系总随i′j′索元变形而拖动的单元拖动坐标系。在坐标系内,i′点坐标为(0,0,0),j′点坐标为(l0,0,c0),而在整体坐标系XYZ内,i′结点坐标为而j′结点坐标为显然拖动坐标系两个正交轴的投影长度分别为:
(l0:斜拉索在拖动坐标系轴上的投影长度,c0斜拉索在拖动坐标系轴上的投影长度)
在拖动坐标系内,设索元i′j′的索端力为
其中,(E:斜拉索的弹性模量,q:沿索自重均布荷载集度,S0无应力索长,l、c:斜拉索在拖动坐标系中x、z方向上的投影长度)如果已知索元i′j′的E、q、s0、l、c参数,则可推导出拖动坐标系下,索元i′j′两切线刚度方程:
且有(Δl为斜拉索在拖动坐标系X方向的投影长度变化量,Δc为斜拉索在拖动坐标系Z方向的投影长度变化量)式中,r11,r12,r21,r22见文献《带刚臂的两节点精确悬链线索元的非线性分析》。
(主缆抗拉刚度为EA,沿索自重均布荷载集度为q,索元始端i的索力为Ti,水平分力为Hi,竖向分力为Vi,末端j的索力为Tj,水平分力为Hj,竖向分力为Vj,H=-Hi=Hj)
当l=0时,即拉索处于竖直状态时,
3基于刚臂假设的空间斜拉索锚点的位移模式
设j为斜拉桥平面模型上主梁或索塔单元的结点,i表示首端结点,j表示末端结点。索塔上为末端结点,主梁上的为首端结点。由于斜拉桥静力受力特征为平面内受力为主,j点通常取在斜拉桥竖平面内,也在桥梁横向对称面内,不失一般性可设j点为YZ平面内,斜拉索锚点为j′,根据前面假设,结构变形主要发生在竖平面YZ内,设j点的YZ面内位移为(uj,vjj),则锚点j′的坐标在变形前为:
变形后内结点j′的坐标由刚臂变形特点可求得:
同理可得到拉索另一端刚性连接与锚点i'变形后的坐标:
由式(6)~(8)可知,变形前后拉索两端锚固点j′和i'的竖向相对坐标投影距离c0和c分别为:
c=zj'-zi'=c0+vj+Δyjθj-vi-Δyiθi (10)
则有Δc与结点ij位移分量之间的关系如下:
Δl与结点ij位移分量之间的关系可由图6表示
且有
其中则有
由上式可得:
dl0=cosαda
则有
由式(11)和(14)可得
式中
4空间斜拉索索端力的转换关系
(1)刚臂两端结点力的转换
由图2可知,设索单元i′j′在整体坐标系下的索端力增量为:
{ΔF'}e=[ΔFxi' ΔFyi' ΔFzi' ΔFxj' ΔFyi' ΔFzi']T下面推导j′锚点在相连结点j上产生的YZ平面上的结点力。根据图2的几何关系有:
同理i′锚点与相连的i结点上的YZ平面内的结点力为:
于是索元i′j′两端的YZ面内的结点力为:
式中:
(2)索端力在索元拖动坐标与整体坐标间的转换
为了推导拖动坐标系与整体坐标系XYZ之间索单元索端力之间的转换关系如下,设j′端索端力在拖动坐标系中的为整体坐标系中索端力为[ΔFxj′ ΔFzj′]T,则有
式中:
同理
综合式(20)和(21),则空间斜拉索索端力的等效结点力可由下式表述:
当然,索端力的累计量也有上述转换关系。
5空间斜拉索平面等效单元刚度矩阵
由式(5)、(15)可得增量关系:
将上式代入式(22)得:
{ΔF}e=[KT]e{Δδ}e
式中,[KT]e即为空间斜拉索在平面YZ内的等效索单元切线刚度矩阵。
由上式可见,空间斜拉索平面等效切线刚度矩阵与平面斜拉索切线刚度矩阵之间的区别在于参数cosα,其中:
当cosα→1时,斜拉索索面就趋于平行索面,式(24)就自动退化成文献《带刚臂的两节点精确悬链线索元的非线性分析》中的平面切线刚度矩阵;当cosα越小,索面越往横向布置,空间几何效应越明显。
由于斜拉桥中每根斜拉索的cosαi值各不相同,为了表征斜拉桥空间索面的空间几何尺度,可采用参数表征各索面的空间程度,有
式中,αm是各斜拉索水平投影线角度,m为斜拉索根数。有表征平行索面,表征最大的竖平面布置。
通过运用上述的计算理论对不同cosα角的斜拉索进行理论计算分析,通过上述方法分析出不同值的索面对斜拉桥成桥状态的影响,进行数据对比分析制定出当小于0.02时,该索面的空间几何效应影响不明显,可以按照平行索面等效计算,当大于等于0.02时,计算需要应考虑斜拉索的空间几何效应。
1空间单根索斜拉桥模型验证
如图7所示为分析单根斜拉索空间几何效应的计算模型(共6个单元),索塔两侧各有一空间索面斜拉索。计算此空间在斜拉索对称同步张拉及悬臂端同步施加集中力P的变形与内力。同时为了验证平面等效计算方法(编写成CSBC程序),另采用MIDAS程序建立了空间索面的斜拉桥计算模型(共8个单元)进行同步计算。斜拉索弹性模量E=1.95×105MPa。
为了分析不同索长的空间效应,根据斜拉桥的设计常用参数设置了短索(索长128.122m)和长索(索长494.597m)两种计算情况,并计算了长短索在宽桥(主梁宽约57m)和窄桥(主梁宽约14m),这样索长和空间索面特征参数涵盖了目前空间索面斜拉桥的大部分范围。同时计算过程全面考虑结构的几何非线性且不计材料非线性,为了验证空间斜拉索的平面等效算法,在非线性计算收敛的前提下将主梁抗弯刚度尽量取小。其它相关计算参数见表1。
表1基本计算参数
初始位形下斜拉索刚臂内结点与结点的相对位置见表2,△xi为梁端横桥向刚臂内结点和结点之间的相对位置,通过改变斜拉索梁端刚臂内结点与相关主梁结点的横桥向相对位置x来模拟不同空间角度的斜拉索,不同的△xi对应着不同的cosα值,因此x为变量。
表2刚臂位置参数
为了模拟斜拉桥施工过程,计算由如下两个工况组成:①首先塔两侧拉索对称张拉。当为短索时,5号和6号单元的初张力为4907KN;当为长索时,5呈和6号单元的初张力为7965KN,张拉完成后锚固。②然后在主梁两悬臂端同时对称施加相同竖向荷载P。
(1)与MIDAS空间计算结果比较
为了验证理论算法的正确性和有效性,另采用桥梁专用分析软件MIDAS建立本算例的空间模型,用于比较CSBC的计算结果。主要计算结果对比如表3、表4所示。
表3空间索面几何特征较小且为短索时主梁悬臂位移和根部内力对比(cosα=0.9380,桥宽14m)
表4空间索面几何特征较大且为短索主梁悬臂位移和根部内力对比(cosα=0.5254,桥宽57m)
由表3~表4可知,短索模型在相同cosα和P的条件下,在通常的空间索面几何特征变化范围内MIDAS与CSBC计算出的主梁悬臂端竖向位移基本一致,在P=1000kN和P=8000kN时索力分别相差0.5%和0.8%。
表5空间索面几何特征较小且为长索时主梁悬臂位移和根部内力对比(cosα=0.9999,桥宽14m)
表6空间索面几何特征较大且为长索时主梁悬臂位移和根部内力对比(cosα=0.9982,桥宽57m)
由表5~表6可知,在通常的空间索面几何特征变化范围内长索模型在相同cosα和P的条件下,MIDAS与CSBC计算出的主梁悬臂端竖向位移相对百分差值为1.7%,在P=1000kN和P=8000kN时索力分别相差2.2%和2.8%。
由上述分析可知结果可知,无论是短索还是长索情况,在通常的空间索面几何特征变化范围内MIDAS和CSBC两种计算程序分析的位移和内力结果一致较好,该算命结果直接验证了本文空间索面斜拉桥平面等效有限元算法的正确有效性。
(2)不同空间特征参数的计算结果比较
为了探讨长短索时不同空间特征参数和不同荷载大小下的计算模型主梁的变形规律,将悬臂端的集中荷载P大小与空间特征参数cosα进行变化,计算后得到了图5~图6所示的分析结果。
表7短索时不同索面空间程序主梁悬臂位移
注:cosα=1.0000为平行索面,后同。
表8空间索面几何特征较小且为长索时主梁悬臂位移和根部内力对比表(cosα=0.9999,桥宽14m)
首先根据表7和表8可知,在相同的荷载作用下随着斜拉索的空间程度越大(即特征参数cosα越小),主梁变形越大,说明整个斜拉索在竖平面内的刚度越小。短索时在算例荷载范围内即P=1000~8000KN,表中最大索面空间程度与平行索面位移相差约6.9%。而为长索时最大索面空间程度与平行索面位移相差约0.4%,说明因索越长其空间程度越小,索面空间程度对拉索刚度的影响越小,在索长为128.122m的短索时,拉索刚度因空间索面而减小6.5%。因此可以推断当桥宽为57m时,当索长小于460m,空间索面与平行索面间的刚度差别将大于1%,所以空间斜拉桥跨径较小而桥面较宽时斜拉索的空间几何程度对结构的刚度影响还是需要考虑的。

Claims (6)

1.一种空间斜拉索的分析方法,其特征在于,当表征各索面空间程度的参数小于阈值T时,按照平行索面等效计算方法表征斜拉桥空间索面的空间几何尺度;否则,按照空间斜拉索的平面等效方法表征斜拉桥空间索面的空间几何尺度。
2.根据权利要求1所述的空间斜拉索的分析方法,其特征在于,阈值T=0.02。
3.根据权利要求1所述的空间斜拉索的分析方法,其特征在于,
其中cosαi为第i根斜拉索的水平投影线与桥面中心线的夹角;m为斜拉索根数。
4.根据权利要求3所述的空间斜拉索的分析方法,其特征在于,
其中,yj为斜拉索钢臂末端结点的纵坐标,yi为斜拉索钢臂首端结点的纵坐标,l0为斜拉索在拖动坐标系轴上的投影长度;所述拖动坐标系的建立过程如下:以悬链线索元锚点i′、j′所在的竖平面为拖动系的平面,以锚点i′为坐标系原点,轴与Z轴平行,坐标系即随i′j′索元变形而拖动的单元拖动坐标系。
5.根据权利要求1所述的空间斜拉索的分析方法,其特征在于,所述空间斜拉索的平面等效分析方法为:{ΔF}e=[KT]e{Δδ}e;其中,[KT]e为空间斜拉索在平面YZ内的等效索单元切线刚度矩阵;
为空间斜拉索索端力的等效结点力,
Δl为空间斜拉索在拖动坐标系X方向的投影长度变化量,K为组成刚度矩阵的系数;Δc为空间斜拉索在拖动坐标系Z方向的投影长度变化量;所述拖动坐标系建立过程如下:以悬链线索元锚点i′、j′所在的竖平面为拖动系的平面,以锚点i′为坐标系原点,轴与Z轴平行,坐标系即随i′j′索元变形而拖动的单元拖动坐标系,在整体坐标系XYZ内,锚点i′坐标为锚点j′坐标为 Δzj表示j端钢臂在z方向上的投影长度,Δyj表示j端钢臂在y方向上的投影长度,同理Δzi、Δyi表示i钢臂在z方向和y方向上的投影长度, (uj,vjj)为结构变形时,空间斜拉索平面模型上主梁或索塔单元的末端结点j在YZ面内的水平位移,竖向位移,转角位移;(ui,vii)为结构变形时,
空间斜拉索平面模型上主梁或索塔单元的首端结点i在YZ面内的水平位移,竖向位移,转角位移。
6.一种空间斜拉索的分析模型,其特征在于,该模型表达式为:{ΔF}e=[KT]e{Δδ}e;其中,[KT]e为空间斜拉索在平面YZ内的等效索单元切线刚度矩阵; 为空间斜拉索索端力的等效结点力, △l为空间斜拉索在拖动坐标系X方向的投影长度变化量,K为组成刚度矩阵的系数;Δc为空间斜拉索在拖动坐标系Z方向的投影长度变化量;所述拖动坐标系建立过程如下:以悬链线索元锚点i′、j′所在的竖平面为拖动系的平面,以锚点i′为坐标系原点,轴与Z轴平行,坐标系即随i′j′索元变形而拖动的单元拖动坐标系,在整体坐标系XYZ内,锚点i′坐标为锚点j′坐标为 Δzj表示j端钢臂在z方向上的投影长度,Δyj表示j端钢臂在y方向上的投影长度,同理Δzi、Δyi表示i钢臂在z和y方向上的投影长度, (uj,vjj)为结构变形时,空间斜拉索平面模型上主梁或索塔单元的末端结点j在YZ面内的水平位移,竖向位移,转角位移;(ui,vii)为结构变形时,空间斜拉索平面模型上主梁或索塔单元的首端结点i在YZ面内的水平位移,竖向位移,转角位移。
CN201810127655.3A 2018-02-08 2018-02-08 一种空间斜拉索的平面等效分析方法及模型的构建方法 Active CN108388716B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810127655.3A CN108388716B (zh) 2018-02-08 2018-02-08 一种空间斜拉索的平面等效分析方法及模型的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810127655.3A CN108388716B (zh) 2018-02-08 2018-02-08 一种空间斜拉索的平面等效分析方法及模型的构建方法

Publications (2)

Publication Number Publication Date
CN108388716A true CN108388716A (zh) 2018-08-10
CN108388716B CN108388716B (zh) 2021-07-02

Family

ID=63075329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810127655.3A Active CN108388716B (zh) 2018-02-08 2018-02-08 一种空间斜拉索的平面等效分析方法及模型的构建方法

Country Status (1)

Country Link
CN (1) CN108388716B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110807221A (zh) * 2019-11-04 2020-02-18 珠海交通工程技术有限公司 基于等效力位移法的索力计算方法
CN111898072A (zh) * 2020-07-31 2020-11-06 广西交科集团有限公司 短索边界条件静力识别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233436A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Structural analysis apparatus, structural analysis method, and structural analysis program
CN101710011A (zh) * 2009-12-16 2010-05-19 中铁大桥局股份有限公司 Pc钢绞线斜拉索的索力测试及监控方法
CN106777778A (zh) * 2017-01-05 2017-05-31 南京林业大学 一种单侧悬吊的曲梁悬索桥建模方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233436A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Structural analysis apparatus, structural analysis method, and structural analysis program
CN101710011A (zh) * 2009-12-16 2010-05-19 中铁大桥局股份有限公司 Pc钢绞线斜拉索的索力测试及监控方法
CN106777778A (zh) * 2017-01-05 2017-05-31 南京林业大学 一种单侧悬吊的曲梁悬索桥建模方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
M. AHMADIZADEH: "《Three-dimensional geometrically nonlinear analysis of slack cable structures》", 《COMPUTERS AND STRUCTURES》 *
吴溉原等: "《大跨度混合梁斜拉桥几何非线性影响分析》", 《公路与汽运》 *
赵雷等: "《分幅斜拉桥斜拉索无应力长度的简化计算方法》", 《重庆交通大学学报》 *
陈常松等: "《带刚臂的两节点精确悬链线索元的非线性分析》", 《工程力学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110807221A (zh) * 2019-11-04 2020-02-18 珠海交通工程技术有限公司 基于等效力位移法的索力计算方法
CN111898072A (zh) * 2020-07-31 2020-11-06 广西交科集团有限公司 短索边界条件静力识别方法
CN111898072B (zh) * 2020-07-31 2023-09-12 广西交科集团有限公司 短索边界条件静力识别方法

Also Published As

Publication number Publication date
CN108388716B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN111523172B (zh) 一种空间异形索面悬索桥主缆成桥线形分析方法
CN110990913B (zh) 一种采用水平面内合力控制的边跨找形方法
CN108460229B (zh) 连续桥面结构桥梁拉索内力的调整方法
CN105568864B (zh) 确定斜拉桥合理施工索力的综合算法
CN110032829B (zh) 钢-混凝土组合梁的应力计算方法
Bartoli et al. A simplified approach to bridge deck flutter
CN111859768B (zh) 基于单梁有限元模型确定箱形梁桥偏载挠度的试验方法
CN108388716A (zh) 一种空间斜拉索的平面等效分析方法及模型
Zhu et al. Stress-level buffeting analysis of a long-span cable-stayed bridge with a twin-box deck under distributed wind loads
CN105975649A (zh) 一种方形太阳帆表面褶皱形态的建模方法
CN111666615A (zh) 一种基于有限元的悬索桥空间缆索找形方法
CN111832212A (zh) 高宽跨比梁偏载应变试验方法
Asgari et al. Optimization of pre-tensioning cable forces in highly redundant cable-stayed bridges
CN112395797B (zh) 油气管悬索跨越仿真分析方法
Tang et al. Aerostatic and aerodynamic stability of a suspension bridge during early erection stages
Qi et al. A new type of wind-resistance cable net for narrow suspension bridges and wind-resistance cable element for its calculation
Wang et al. Accurate stress analysis on rigid central buckle of long-span suspension bridges based on submodel method
CN112257218A (zh) 一种空间自锚式悬索桥主缆中心索无应力长度预测系统
Zhang et al. Analytical algorithm for the full-bridge response of hybrid cable-stayed suspension bridges under a horizontal transverse live load
CN114183146B (zh) 一种超欠挖分析控制方法及系统
Li et al. A recursive algorithm for determining the profile of the spatial self-anchored suspension bridges
CN109977565A (zh) 一种基于fea的斜拉桥动力特性分析方法
CN112524334B (zh) 油气管道大型索式跨越的施工方法及其塔架动态稳定工艺
CN112464534A (zh) 油气管悬索跨越仿真分析模型及其构建方法
CN107700336A (zh) 一种混凝土斜拉桥主梁施工阶段剪力滞的确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant