CN111892407A - 湿纺-浸渍法制备双界面纤维独石硼化锆复合材料 - Google Patents
湿纺-浸渍法制备双界面纤维独石硼化锆复合材料 Download PDFInfo
- Publication number
- CN111892407A CN111892407A CN202010557834.8A CN202010557834A CN111892407A CN 111892407 A CN111892407 A CN 111892407A CN 202010557834 A CN202010557834 A CN 202010557834A CN 111892407 A CN111892407 A CN 111892407A
- Authority
- CN
- China
- Prior art keywords
- zirconium boride
- graphite
- interface
- precursor
- monolithic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58078—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3804—Borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明提供一种湿纺‑浸渍法制备双界面纤维独石硼化锆复合材料,其特征在于采用以下步骤:1)湿纺法制备纤维独石前驱体,先将固化剂和增塑剂加入有机溶剂中搅拌溶解,再加入硼化锆陶瓷粉料,制成喷丝液,通过喷丝头喷入凝胶槽中,即得纤维独石前驱体;2)浸渍法涂覆内界面层;3)浸渍法涂覆外界面层,即得具有双界面层的纤维独石前驱体;4)温压成型;5)真空脱脂;6)热压烧结,即得双界面纤维独石硼化锆复合材料,其断裂韧性可达8MPa•m1/2以上。本发明所得的双界面纤维独石硼化锆复合材料,弱质材料的三维联通结构被改变,能有效地减少弱质材料被氧化,达到断裂韧性和抗氧化烧蚀性协同提高。
Description
技术领域
本发明提供一种湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,属于超高温陶瓷的制备技术领域。
背景技术
硼化锆陶瓷具有优越的耐高温和耐腐蚀性能及相对较低的理论密度, 因此一直被认为是超高温陶瓷(UHTCs)家族中最有应用前景的材料之一。目前,硼化锆陶瓷已广泛用作各种高温结构及功能材料,如:航空工业中的涡轮叶片、磁流体发电电极等。但硼化锆陶瓷断裂韧性较低,韧值仅为4~5 MPa•m1/2,限制了其在苛刻作业环境下的应用,如超声速飞行器鼻锥和前沿、超燃冲压发动机热端部件等。因此,为了保证使用过程中的可靠性和安全性,必须改善硼化锆陶瓷的脆性问题,从而提高其耐热冲击性能。受自然界中贝壳、竹子的微观组织结构的启发,在脆性陶瓷材料中加入耐高温软质材料,设计和制备仿生层状和纤维独石状复合物以提高陶瓷的韧性。
对于仿生纤维独石复合材料的研究。清华大学通过泥料挤出法制备出Si3N4纤维独石前驱体,纤维独石前驱体的直径为1mm,然后,浸涂BN悬浮液,制备出Si3N4/BN纤维独石陶瓷,其弯曲强度为700MPa,断裂韧性为23.9MPa·m1/2。美国密苏里大学以乙烯-丙烯酸乙酯为结合剂,高温矿物油为增塑剂,120℃共挤出泥料制备出具有界面层结构的纤维独石前驱体,然后定向排布,经800℃裂解后,1900℃、32MPa下热压烧结制备出纤维独石ZrB2复合材料,胞体组成为ZrB2-30vol.%SiC,界面层组成为石墨-15vol.%ZrB2,纤维独石ZrB2复合材料弯强度为375MPa,临界热震温差△Tc为1400℃。
传统的纤维独石陶瓷制备工艺存在以下问题:
一是:传统的纤维独石前驱体的成型工艺为泥料挤出成型,即干纺法成型,生坯经过陈腐、真空练泥使其具有一定可塑性,然后通过挤出机喷丝头挤出成型,喷丝头的大小决定了纤维独石前驱体的直径大小,喷丝头直径越小所受到的阻力越大,也就是说,小的喷丝头需要更大的挤出压力,挤出成型制备小于1mm的纤维独石前驱体非常困难,因此,研究人员在原有挤出成型工艺基础上进行了改进,通过将泥料预热到120℃,提高泥料的流动性,使其挤出成型更细的纤维独石前驱体,但没有改变泥料流动性差这一本质属性,喷丝头直径越小,挤出压力越大,挤出成型越困难,纤维独石前驱体挤出后,由于溶剂的挥发迅速固化,纤维独石前驱体韧性差,呈细棒状,连续性差,因此,制备高韧性纤维独石复合材料,必须开发新型的纤维独石前驱体的成型工艺。
二是:传统的纤维独石陶瓷,界面层为石墨、氮化硼弱质材料,石墨和氮化硼氧化温度分别为400℃、800℃,抗氧化性差,弱质界面层形成贯通的三维网络路径,烧蚀时放出大量气体,使得胞体与界面层脱层,抗氧化烧蚀性能差;同时,胞体和界面层组成成分差别较大,使得纤维独石复合材料热力耦合环境下胞体容易剥落。弱质界面层材料抗烧蚀性差,弱质界面层形成贯通的三维网络路径是纤维独石材料抗热冲击和抗烧蚀性降低的关键问题。
发明内容
本发明的目的是为了解决现有硼化锆超高温陶瓷韧性差,弱质材料作为纤维独石硼化锆复合材料界面层抗烧蚀性差的问题,而提供一种湿纺-浸渍法制备双界面纤维独石硼化锆复合材料。其技术方案为:
一种湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,其特征在于采用以下步骤:
1)采用湿纺法制备纤维独石前驱体:先将固化剂和和增塑剂加入有机溶剂中搅拌溶解,再加入硼化锆陶瓷粉料,强烈搅拌48h制成喷丝液,然后将喷丝液移至不锈钢贮罐中,真空脱气1~5h,在0.2~0.5MPa氮气压力下, 将喷丝液通过喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为0~10℃,凝固成型后浸泡8~24h,即得纤维独石前驱体,纤维独石前驱体直径为200~1000µm,称量时,先称量硼化锆陶瓷粉料,再以硼化锆陶瓷粉料为基础计算,按重量百分比称取固化剂10~20%、增塑剂10~20%和有机溶剂100~200%,其中固化剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇,有机溶剂为无水乙醇;
2)浸渍法涂覆内界面层:先将羧甲基纤维素钠加入去离子水中搅拌溶解,再加入石墨陶瓷粉料搅拌4~12h形成石墨料浆,再将纤维独石前驱体浸入石墨料浆中,通过浸渍提拉次数控制涂层厚度,内界面层厚度为50~100µm,其中石墨陶瓷粉料由石墨粉末和硼化锆粉末按质量百分比70~90%:10~30%混合而成;
3)浸渍法涂覆外界面层:先聚乙二醇加入无水乙醇中搅拌溶解,再加入硼化铪陶瓷粉料搅拌4~12h形成硼化铪料浆,再将纤维独石前驱体浸入硼化铪料浆中,通过浸渍提拉次数控制涂层厚度,外界面层厚度为50~100µm,即得具有双界面层的纤维独石前驱体,具有双界面层的纤维独石前驱体由纤维独石前驱体、内界面层和外界面层组成,其中硼化铪陶瓷粉料由硼化铪粉末和碳化硅粉末按质量百分比70~90%:10~30%混合而成;
4)温压成型:根据热压烧结用石墨模具大小裁切具有双界面层的纤维独石前驱体,在石墨模具中进行平行排布或交叉排布,再在60~100℃,20~50MPa下,温压使其致密得到陶瓷生坯;
5)真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为0.25~1℃/min,升温至600~700℃,保温0.5~1h;
6)热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1900~2000℃,保温0.5~2h,压力为20~60MPa,即得双界面纤维独石硼化锆复合材料。
所述的湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,步骤1)中,硼化锆陶瓷粉料由硼化锆粉末和碳化硅粉末按质量百分比70~90%:10~30%混合而成。
所述的湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,步骤2)中,石墨料浆的制备方法为先称量石墨陶瓷粉料,然后以石墨陶瓷粉料重量为基础,按重量百分比称取2~5%羧甲基纤维素钠和500~1000%去离子水。
所述的湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,步骤3)中,硼化铪料浆的制备方法为先称量硼化铪陶瓷粉料,然后以硼化铪陶瓷粉料重量为基础,按重量百分比称取20~30%聚乙二醇和500~1000%无水乙醇。
本发明的工作原理是:提出湿纺法制备纤维独石前驱体的新工艺,先将固化剂和增塑剂在有机溶剂中搅拌溶解,再加入陶瓷粉料形成喷丝液,当喷丝液从喷丝头的细孔中压出,呈细流状,然后在凝固液中固化成形得到纤维独石前驱体,先浸渍法涂覆石墨内界面层,再涂覆硼化铪外界面层,得到具有双界面层的纤维独石前驱体。通过具有双界面层的纤维独石前驱体,制备的双界面纤维独石硼化锆陶瓷,其结构示意图如图1所示,胞体为ZrB2基材料,界面层由内外两层组成,内界面层为石墨基材料,外界面层为HfB2基材料。弱质石墨基材料的三维联通结构被改变,能有效地减少弱质材料被氧化,提高双界面纤维独石材料的抗氧化性能;外界面层的HfB2基材料,弯曲强度可达800MPa,具有较高的强度,比内界面层的石墨基材料弯曲强度150MPa,提高了4倍多,提高了界面结合性,改善了抗热冲击性能。
本发明与现有技术相比,具有如下优点:
1、湿纺法成型纤维独石前驱体,制备出连续、超细、高韧、致密的纤维独石前驱体,直径可达200µm,长度可达10米以上,180°弯曲不会断裂。彻底解决了泥料挤出成型,泥料流动性差,纤维独石前驱体直径粗、韧性差、不连续的缺点;
2、凝胶槽水温为0~10℃,低温快速凝固,纤维独石前驱体不粘连;
3、固化剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇,陶瓷生坯真空脱脂后,聚乙烯醇缩丁醛和聚乙二醇高温裂解成小分子的碳颗粒排除,无碳残留,残留的碳会降低双界面纤维独石硼化锆复合材料的弯曲强度和断裂韧性;
4、纤维独石前驱体在去离子水为溶剂的石墨料浆中浸渍涂覆,纤维独石前驱体不溶解,涂覆均匀,干燥速度快;
5、内界面的浸渍涂覆料浆为水基,外界面的浸渍涂覆料浆为醇基,浸渍涂覆的内界面和外界面互不溶解,界面层内外层界限分明,结合性好;
6、双界面纤维独石硼化锆复合材料的胞体为ZrB2基材料,界面层由内外两层组成,内界面层为石墨基材料,外界面层为HfB2基材料。弱质石墨基材料被外层HfB2基材料包裹,弱质材料的三维联通结构被改变,能有效地减少弱质材料被氧化,提高双界面纤维独石材料的抗氧化性能;
7、双界面纤维独石硼化锆复合材料的外界面层为HfB2基材料,具有较高的强度,提高了界面结合性,胞体不会剥落;并且双界面纤维独石硼化锆复合材料,保留了仿生材料强弱层交替排列的增韧方式,断裂韧性可达8MPa•m1/2以上。
附图说明
图1是本发明所述双界面纤维独石硼化锆复合材料的结构示意图。
图中:1、双界面纤维独石硼化锆复合材料胞体;2、双界面纤维独石硼化锆复合材料内界面层;3、双界面纤维独石硼化锆复合材料外界面层。
具体实施方式
实施例1
1、纤维独石前驱体的制备:先将10克聚乙烯醇缩丁醛和10克聚乙二醇加入100克无水乙醇中搅拌溶解,再加入硼化锆陶瓷粉料,硼化锆陶瓷粉料由70克硼化锆粉末和30克碳化硅粉末按质量百分比70%:30%混合而成,强烈搅拌48h制成喷丝液,然后将喷丝液移至不锈钢贮罐中, 真空脱气1h,在0.2MPa氮气压力下, 将喷丝液通过喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为0℃,凝固成型后浸泡8h,即得纤维独石前驱体,纤维独石前驱体直径为1000µm;
2、浸渍法涂覆内界面层:先将2克羧甲基纤维素钠加入500克去离子水中中搅拌溶解,再加入石墨陶瓷粉料搅拌4h形成石墨料浆,再将纤维独石前驱体浸入石墨料浆中,通过浸渍提拉次数控制涂层厚度,内界面层厚度为100µm,其石墨陶瓷粉料由70克石墨粉末和30克硼化锆粉末按质量百分比70%:30%混合而成;
3、浸渍法涂覆外界面层:先将20克聚乙二醇加入500克无水乙醇搅拌溶解,再加入硼化铪陶瓷粉料搅拌4h形成硼化铪料浆,再将纤维独石前驱体浸入硼化铪料浆中,通过浸渍提拉次数控制涂层厚度,外界面层厚度为100µm,即得具有双界面层的纤维独石前驱体,其硼化铪陶瓷粉料由70克硼化铪粉末和30克碳化硅粉末按质量百分比70%:30%混合而成;
4、温压成型:根据热压烧结用石墨模具大小裁切具有双界面层的纤维独石前驱体,在石墨模具中进行平行排布,再在60℃,20MPa下,温压使其致密得到陶瓷生坯;
5、真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为0.25℃/min,升温至600℃,保温0.5h;
6、热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1900℃,保温0.5h,压力为20MPa,即得双界面纤维独石硼化锆复合材料。
实施例2
1、纤维独石前驱体的制备:先将20克聚乙烯醇缩丁醛和20克聚乙二醇加入200克无水乙醇中搅拌溶解,再加入硼化锆陶瓷粉料,硼化锆陶瓷粉料由90克硼化锆粉末和10克碳化硅粉末按质量百分比90%:10%混合而成,强烈搅拌48h制成喷丝液,然后将喷丝液移至不锈钢贮罐中, 真空脱气5h,在0.5MPa氮气压力下, 将喷丝液通过喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为10℃,凝固成型后浸泡24h,即得纤维独石前驱体,纤维独石前驱体直径为200µm;
2、浸渍法涂覆内界面层:先将5克羧甲基纤维素钠加入1000克去离子水中搅拌溶解,再加入石墨陶瓷粉料搅拌12h形成石墨料浆,再将纤维独石前驱体浸入石墨料浆中,通过浸渍提拉次数控制涂层厚度,内界面层厚度为50µm,其石墨陶瓷粉料由90克石墨粉末和10克硼化锆粉末按质量百分比90%:10%混合而成;
3、浸渍法涂覆外界面层:先将30克聚乙二醇加入1000克无水乙醇中搅拌溶解,再加入硼化铪陶瓷粉料搅拌12h形成硼化铪料浆,再将纤维独石前驱体浸入硼化铪料浆中,通过浸渍提拉次数控制涂层厚度,外界面层厚度为50µm,即得具有双界面层的纤维独石前驱体,其硼化铪陶瓷粉料由90克硼化铪粉末和10克碳化硅粉末按质量百分比90%:10%混合而成;
4、温压成型:根据热压烧结用石墨模具大小裁切具有双界面层的纤维独石前驱体,在石墨模具中进行交叉排布,再在100℃,50MPa下,温压使其致密得到陶瓷生坯;
5、真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为1℃/min,升温至700℃,保温1h;
6、热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为2000℃,保温2h,压力为60MPa,即得双界面纤维独石硼化锆复合材料。
实施例3
1、纤维独石前驱体的制备:先将15克聚乙烯醇缩丁醛和15克聚乙二醇加入150克无水乙醇中搅拌溶解,再加入硼化锆陶瓷粉料,硼化锆陶瓷粉料由80克硼化锆粉末和20克碳化硅粉末按质量百分比80%:20%混合而成,强烈搅拌48h制成喷丝液,然后将喷丝液移至不锈钢贮罐中, 真空脱气3h,在0.3MPa氮气压力下, 将喷丝液通过喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为5℃,凝固成型后浸泡12h,即得纤维独石前驱体,纤维独石前驱体直径为700µm;
2、浸渍法涂覆内界面层:先将4克羧甲基纤维素钠加入700克去离子水中搅拌溶解,再加入石墨陶瓷粉料搅拌8h形成石墨料浆,再将纤维独石前驱体浸入石墨料浆中,通过浸渍提拉次数控制涂层厚度,内界面层厚度为70µm其石墨陶瓷粉料由80克石墨粉末和20克硼化锆粉末按质量百分比80%:20%混合而成;
3、浸渍法涂覆外界面层:先将25克聚乙二醇加入700克无水乙醇中搅拌溶解,再加入硼化铪陶瓷粉料搅拌8h形成硼化铪料浆,再将纤维独石前驱体浸入硼化铪料浆中,通过浸渍提拉次数控制涂层厚度,外界面层厚度为70µm,即得具有双界面层的纤维独石前驱体,其硼化铪陶瓷粉料由80克硼化铪粉末和20克碳化硅粉末按质量百分比80%:20%混合而成;
4、温压成型:根据热压烧结用石墨模具大小裁切具有双界面层的纤维独石前驱体,在石墨模具中进行平行排布,再在80℃,30 MPa下,温压使其致密得到陶瓷生坯;
5、真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为0.5℃/min,升温至650℃,保温0.75h;
6、热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1950℃,保温1h,压力为40MPa,即得双界面纤维独石硼化锆复合材料。
实施例4
1、纤维独石前驱体的制备:先将18克聚乙烯醇缩丁醛和18克聚乙二醇加入120克无水乙醇中搅拌溶解,再加入硼化锆陶瓷粉料,硼化锆陶瓷粉料由85克硼化锆粉末和15克碳化硅粉末按质量百分比85%:15%混合而成,强烈搅拌48h制成喷丝液,然后将喷丝液移至不锈钢贮罐中, 真空脱气2h,在0.4MPa氮气压力下, 将喷丝液通过喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为2℃,凝固成型后浸泡20h,即得纤维独石前驱体,纤维独石前驱体直径为800µm;
2、浸渍法涂覆内界面层:先将4克羧甲基纤维素钠加入600克去离子水中搅拌溶解,再加入石墨陶瓷粉料搅拌10h形成石墨料浆,再将纤维独石前驱体浸入石墨料浆中,通过浸渍提拉次数控制涂层厚度,内界面层厚度为80µm,其石墨陶瓷粉料由85克石墨粉末和15克硼化锆粉末按质量百分比85%:15%混合而成;
3、浸渍法涂覆外界面层:先将24克聚乙二醇加入600克无水乙醇中搅拌溶解,再加入硼化铪陶瓷粉料搅拌10h形成硼化铪料浆,再将纤维独石前驱体浸入硼化铪料浆中,通过浸渍提拉次数控制涂层厚度,外界面层厚度为80µm,即得具有双界面层的纤维独石前驱体,其硼化铪陶瓷粉料由85克硼化铪粉末和15克碳化硅粉末按质量百分比85%:15%混合而成;
4、温压成型:根据热压烧结用石墨模具大小裁切具有双界面层的纤维独石前驱体,在石墨模具中进行交叉排布,再在70℃,40MPa下,温压使其致密得到陶瓷生坯;
5、真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为0.5℃/min,升温至650℃,保温0.5h;
6、热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1950℃,保温1h,压力为40MPa,即得双界面纤维独石硼化锆复合材料。
Claims (4)
1.一种湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,其特征在于采用以下步骤:
1)采用湿纺法制备纤维独石前驱体:先将固化剂和和增塑剂加入有机溶剂中搅拌溶解,再加入硼化锆陶瓷粉料,强烈搅拌48h制成喷丝液,然后将喷丝液移至不锈钢贮罐中,真空脱气1~5h,在0.2~0.5MPa氮气压力下, 将喷丝液通过喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为0~10℃,凝固成型后浸泡8~24h,即得纤维独石前驱体,纤维独石前驱体直径为200~1000µm,称量时,先称量硼化锆陶瓷粉料,再以硼化锆陶瓷粉料为基础计算,按重量百分比称取固化剂10~20%、增塑剂10~20%和有机溶剂100~200%,其中固化剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇,有机溶剂为无水乙醇;
2)浸渍法涂覆内界面层:先将羧甲基纤维素钠加入去离子水中搅拌溶解,再加入石墨陶瓷粉料搅拌4~12h形成石墨料浆,再将纤维独石前驱体浸入石墨料浆中,通过浸渍提拉次数控制涂层厚度,内界面层厚度为50~100µm,其中石墨陶瓷粉料由石墨粉末和硼化锆粉末按质量百分比70~90%:10~30%混合而成;
3)浸渍法涂覆外界面层:先聚乙二醇加入无水乙醇中搅拌溶解,再加入硼化铪陶瓷粉料搅拌4~12h形成硼化铪料浆,再将纤维独石前驱体浸入硼化铪料浆中,通过浸渍提拉次数控制涂层厚度,外界面层厚度为50~100µm,即得具有双界面层的纤维独石前驱体,具有双界面层的纤维独石前驱体由纤维独石前驱体、内界面层和外界面层组成,其中硼化铪陶瓷粉料由硼化铪粉末和碳化硅粉末按质量百分比70~90%:10~30%混合而成;
4)温压成型:根据热压烧结用石墨模具大小裁切具有双界面层的纤维独石前驱体,在石墨模具中进行平行排布或交叉排布,再在60~100℃,20~50MPa下,温压使其致密得到陶瓷生坯;
5)真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为0.25~1℃/min,升温至600~700℃,保温0.5~1h;
6)热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1900~2000℃,保温0.5~2h,压力为20~60MPa,即得双界面纤维独石硼化锆复合材料。
2.如权利要求1所述的湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,其特征在于:步骤1)中,硼化锆陶瓷粉料由硼化锆粉末和碳化硅粉末按质量百分比70~90%:10~30%混合而成。
3.如权利要求1所述的湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,其特征在于:步骤2)中,石墨料浆的制备方法为先称量石墨陶瓷粉料,然后以石墨陶瓷粉料重量为基础,按重量百分比称取2~5%羧甲基纤维素钠和500~1000%去离子水。
4.如权利要求1所述的湿纺-浸渍法制备双界面纤维独石硼化锆复合材料,其特征在于:步骤3)中,硼化铪料浆的制备方法为先称量硼化铪陶瓷粉料,然后以硼化铪陶瓷粉料重量为基础,按重量百分比称取20~30%聚乙二醇和500~1000%无水乙醇。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010557834.8A CN111892407B (zh) | 2020-06-18 | 2020-06-18 | 湿纺-浸渍法制备双界面纤维独石硼化锆复合材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010557834.8A CN111892407B (zh) | 2020-06-18 | 2020-06-18 | 湿纺-浸渍法制备双界面纤维独石硼化锆复合材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111892407A true CN111892407A (zh) | 2020-11-06 |
CN111892407B CN111892407B (zh) | 2022-06-07 |
Family
ID=73206827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010557834.8A Active CN111892407B (zh) | 2020-06-18 | 2020-06-18 | 湿纺-浸渍法制备双界面纤维独石硼化锆复合材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111892407B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898038A (zh) * | 2021-03-22 | 2021-06-04 | 河海大学 | 一种氮化硅基纤维独石陶瓷透波材料制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990038233A (ko) * | 1997-11-04 | 1999-06-05 | 최동환 | 상온 압출 성형 공정에 의한 섬유상 세라믹스의 제조방법 및 이를 이용한 섬유상 단체 세라믹스의 제조방법 |
KR20050020578A (ko) * | 2003-08-18 | 2005-03-04 | 이병택 | 섬유단상공정을 이용한 세라믹 연속다공질체 및 그의제조방법 |
CN108794033A (zh) * | 2018-06-28 | 2018-11-13 | 中国科学院兰州化学物理研究所 | 一种自增韧纤维独石结构陶瓷及其制备方法 |
CN109293384A (zh) * | 2018-10-31 | 2019-02-01 | 哈尔滨工业大学 | 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法 |
-
2020
- 2020-06-18 CN CN202010557834.8A patent/CN111892407B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990038233A (ko) * | 1997-11-04 | 1999-06-05 | 최동환 | 상온 압출 성형 공정에 의한 섬유상 세라믹스의 제조방법 및 이를 이용한 섬유상 단체 세라믹스의 제조방법 |
KR20050020578A (ko) * | 2003-08-18 | 2005-03-04 | 이병택 | 섬유단상공정을 이용한 세라믹 연속다공질체 및 그의제조방법 |
CN108794033A (zh) * | 2018-06-28 | 2018-11-13 | 中国科学院兰州化学物理研究所 | 一种自增韧纤维独石结构陶瓷及其制备方法 |
CN109293384A (zh) * | 2018-10-31 | 2019-02-01 | 哈尔滨工业大学 | 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法 |
Non-Patent Citations (2)
Title |
---|
CHENG YEHONG等: "Multiscale toughening of ZrB2-SiC-Graphene@ZrB2-SiC dual composite ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 * |
陈丽敏等: "ZrB2基超高温陶瓷材料抗热震性能及热震失效机制研究进展", 《硅酸盐学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898038A (zh) * | 2021-03-22 | 2021-06-04 | 河海大学 | 一种氮化硅基纤维独石陶瓷透波材料制备方法 |
CN112898038B (zh) * | 2021-03-22 | 2022-06-10 | 河海大学 | 一种氮化硅基纤维独石陶瓷透波材料制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111892407B (zh) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106699209B (zh) | 连续氧化铝纤维增强氧化铝陶瓷基复合材料的制备方法 | |
CN110256082B (zh) | 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法 | |
CN109293384B (zh) | 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法 | |
CN107021771B (zh) | 一种基于3d打印技术的氧化钙基陶瓷铸型制造方法 | |
CN100415690C (zh) | 一种通过原位反应在纤维表面形成抗氧化结构的复合材料制备方法 | |
WO2023103209A1 (zh) | 一种改性碳纤维增韧氧化铝自愈合陶瓷的制备方法 | |
CN111825471B (zh) | 一种电泳沉积制备连续碳纤维增韧超高温陶瓷基复合材料的方法 | |
CN112142486A (zh) | 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法 | |
CN110776339B (zh) | 一种用于C/ZrC-SiC复合材料的抗氧化涂层及其制备方法 | |
CN104817327A (zh) | 一种氮化硅复合陶瓷模具材料及其制备方法与应用 | |
CN104230364A (zh) | 棒状ZrB2增韧ZrB2-SiC超高温陶瓷的制备工艺 | |
CN111848167A (zh) | 湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷 | |
CN111995414A (zh) | 一种聚丙烯腈基碳纤维增强的陶瓷型芯及其制备方法 | |
CN106882976B (zh) | 一种C/HfC-ZrC-SiC复合材料的制备方法 | |
CN111892407B (zh) | 湿纺-浸渍法制备双界面纤维独石硼化锆复合材料 | |
CN113735629A (zh) | 一种碳材料宽温域防氧化抗冲刷复相陶瓷涂层及其制备方法 | |
CN113135740B (zh) | 一种陶瓷基复合材料及其制备方法和应用 | |
CN114920575A (zh) | 一种高性能陶瓷连接件及其制备方法和应用 | |
CN115196984B (zh) | 三维编织含界面相的氧化铝纤维增强氧化物陶瓷基复合材料及其制备方法 | |
CN113999032A (zh) | 一种硅硼氮纤维增强石英陶瓷材料及其制备方法 | |
CN111825448B (zh) | 湿纺浸渍法制备具有致密孔壁的直通孔氧化锆陶瓷的方法 | |
CN117567165A (zh) | 一种连续纤维增强陶瓷基复合材料及其制备方法 | |
CN111892406B (zh) | 湿纺-浸渍法制备弱界面纤维独石硼化锆超高温陶瓷 | |
CN111848175A (zh) | 湿纺共挤出法制备弱界面纤维独石硼化铪陶瓷的工艺 | |
CN116924819A (zh) | 一种SiBCN复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |