CN111871400B - 一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用 - Google Patents

一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用 Download PDF

Info

Publication number
CN111871400B
CN111871400B CN202010618356.7A CN202010618356A CN111871400B CN 111871400 B CN111871400 B CN 111871400B CN 202010618356 A CN202010618356 A CN 202010618356A CN 111871400 B CN111871400 B CN 111871400B
Authority
CN
China
Prior art keywords
sio
ionic liquid
magnetic
modified
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010618356.7A
Other languages
English (en)
Other versions
CN111871400A (zh
Inventor
乔利珍
于春梅
孙瑞婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010618356.7A priority Critical patent/CN111871400B/zh
Publication of CN111871400A publication Critical patent/CN111871400A/zh
Application granted granted Critical
Publication of CN111871400B publication Critical patent/CN111871400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用,属于色谱分析预处理和环境监测技术领域。首先,制备氨基功能化的六烷基胍盐离子液体,然后在Fe3O4材料表面包覆SiO2后得到Fe3O4@SiO2磁性材料,再将Fe3O4@SiO2与六烷基胍盐离子液体桥联,得到胍盐离子液体修饰的磁性纳米材料,即Fe3O4@SiO2‑GIL纳米复合材料。得到的制备的Fe3O4@SiO2‑GIL纳米复合材料用于MSPE富集环境水样中的PAHs。本发明制备得到的氨基功能化的六烷基胍盐离子液体烷基链较短、毒性较低,能够增强磁性吸附剂的亲水性,可结合液相色谱‑紫外可见光谱检测用于环境中PAHs的痕量检测。

Description

一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其 应用
技术领域
本发明属于色谱分析预处理和环境监测技术领域,涉及一种胍盐离子液体修饰的磁固相萃取吸附剂、制备方法及应用。
背景技术
多环芳烃(PAHs)是具有两个或多个稠环芳烃的一类有机污染物,非常稳定,在人体内不容易降解和代谢,因此具有生物累积性,暴露于PAHs环境中有致癌等风险。PAHs产生于有机化合物的不完全燃烧,例如自然环境和工业中的树木燃烧,以及吸烟和烧烤等个人行为。多环芳烃在环境中的分布浓度随人类活动的增加而增加,但仍低于正常分析技术的最低检测限。此外,通常实际的环境基质复杂,PAHs浓度低,影响仪器的检测性能。因此,待测样品需要进行预处理,从复杂基质中分离出来,浓缩后进行分析。
常规的固相萃取(SPE)已广泛用于分离和预浓缩中,可大大减少传统液-液萃取(LLE) 中有机溶剂的使用。SPE主要用固相萃取小柱,但是萃取柱容易堵塞而且操作费时。磁性固相萃取(MSPE)是一种基于磁性材料的新颖技术,该材料可通过外部磁场与溶液分离,在不消耗大量有机溶剂的情况下,将萃取和浓缩结合在一起,操作方便且节约时间。MSPE通常利用Fe3O4提供磁性,然而,裸露Fe3O4纳米粒子的提取效率不足,而且在复杂的样品基质中易于发生不可逆的聚集以及被腐蚀等,因此需要对Fe3O4纳米粒子进行修饰,而且外部修饰的材料在提高选择性和富集效率方面起着重要作用。
许多新兴材料已用于磁性固相萃取,例如表面活性剂、烷烃、脂肪酸、聚合物和离子液体等。修饰后的磁性吸附剂也已经广泛用于检测环境、食品和药品中的目标分析物。其中离子液体具有出色的热稳定性、催化活性、生物活性和可忽略不计的蒸气压,在分析化学和样品制备中引起了广泛的关注。离子液体被固定在材料表面后,失去流动性的特征,但仍保持其他性能,从而扩展了其在分析化学和样品预处理方面的应用。胍盐离子液体是一种新型的离子液体,相比于传统离子液体(如咪唑和吡咯离子液体),其较低的毒性和良好的可设计性促进了其作为绿色替代品的应用,特别是功能性的胍盐离子液体,在液-液萃取中萃取效果好。此外,研究表明,胍盐离子液体中三个氮原子的高电子分散性有助于提高对目标分析物的萃取效率。
发明内容
基于上述内容,本发明制备一种新型的氨基功能化的六烷基胍盐离子液体(GIL),然后在Fe3O4材料表面包覆SiO2后得到Fe3O4@SiO2磁性材料,通过化学反应用聚乙烯亚胺(PEI) 将Fe3O4@SiO2与六烷基胍盐离子液体桥联,得到胍盐离子液体修饰的磁性纳米材料即Fe3O4@SiO2-GIL纳米复合材料;制备的Fe3O4@SiO2-GIL纳米复合材料用于MSPE富集环境水样中的PAHs。本发明制备得到的氨基功能化的六烷基胍盐离子液体烷基链较短,毒性较低,并增强了磁性吸附剂的亲水性,可结合液相色谱-紫外可见光谱检测用于环境中PAHs的痕量检测。
为了达到上述目的,本发明采用的具体技术方案如下:
一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法,氨基修饰的六烷基胍盐离子液体的合成如下:
Figure GDA0002655463810000021
制备方法包括以下步骤:
1)制备氨基功能化的胍盐离子液体
将1,1,3,3-四甲基胍、四丁基溴化铵、3-氯丙胺盐酸盐和碳酸钾超声溶解在甲醇中,其中,所述1,1,3,3-四甲基胍、四丁基溴化铵、3-氯丙胺盐酸盐和碳酸钾的用量比为:1-3mL:0.1-0.3 g:9-11g:2-6g。在60-80℃下回流20-40h,用正己烷、乙酸乙酯和三乙胺洗涤后,加入水和氢氧化钠颗粒调节溶液pH至8-9,蒸发水后采用乙醇和四氢呋喃的混合溶液萃取得到氨基修饰的六烷基胍盐离子液体。
所述六烷基胍盐离子液体的通式如下:
Figure GDA0002655463810000022
其中,取代基R1为C1-C4的烷基或苄基,X-为氯离子、溴离子、碘离子、甲基磺酸根阴离子、三氟甲基磺酸根阴离子、四氟硼酸根阴离子或乙酸根阴离子。
2)制备Fe3O4@SiO2磁性材料
室温下,将六水合氯化铁和柠檬酸三钠溶解在乙二醇中,搅拌后加入无水乙酸钠,其中,所述六水合氯化铁、柠檬酸三钠和无水乙酸钠的质量比为1-2:0.2-0.4:2-4;搅拌0.5-2h后,将混合物转移到高压釜中,150℃-200℃下反应8-12h后得到Fe3O4纳米颗粒;将得到的Fe3O4颗粒分散在乙醇和水的混合溶液中,加入25%的氨水和四甲氧基硅烷搅拌8-10h,采用乙醇洗涤得到Fe3O4@SiO2磁性材料,其中,所述Fe3O4颗粒、氨水和四甲氧基硅烷的用量比为100-200mg:5-7mL:0.7-1mL。
3)制备氨基修饰的Fe3O4磁性材料
将步骤2)中制得的Fe3O4@SiO2磁性材料分散在异丙醇中,加入(3-氨基丙基)三乙氧基硅烷,其中,Fe3O4@SiO2和(3-氨基丙基)三乙氧基硅烷的用量比为100mg:1-3mL(每100mg Fe3O4@SiO2磁性材料对应加入1-3mL(3-氨基丙基)三乙氧基硅烷);氩气保护下搅拌15-24h,得到氨基修饰的Fe3O4磁性材料,即Fe3O4@SiO2-NH2磁性材料。
4)制备胍盐离子液体修饰的四氧化三铁
将步骤3)中制得的Fe3O4@SiO2-NH2磁性材料分散在乙酸和甲醇的混合溶液中,并滴加戊二醛。将混合物在30-60℃下搅拌8-10小时。收集所得产物并用溶剂洗涤,然后再次分散在30mL溶剂乙酸和甲醇的混合溶液中。加入聚乙烯亚胺PEI并在30-60℃下搅拌8-10小时得到PEI修饰的磁性纳米材料,即Fe3O4@SiO2-PEI纳米复合材料。所述的Fe3O4@SiO2-NH2磁性材料、戊二醛、聚乙烯亚胺的用量比为:100-200:0.1-0.3:0.3-0.6,mg:mL:g。
类似地通过氨基和醛基的反应,将步骤1)得到的氨基修饰的六烷基胍盐离子液体枝接到Fe3O4@SiO2-PEI纳米复合材料的表面,得到胍盐离子液体修饰的四氧化三铁,即Fe3O4@ SiO2-GIL纳米复合材料。所述的氨基修饰的六烷基胍盐离子液体、戊二醛和Fe3O4@SiO2-PEI 纳米复合材料的用量比为:100-200:0.3-0.6:0.1-0.3,mg:mL:g。
作为优选,步骤1)所述混合溶液中,乙醇和四氢呋喃的体积比为1:1-2。
作为优选,步骤2)所述混合溶液中乙醇和水的体积比为1:0.2-0.3。
作为优选,步骤4)所述混合溶液中乙酸和甲醇体积比为1:120-140。
采用上述制备方法制备得到的胍盐离子液体修饰的四氧化三铁,作为磁固相萃取材料。
采用磁固相萃取材料应用于对多环芳烃类化合物的萃取分析,包括如下步骤。
首先,将磁固相萃取材料置于含有多环芳烃污染物(苊烯、芴、菲、蒽和芘)的待测水样中,其中,每10mg磁固相萃取材料对应加入35mL待测水样,超声混合均匀,使磁固相萃取材料充分吸附水中污染物;30min后在外加磁铁的作用下将材料与水样分离,弃掉上清液。其次,加入水洗涤后再加入少量甲醇,将PAHs从材料上洗脱,震荡3min,分离得到解吸溶液,其中,每10mg磁固相萃取材料对应加入1mL水、500μL甲醇。最后,采用0.22μm 滤膜过滤,进行液相色谱分析。
作为优选,所述液相色谱分析采用C18色谱柱(4.6mm×150mm,5μm),流动相的比例为水:甲醇(20-30:60-80,v/v),流速为1-2mL·min-1,进样体积10μL,检测器为紫外检测器,检测波长为278nm,柱温设置为30℃。
本发明的有益效果为:本发明可以得到分散性高、粒度均匀的Fe3O4纳米颗粒。在四氧化三铁表面包覆二氧化硅后解决了Fe3O4在环境基质中不稳定,萃取效率低等问题。在表面修饰了六烷基胍盐离子液体后,相比于Fe3O4颗粒,增加了材料的亲水性和萃取能力。
附图说明
图1(a)为离子液体修饰的磁固相萃取吸附剂的合成图;
图1(b)为磁固相萃取过程图。
图2和图3为Fe3O4的扫描电镜图,其中,图2放大200000倍,图3放大400000倍;
图4为Fe3O4@SiO2的扫描图;
图5为Fe3O4@SiO2的透射图;
图6为Fe3O4@SiO2-GIL纳米复合材料的透射图;
图7为Fe3O4、Fe3O4@SiO2和Fe3O4@SiO2-GIL纳米复合材料的磁滞回线图;
图8-12分别为解吸溶剂、吸附量、萃取时间、解吸时间和离子强度对萃取效率的影响比较图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步阐述和说明。
实施例1:制备胍盐离子液体修饰的Fe3O4@SiO2-GIL磁性纳米复合材料
制备过程:将1,1,3,3-四甲基胍(1mL),四丁基溴化铵(0.17g),对氯苯甲胺(9g)和碳酸钾(2g)溶解在甲醇(50mL)中60℃回流40h,然后冷却至室温并过滤。真空蒸发滤液以除去溶剂,残余物分别用正己烷,乙酸乙酯和三乙胺洗涤三次。添加少量水,然后添加固体NaOH使水溶液达到pH=8。蒸发除去水,并将得到的液体用乙醇:四氢呋喃(v/v,1: 1)混合溶液萃取。通过离心除去固体沉淀物,并通过旋转蒸发除去溶剂。离心和蒸发后,将所得产物在60℃真空干燥,得到浅黄色粘稠液体即氨基修饰的胍盐离子液体。
磁性Fe3O4颗粒是通过溶剂热法制备的,根据文献进行了少量修改。将FeCl3·6H2O(2g) 和柠檬酸三钠(0.4g)溶解在乙二醇(40mL)中。剧烈搅拌后,加入NaAc(4g)。搅拌1h后,将混合物转移到高压釜(容量为50mL)中。将高压釜加热至150℃,并保持10h。冷却至室温后,磁性分离得到Fe3O4颗粒,并分别用水和乙醇洗涤三次。最后,将Fe3O4纳米颗粒在60℃的真空下干燥10小时。将获得的Fe3O4纳米颗粒(120mg)超声分散在125mL乙醇:水(v/v,1:0.2)混合溶液中,并在机械搅拌下将氨水(25%,7mL)添加到混合溶液中。接下来,滴加四甲氧基硅烷(0.7mL),并将混合物搅拌10小时。用磁铁从所得溶液中分离出Fe3O4@SiO2纳米复合材料,并丢弃上清液。然后用水和乙醇洗涤Fe3O4@SiO2纳米复合材料3次,并在60℃下干燥10h。
将制备的胍盐离子液体修饰到Fe3O4@SiO2纳米复合材料上,该过程如图1(b)所示。首先,将100mg Fe3O4@SiO2纳米复合材料超声分散在60mL异丙醇中。将1mL(3-氨基丙基)三乙氧基硅烷逐滴添加至混合物中,同时将其在室温氩气保护下机械搅拌24h。用磁铁分离得到Fe3O4@SiO2-NH2材料,并用甲醇洗涤3次。将Fe3O4@SiO2-NH2纳米复合材料分散在30mL乙酸:甲醇(v/v,1:125)中,并滴加0.2mL戊二醛。将混合物在40℃下搅拌 10小时。收集所得产物并用溶剂洗涤以除去过量的戊二醛,然后再次分散在30mL溶剂乙酸和甲醇的中。加入0.6gPEI并在40℃下搅拌10h。用溶剂洗涤3次并在60℃干燥后,得到 PEI修饰的磁性纳米材料,即Fe3O4@SiO2-PEI纳米复合材料。类似地通过氨基和醛基的反应,将100mg Fe3O4@SiO2-PEI分散在乙酸和甲醇的混合溶液中,滴加0.4mL戊二醛,40℃下搅拌10小时,加入0.3g的氨基修饰的胍盐离子液体,40℃下搅拌10小时。最后,将获得的 Fe3O4@SiO2-GIL纳米复合材料用乙醇和水洗涤几次,并在60℃下干燥10h得到最终的胍盐离子液体修饰的Fe3O4@SiO2纳米复合材料,即Fe3O4@SiO2-GIL。
实施例2:制备胍盐离子液体修饰的Fe3O4@SiO2-GIL磁性纳米复合材料
制备过程如图1(a)所示,将1,1,3,3-四甲基胍(2.5mL),四丁基溴化铵(0.3g),3-氯乙胺盐酸盐(10g)和碳酸钾(6g)溶解在甲醇(50mL)中75℃回流20h,然后冷却至室温并过滤。真空蒸发滤液以除去溶剂,残余物分别用正己烷,乙酸乙酯和三乙胺洗涤三次。添加少量水,然后添加固体NaOH使水溶液达到pH=8.3。蒸发除去水,并将得到的液体用乙醇:四氢呋喃(v/v,1:1.5)混合溶液萃取。通过离心除去固体沉淀物,并通过旋转蒸发除去溶剂。离心和蒸发后,将所得产物在60℃真空干燥,得到浅黄色粘稠液体即氨基修饰的胍盐离子液体。
磁性Fe3O4颗粒是通过溶剂热法制备的,根据文献进行了少量修改。将FeCl3·6H2O(1.3 g)和柠檬酸三钠(0.32g)溶解在乙二醇(40mL)中。剧烈搅拌后,加入NaAc(2.6g)。搅拌0.5h后,将混合物转移到高压釜(容量为50mL)中。将高压釜加热至180℃,并保持8 h。冷却至室温后,磁性分离得到Fe3O4颗粒,并分别用水和乙醇洗涤三次。最后,将Fe3O4纳米颗粒在60℃的真空下干燥10小时。将获得的Fe3O4纳米颗粒(200mg)超声分散在125 mL乙醇:水(v/v,1:0.3)混合溶液中,并在机械搅拌下将氨水(25%,6mL)添加到混合溶液中。接下来,滴加四甲氧基硅烷(1mL),并将混合物搅拌9小时。用磁铁从所得溶液中分离出Fe3O4@SiO2纳米复合材料,并丢弃上清液。然后用水和乙醇洗涤Fe3O4@SiO2纳米复合材料3次,并在60℃下干燥10h。
将制备的胍盐离子液体修饰到Fe3O4@SiO2纳米复合材料上,该过程如图1(b)所示。首先,将100mgFe3O4@SiO2纳米复合材料超声分散在60mL异丙醇中。将2mL(3-氨基丙基)三乙氧基硅烷逐滴添加至混合物中,同时将其在室温氩气保护下机械搅拌20h。用磁铁分离得到Fe3O4@SiO2-NH2材料,并用甲醇洗涤3次。将Fe3O4@SiO2-NH2纳米复合材料分散在30mL乙酸:甲醇(v/v,1:120)中,并滴加0.1mL戊二醛。将混合物在40℃下搅拌10小时。收集所得产物并用溶剂洗涤以除去过量的戊二醛,然后再次分散在30mL溶剂乙酸和甲醇的中。加入0.3g PEI并在40℃下搅拌10h。用溶剂洗涤3次并在60℃干燥后,得到 PEI修饰的磁性纳米材料,即Fe3O4@SiO2-PEI纳米复合材料。类似地通过氨基和醛基的反应,将100mg Fe3O4@SiO2-PEI分散在乙酸和甲醇的混合溶液中,滴加0.3mL戊二醛,40℃下搅拌10小时,加入0.2g的氨基修饰的胍盐离子液体,40℃下搅拌10小时。最后,将获得的 Fe3O4@SiO2-GIL纳米复合材料用乙醇和水洗涤几次,并在60℃下干燥10h得到最终的胍盐离子液体修饰的Fe3O4@SiO2纳米复合材料,即Fe3O4@SiO2-GIL。
实施例3:制备胍盐离子液体修饰的Fe3O4@SiO2-GIL磁性纳米复合材料
制备过程如图1(a)所示,将1,1,3,3-四甲基胍(3mL),四丁基溴化铵(0.1g),3- 溴丙胺盐酸盐(11g)和碳酸钾(4g)溶解在甲醇(50mL)中80℃回流36h,然后冷却至室温并过滤。真空蒸发滤液以除去溶剂,残余物分别用正己烷,乙酸乙酯和三乙胺洗涤三次。添加少量水,然后添加固体NaOH使水溶液达到pH=9。蒸发除去水,并将得到的液体用乙醇:四氢呋喃(v/v,1:2)混合溶液萃取。通过离心除去固体沉淀物,并通过旋转蒸发除去溶剂。离心和蒸发后,将所得产物在60℃真空干燥,得到浅黄色粘稠液体即氨基修饰的胍盐离子液体。
磁性Fe3O4颗粒是通过溶剂热法制备的,根据文献进行了少量修改。将FeCl3·6H2O(1g) 和柠檬酸三钠(0.2g)溶解在乙二醇(40mL)中。剧烈搅拌后,加入NaAc(2g)。搅拌2 h后,将混合物转移到高压釜(容量为50mL)中。将高压釜加热至200℃,并保持12h。冷却至室温后,磁性分离得到Fe3O4颗粒,并分别用水和乙醇洗涤三次。最后,将Fe3O4纳米颗粒在60℃的真空下干燥10小时。将获得的Fe3O4纳米颗粒(100mg)超声分散在125mL乙醇:水(v/v,1:0.25)混合溶液中,并在机械搅拌下将氨水(25%,5mL)添加到混合溶液中。接下来,滴加四甲氧基硅烷(0.8mL),并将混合物搅拌8小时。用磁铁从所得溶液中分离出Fe3O4@SiO2纳米复合材料,并丢弃上清液。然后用水和乙醇洗涤Fe3O4@SiO2纳米复合材料3次,并在60℃下干燥10h。
将制备的胍盐离子液体修饰到Fe3O4@SiO2纳米复合材料上,该过程如图1(b)所示。首先,将100mgFe3O4@SiO2纳米复合材料超声分散在60mL异丙醇中。将3mL(3-氨基丙基)三乙氧基硅烷逐滴添加至混合物中,同时将其在室温氩气保护下机械搅拌15h。用磁铁分离得到Fe3O4@SiO2-NH2材料,并用甲醇洗涤3次。将Fe3O4@SiO2-NH2纳米复合材料分散在30mL乙酸:甲醇(v/v,1:140)中,并滴加0.3mL戊二醛。将混合物在40℃下搅拌10小时。收集所得产物并用溶剂洗涤以除去过量的戊二醛,然后再次分散在30mL溶剂乙酸和甲醇的中。加入0.4g PEI并在40℃下搅拌10h。用溶剂洗涤3次并在60℃干燥后,得到 PEI修饰的磁性纳米材料,即Fe3O4@SiO2-PEI纳米复合材料。类似地通过氨基和醛基的反应,将100mg Fe3O4@SiO2-PEI分散在乙酸和甲醇的混合溶液中,滴加0.6mL戊二醛,40℃下搅拌10小时,加入0.1g的氨基修饰的胍盐离子液体,40℃下搅拌10小时。最后,将获得的 Fe3O4@SiO2-GIL纳米复合材料用乙醇和水洗涤几次,并在60℃下干燥10h得到最终的胍盐离子液体修饰的Fe3O4@SiO2纳米复合材料,即Fe3O4@SiO2-GIL。
实施例4:磁固相材料的表征
(a)氨基功能化胍盐离子液体表征
合成的GIL由核磁氢谱(1H NMR)表征,表征结果为:1H NMR(500MHz,氘代氯仿)δ3.75(t,4H),3.19(m,4H),3.07(s,12H),2.37(m,4H),1.42(t,4H)。
(b)SEM和TEM表征
Fe3O4纳米粒子的平均直径约为250nm,并显示出出色的分散性,如图2和图3所示。另外,所制备的Fe3O4纳米颗粒的尺寸和形状均匀。然后将Fe3O4纳米颗粒包覆SiO2壳,形成Fe3O4@SiO2。与Fe3O4纳米粒子相比,Fe3O4@SiO2纳米粒子具有光滑的表面并显示出良好的核-壳结构。图4表明,所有Fe3O4@SiO2纳米颗粒均保持良好的分散性和均匀性。 Fe3O4@SiO2纳米颗粒的壳层约为60nm,如图5所示。图6可以看出经过PEI和胍盐离子液体改性后,Fe3O4@SiO2的直径和壳层无明显变化。这表明修饰PEI和胍盐离子液体不会影响 Fe3O4@SiO2纳米材料的表面形态和尺寸分布。
(c)磁滞回线表征
测量了纳米颗粒的磁滞回线,并在图7中给出。当Fe3O4纳米颗粒被SiO2包覆时,饱和磁化强度值从65.73变为19.50emu·g-1。大的饱和磁化强度使Fe3O4@SiO2纳米复合材料易于从溶液中分离出来。Fe3O4@SiO2-GIL纳米复合材料的饱和磁化强度没有明显变化(19.25emu·g-1),这表明修饰胍盐离子液体不会改变材料的磁性。
(d)元素分析表征
表征结果如表1所示,与Fe3O4@SiO2中不存在氮相比,Fe3O4@SiO2-NH2中的氮含量增加到1.83%(重量百分比),Fe3O4@SiO2-PEI中的氮含量增加到2.31%。Fe3O4@SiO2-GIL 吸附剂中的氯表明,GIL已成功地在磁性材料表面改性。
表1材料的元素分析
Figure GDA0002655463810000071
Figure GDA0002655463810000081
实施例5:基于制备的磁性材料的方法学建立
萃取过程如图1(b)所示,将10mg磁固相萃取材料置于35mL含有多环芳烃污染物的待测水样中,超声混合均匀,使磁固相萃取材料充分吸附水中污染物,30min后在外加磁铁的作用下将材料与水样分离,弃掉上清液。加1mL水轻轻洗涤后加入500μL甲醇,将PAHs 从材料上洗脱,震荡3min,分离得到解吸溶液。用0.22μm滤膜过滤,进行液相色谱分析。液相色谱分析采用C18色谱柱(4.6mm×150mm,5μm),流动相的比例为水:甲醇(25:75, v/v),流速为1.6mL·min-1,进样体积10μL,检测器为紫外检测器,检测波长为278nm,柱温设置为30℃。
优化萃取条件如图8-12所示,比较了不同条件对萃取效果的影响,最后选择的条件为:解吸溶剂选择甲醇;萃取剂用量为10mg;萃取时间为30min;解吸时间为4min;不加盐。
在最优条件下,检验方法的线性和检测限
表2方法性能分析
Figure GDA0002655463810000082
a每个样品的加标浓度为500ng·mL-1.
实施例6:
基于实施例1制备的磁固相萃取材料用于实际水样的磁固相萃取分析
Figure GDA0002655463810000083
Figure GDA0002655463810000091
在四个实际环境样品的检测结果如上表 所示,总体而言结果较好,能满足实际分析。
本专利制备了一种更环保的新型氨基功能化的六烷基胍盐离子液体。然后将离子液体通过化学方法接枝到磁性材料的表面,制备得到Fe3O4@SiO2-GIL纳米复合材料,将其用作MSPE吸附剂以富集PAHs。吸附剂易于修饰,并具有足够的磁性和良好的化学稳定性。另外,吸附剂可以很容易地与样品溶液分离节省了时间。结果表明,这是一种简单有效的方法,具有检测PAHs的巨大潜力。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (7)

1.一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法,其特征在于,包括以下步骤:
1)制备氨基功能化的胍盐离子液体
将1,1,3,3-四甲基胍、四丁基溴化铵、3-氯丙胺盐酸盐和碳酸钾超声溶解在甲醇中,在60-80℃下回流20-40h,采用正己烷、乙酸乙酯和三乙胺洗涤后,加入水和氢氧化钠颗粒调节溶液pH至8-9,蒸发水后采用乙醇和四氢呋喃的混合溶液萃取得到氨基修饰的六烷基胍盐离子液体;所述六烷基胍盐离子液体的通式如下:
Figure FDA0003642632760000011
其中,取代基R1为C1-C4的烷基或苄基,X-为氯离子、溴离子、碘离子、甲基磺酸根阴离子、三氟甲基磺酸根阴离子、四氟硼酸根阴离子或乙酸根阴离子;
2)制备Fe3O4@SiO2磁性材料
室温下,将六水合氯化铁和柠檬酸三钠溶解在乙二醇中,搅拌后加入无水乙酸钠,搅拌0.5-2h后,将混合物转移到高压釜中,150℃-200℃下反应8-12h后得到Fe3O4纳米颗粒;将得到的Fe3O4颗粒分散在乙醇和水的混合溶液中,加入25%的氨水和四甲氧基硅烷搅拌8-10h,采用乙醇洗涤得到Fe3O4@SiO2磁性材料;
3)制备氨基修饰的Fe3O4磁性材料
将步骤2)中制得的Fe3O4@SiO2磁性材料分散在异丙醇中,加入(3-氨基丙基)三乙氧基硅烷;氩气保护下搅拌15-24h,得到氨基修饰的Fe3O4磁性材料,即Fe3O4@SiO2-NH2磁性材料;
4)制备胍盐离子液体修饰的四氧化三铁
将步骤3)中制得的Fe3O4@SiO2-NH2磁性材料分散在乙酸和甲醇的混合溶液中,并滴加戊二醛;将混合物在30-60℃下搅拌8-10小时;收集所得产物并用溶剂洗涤,然后再次分散在30mL溶剂乙酸和甲醇的混合溶液中;加入聚乙烯亚胺PEI并在30-60℃下搅拌8-10小时得到PEI修饰的磁性纳米材料,即Fe3O4@SiO2-PEI纳米复合材料;其中,每100-200mg的Fe3O4@SiO2-NH2磁性材料对应0.1-0.3mL的戊二醛、0.3-0.6g的聚乙烯亚胺;
通过氨基和醛基的反应,将步骤1)得到的氨基修饰的六烷基胍盐离子液体枝接到Fe3O4@SiO2-PEI纳米复合材料的表面,得到胍盐离子液体修饰的四氧化三铁,即Fe3O4@SiO2-GIL纳米复合材料;其中,每100-200mg的氨基修饰的六烷基胍盐离子液体对应0.3-0.6mL的戊二醛和0.1-0.3g的Fe3O4@SiO2-PEI纳米复合材料。
2.根据权利要求1所述的一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法,其特征在于,所述步骤1)中,每1-3mL 1,1,3,3-四甲基胍对应加入0.1-0.3g的四丁基溴化铵、9-11g的3-氯丙胺盐酸盐、2-6g的碳酸钾。
3.根据权利要求1所述的一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法,其特征在于,所述步骤2)中,所述六水合氯化铁、柠檬酸三钠和无水乙酸钠的质量比为1-2:0.2-0.4:2-4。
4.根据权利要求1所述的一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法,其特征在于,所述步骤2)中,每100-200mg的Fe3O4纳米颗粒对应5-7mL氨水和0.7-1mL四甲氧基硅烷。
5.根据权利要求1所述的一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法,其特征在于,所述步骤3)中,每100mg Fe3O4@SiO2磁性材料对应加入1-3mL(3-氨基丙基)三乙氧基硅烷。
6.根据权利要求1所述的一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法,其特征在于,步骤1)所述混合溶液中,乙醇和四氢呋喃的体积比为1:1-2;步骤2)所述混合溶液中乙醇和水的体积比为1:0.2-0.3;步骤4)所述混合溶液中乙酸和甲醇体积比为1:120-140。
7.采用权利要求1所述的制备方法得到的胍盐离子液体修饰的四氧化三铁的应用,其特征在于,将其作为磁固相萃取材料,应用于对多环芳烃类化合物的萃取分析,包括如下步骤;
首先,将磁固相萃取材料置于含有多环芳烃污染物的待测水样中,其中,每10mg磁固相萃取材料对应加入35mL待测水样,超声混合均匀,使磁固相萃取材料充分吸附水中污染物;在外加磁铁的作用下将材料与水样分离,弃掉上清液;其次,加入水洗涤后再加入少量甲醇,将PAHs从材料上洗脱,分离得到解吸溶液;最后,采用滤膜过滤,进行液相色谱分析。
CN202010618356.7A 2020-07-01 2020-07-01 一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用 Active CN111871400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010618356.7A CN111871400B (zh) 2020-07-01 2020-07-01 一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010618356.7A CN111871400B (zh) 2020-07-01 2020-07-01 一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111871400A CN111871400A (zh) 2020-11-03
CN111871400B true CN111871400B (zh) 2022-09-06

Family

ID=73157401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010618356.7A Active CN111871400B (zh) 2020-07-01 2020-07-01 一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111871400B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716670B (zh) * 2020-12-22 2024-01-26 河北农业大学 一种聚合物及其制备方法和应用
CN114573483B (zh) * 2022-03-16 2022-11-01 湖南师范大学 一种疏水的磁性离子液体及其制备方法和应用
CN115569631A (zh) * 2022-09-28 2023-01-06 湖北千里材料科技有限公司 一种离子液体固载磁性纳米二氧化硅材料,及其制备与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974314A (zh) * 2012-12-04 2013-03-20 天津大学 一种磁性金纳米粒子复合材料及其制备方法和应用
CN110187039A (zh) * 2019-06-10 2019-08-30 扬州大学 一种色氨酸离子液体负载磁性氧化石墨烯纳米复合材料及其戊唑醇萃取检测方法
CN110385116A (zh) * 2019-06-28 2019-10-29 沈阳信达泰康医药科技有限公司 一种磁性纳米复合材料及其制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974314A (zh) * 2012-12-04 2013-03-20 天津大学 一种磁性金纳米粒子复合材料及其制备方法和应用
CN110187039A (zh) * 2019-06-10 2019-08-30 扬州大学 一种色氨酸离子液体负载磁性氧化石墨烯纳米复合材料及其戊唑醇萃取检测方法
CN110385116A (zh) * 2019-06-28 2019-10-29 沈阳信达泰康医药科技有限公司 一种磁性纳米复合材料及其制备和应用

Also Published As

Publication number Publication date
CN111871400A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN111871400B (zh) 一种胍盐离子液体修饰的磁固相萃取吸附剂的制备方法及其应用
Huang et al. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein
CN108620048A (zh) 聚乙烯亚胺修饰的磁性微球制备方法及应用
Zhang et al. Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples
CN107930592B (zh) 一种mof-磁性石墨烯杂化材料及其在手性拆分和体外细胞毒性方面的应用
Chen et al. Ultrastable nitrogen-doped carbon nanotube encapsulated cobalt nanoparticles for magnetic solid-phase extraction of okadaic acid from aquatic samples
CN108530623B (zh) 一种对酚类环境雌激素富集的方法
Tian et al. One-pot sustainable synthesis of magnetic MIL-100 (Fe) with novel Fe 3 O 4 morphology and its application in heterogeneous degradation
Wang et al. Experimental and molecular docking study on graphene/Fe3O4 composites as a sorbent for magnetic solid-phase extraction of seven imidazole antifungals in environmental water samples prior to LC-MS/MS for enantiomeric analysis
CN114130374B (zh) 一种磁性羧基化共价有机骨架材料作为磁性固相萃取吸附剂的应用
Song et al. Morphology-maintaining synthesis of copper hydroxy phosphate@ metal–organic framework composite for extraction and determination of trace mercury in rice
CN109351335B (zh) 一种磁性三叠烯-三嗪共价骨架固相萃取剂及其制备方法和应用
Zhang et al. Extraction of phenylurea herbicides from rice and environmental water utilizing MIL-100 (Fe)-functionalized magnetic adsorbents
Wang et al. Bimetallic nitrogen-doped porous graphene for highly efficient magnetic solid phase extraction of 5-nitroimidazoles in environmental water
Mehdinia et al. Magnetite nanoparticles surface-modified with a zinc (II)-carboxylate Schiff base ligand as a sorbent for solid-phase extraction of organochlorine pesticides from seawater
Li et al. Polyethyleneimine-functionalized Fe 3 O 4/attapulgite particles for hydrophilic interaction-based magnetic dispersive solid-phase extraction of fluoroquinolones in chicken muscle
Zhou et al. Magnetic amino-functionalized metal-organic frameworks as a novel solid support in ionic liquids-based effervescent tablets for efficient extraction of polycyclic aromatic hydrocarbons in milks
Qin et al. Facile synthesis of Fe3O4@ polyethyleneimine modified with 4‐formylphenylboronic acid for the highly selective extraction of major catecholamines from human urine
Niu et al. Preparation of magnetic carbonized polyaniline nanotube and its adsorption behaviors of xanthene colorants in beverage and fish samples
CN111036184A (zh) 基于mof的羟基化磁性氮掺杂碳纳米管的制备及其用于茶叶中生长素含量的检测
CN111474248A (zh) 化妆品中四种防腐剂的测定方法
CN111672474A (zh) 一种磁性氮掺杂氧化碳纳米管材料及其制备方法和应用
Liu et al. Simple synthesis of magnetic porous organic cages for adsorption of triphenylmethane dyes in aquatic products
CN108940215A (zh) 一种富集化去除多环芳烃的方法
Guo et al. Decorated traditional cellulose with nanoscale chiral metal–organic frameworks for enhanced enantioselective capture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant