CN111859795B - 针对功率放大器的多项式辅助神经网络行为建模系统及方法 - Google Patents

针对功率放大器的多项式辅助神经网络行为建模系统及方法 Download PDF

Info

Publication number
CN111859795B
CN111859795B CN202010674084.2A CN202010674084A CN111859795B CN 111859795 B CN111859795 B CN 111859795B CN 202010674084 A CN202010674084 A CN 202010674084A CN 111859795 B CN111859795 B CN 111859795B
Authority
CN
China
Prior art keywords
polynomial
layer
neural network
power amplifier
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010674084.2A
Other languages
English (en)
Other versions
CN111859795A (zh
Inventor
余超
郁煜铖
洪伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Network Communication and Security Zijinshan Laboratory
Original Assignee
Southeast University
Network Communication and Security Zijinshan Laboratory
Filing date
Publication date
Application filed by Southeast University, Network Communication and Security Zijinshan Laboratory filed Critical Southeast University
Priority to CN202010674084.2A priority Critical patent/CN111859795B/zh
Publication of CN111859795A publication Critical patent/CN111859795A/zh
Application granted granted Critical
Publication of CN111859795B publication Critical patent/CN111859795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了针对功率放大器的多项式辅助神经网络行为建模系统及方法,其特征在于,该建模系统包括多项式辅助模块和神经网络模块,多项式辅助模块利用功率放大器的先验信息拟合功率放大器的主要非线性,神经网络模块补偿多项式辅助模块无法表征的特征,对功率放大器的非线性行为进行精细拟合。多项式辅助模块和神经网络模块集成于同一个神经网络中,采用反向传播算法同时更新两个模块的系数。本发明还公开了针对功率放大器的多项式辅助神经网络行为建模方法。本发明通过将功率放大器的先验信息嵌入到神经网络模型中,在不损失建模精度的情况下,大大降低了模型的复杂度。

Description

针对功率放大器的多项式辅助神经网络行为建模系统及方法
技术领域
本发明涉及功率放大器行为建模领域,特别是涉及一种针对功率放大器的多项式辅助神经网络行为建模系统及方法。
背景技术
第五代移动通信系统(5G)对通信质量提出了更高的要求:更快的速率、更低的延迟和更高的效率。功率放大器作为无线通信系统的核心器件,其性能的好坏直接影响到整个系统的通信质量。然而,功率放大器工作在高效率模式下时通常表现出很强的非线性,导致信号传输失真,影响正常通信。为了兼顾功率放大器的效率和线性度,一般利用数字预失真技术对非线性进行补偿,数字预失真技术通过建立功率放大器的逆特性来预失真原输入信号。因此,为了获得良好的线性化性能,需要一个精确的行为模型。
基于多项式的传统模型,如记忆多项式模型,广义记忆多项式模型被广泛用于功率放大器的行为级建模。然而,对于5G中非线性特性较复杂的功率放大器,使用这些传统模型将需要大量的核函数,这会导致数值不稳定问题,影响建模性能。
此外,基于神经网络的模型是另一种选择。神经网络能以任意精度逼近任意非线性曲线,在对功率放大器进行为建模时取得了令人满意的效果。然而,在5G中功率放大器由于超宽带操作而产生了严重的记忆效应,为了准确地对功率放大器进行建模,需要一个大型的神经网络。这导致神经网络结构复杂,系数繁多,且收敛速度慢,稳定性差,造成了资源的浪费。因此,需要一个更加高效精准的功率放大器行为建模方法。
发明内容
发明目的:本发明的一个目的是提供一种针对功率放大器的多项式辅助神经网络行为建模系统。
本发明的另一个目的是提供一种针对功率放大器的多项式辅助神经网络行为建模方法,能够以较低的复杂度对5G中的复杂特性功率放大器进行准确建模。
技术方案:本发明的针对功率放大器的多项式辅助神经网络行为建模系统,包括多项式辅助模块和神经网络模块,多项式辅助模块利用功率放大器的先验信息拟合功率放大器的主要非线性,神经网络模块补偿多项式辅助模块无法表征的特征,对功率放大器的非线性行为进行精细拟合。
优选的,多项式辅助模块和神经网络模块集成于同一个神经网络中,采用误差反向传播算法同时更新多项式辅助模块和神经网络模块的系数。
优选的,多项式辅助模块为一个不含隐藏层的神经网络结构,包括输入层和输出层,输入层为功率放大器的建模输入信号进行多项式操作后的实部和虚部,输入信号直接传递到输出层;输出层接收来自输入层的信号,对信号进行线性加权组合运算,得到多项式辅助模块的输出信号。
优选的,将传统模型的多项式核函数改为神经网络能处理的实部和虚部的形式,嵌入到神经网络内部,作为多项式辅助模块的输入信号;传统模型改为实数形式如下式所示:
其中,y(n)为时刻n的输出信号,Fg[·]为第g个核函数,G为核函数的个数,cg为第g个复数系数,cg=cg,I+jcg,Q,cg,I和cg,Q分别为cg的同相和正交分量,j为虚数单位,Ag为第g个对输入信号的非线性操作,Ag=Ag,I+jAg,Q,Ag,I和Ag,Q分别为Ag的同相和正交分量;
其中,多项式辅助模块的输入信号为Ag,I和Ag,Q,其中g取1到G;
多项式辅助模块输出层的线性加权组合运算表达式为:
其中,I(n)和Q(n)分别为多项式辅助模块输出信号的同相和正交分量,w1g,I、w2g,I、w1g,Q和w2g,Q为神经网络的权值。
优选的,神经网络模块采用矢量分解的结构,将复数信号分解为幅度和相位进行处理,以符合输入信号通过功率放大器的失真特性。
优选的,神经网络模块包括输入层、隐藏层、组加权层、相位恢复层和输出层,其中:
神经网络模块的输入层对输入信号的幅度进行延时,假设模型的记忆深度为M,则输入层有M个神经元,第m个神经元在时刻n的输入信号为xm(n)=|x(n-m)|;
神经网络模块的隐藏层为全连接层,激活函数为双曲正切,其运算表达式为:
其中,yk(n)为第k个隐藏层神经元的输出信号,tanh[·]为双曲正切激活函数,wmk为第m个输入层神经元到第k个隐藏层神经元的权值,bk第k个神经元的偏置;
组加权层对隐藏层输出信号进行分组加权,隐藏层神经元提取了功率放大器的幅度非线性特征,之后还需要对其进行相位恢复;组加权层将恢复相位相同的幅度非线性项进行合并,简化相位恢复工作;对于记忆深度为M的模型,一共有M个相位需要恢复,将隐藏层神经元分成M个组,对每一组内的神经元进行加权产生4个输出信号用于下一层的相位恢复;组加权层相当于是M个全连接层,每个全连接层均有4个输出神经元;
相位恢复层接收来自组加权层的信号,对合并的幅度非线性项进行相位恢复;每一组的前2个神经元gm,0和gm,1分别乘以cosθn-m和sinθn-m输出到Iout(n),每一组的后2个神经元gm,2和gm,3分别乘以cosθn-m和sinθn-m输出到Qout(n);其中,Iout(n),Qout(n)分别表示最终输出信号的同相和正交分量,gm,0、gm,1、gm,2、gm,3分别表示组加权层中第m个组的第1、2、3、4个神经元的输出,θn-m表示输入信号延时m的相位。
优选的,神经网络模块相位恢复层的输出信号与多项式辅助模块的输出信号在最后的输出层相加,得到功率放大器的建模输出信号,计算公式如下:
其中,Iout(n),Qout(n)分别表示最终输出信号的同相和正交分量,gm,0、gm,1、gm,2、gm,3分别表示组加权层中第m个组的第1、2、3、4个神经元的输出,θn-m表示输入信号延时m的相位,M为神经元个数。
本发明的针对功率放大器的多项式辅助神经网络行为建模方法,包括以下步骤:
S1、将一组输入信号输入功率放大器,然后捕获输出信号;从而采集到功率放大器建模所需的输入数据和相应的输出数据,并将输入输出数据分成训练集和验证集;
S2、根据所需建模精度和功率放大器的非线性特性,选择需要嵌入到多项式辅助模块中的传统模型;
S3、设置建模系统超参数:多项式辅助模块输入信号数量,神经网络模块隐藏层神经元数量,批处理的大小,优化器的学习率,迭代次数,目标建模误差;
S4、将功率放大器输入输出数据训练集输入系统,使用Adam优化器更新模型系数,直到迭代次数或建模误差达到要求;
S5、保存模型系数,将验证集输入数据注入系统,得到测试集建模输出数据,与实际输出数据比较并计算归一化均方误差,如误差小于目标建模误差,则进入步骤S6,如不满足,则重复步骤S2~S5;
S6、导出模型系数,建模系统之后可根据功率放大器的输入信号对输出信号进行预测。
其中,传统模型为记忆多项式模型或广义记忆多项式模型。
本发明通过将功率放大器的先验信息嵌入到神经网络模型中,在不损失建模精度的情况下,大大降低了模型的复杂度。
有益效果:与现有技术相比,本发明具有以下优点:
1)多项式核函数的嵌入降低了神经网络的拟合要求,大大减少了神经网络的系数个数,从而解决了以往神经网络模型系数繁多、网络结构复杂的问题。
2)多项式辅助模块固定了部分非线性操作,减少了整个模型的计算量,提高了稳定性和收敛速度。
3)神经网络模块具有很高的灵活性,该模型仍然具有神经网络模型的优点。神经网络模块可以生成多项式基函数不能表征的特征,提高了建模性能。
附图说明
图1是本发明系统结构框图;
图2是本发明具体实施方式中对一个输入信号为5G NR的GaN功率放大器进行建模的建模功率谱图和建模误差图。
具体实施方式
下面结合具体实施方式和附图对本发明的技术方案作进一步的介绍。
本具体实施方式公开了一种针对功率放大器的多项式辅助神经网络行为建模系统,该建模系统包括多项式辅助模块和神经网络模块。多项式辅助模块利用功率放大器的先验信息拟合功率放大器的主要非线性,神经网络部分补偿多项式辅助模块无法表征的特征,对非线性行为进行精细拟合。
多项式辅助模块和神经网络模块集成于同一个神经网络中,采用误差反向传播算法同时更新两个模块的系数。
多项式辅助模块为一个不含隐藏层的神经网络结构,由输入层和输出层组成;所述输入层为功率放大器的建模输入信号进行多项式操作后的实部和虚部,输入信号直接传递到输出层;所述输出层接收来自输入层的信号,对信号进行线性加权组合运算,得到多项式辅助模块的输出信号。
多项式辅助模块输入层对输入信号的多项式操作利用功率放大器的先验信息,减少神经网络的计算量。由于已知功率放大器的非线性特性可以使用多项式进行表征,因此可以将传统模型的多项式核函数改为神经网络能处理的实部和虚部的形式,嵌入到神经网络内部,作为多项式辅助模块的输入信号;传统模型改为实数形式如式(1)所示:
其中,y(n)为时刻n的输出信号,Fg[·]为第g个核函数,G为核函数的个数,cg为第g个复数系数,cg=cg,I+jcg,Q,cg,I和cg,Q分别为cg的同相和正交分量,j为虚数单位,Ag为第g个对输入信号的非线性操作,Ag=Ag,I+jAg,Q,Ag,I和Ag,Q分别为Ag的同相和正交分量;
其中,多项式辅助模块的输入信号为Ag,I和Ag,Q,其中g取1到G。
多项式辅助模块输出层的线性加权组合运算可以表示为式(2)和(3):
式(2)(3)中I(n)和Q(n)分别为多项式辅助模块输出信号的同相和正交分量,w1g,I,w2g,I,w1g,Q和w2g,Q为神经网络的权值。
神经网络模块采用矢量分解的结构,将复数信号分解为幅度和相位进行处理,以符合输入信号通过功率放大器的失真特性。
神经网络模块由输入层、隐藏层、组加权层、相位恢复层和输出层组成。
神经网络模块的输入层对输入信号的幅度进行延时,假设模型的记忆深度为M,则输入层有M个神经元,第m个神经元在时刻n的输入信号为xm(n)=|x(n-m)|。
神经网络模块的隐藏层为全连接层,激活函数为双曲正切,其运算可以表示为式(4):
式(4)中yk(n)为第k个隐藏层神经元的输出信号,tanh[·]为双曲正切激活函数,wmk为第m个输入层神经元到第k个隐藏层神经元的权值,bk第k个神经元的偏置。
组加权层对隐藏层输出信号进行分组加权。隐藏层神经元提取了功率放大器的幅度非线性特征,之后还需要对其进行相位恢复。组加权层将恢复相位相同的幅度非线性项进行合并,简化相位恢复工作。对于记忆深度为M的模型,一共有M个相位需要恢复,将隐藏层神经元分成M个组,对每一组内的神经元进行加权产生4个输出信号用于下一层的相位恢复。组加权层可以看做是M个全连接层,每个全连接层均有4个输出神经元。
相位恢复层接收来自组加权层的信号,对合并的幅度非线性项进行相位恢复。每一组的前2个神经元gm,0和gm,1分别乘以cosθn-m和sin θn-m输出到Iout(n),每一组的后2个神经元gm,2和gm,3分别乘以cosθn-m和sinθn-m输出到Qout(n)。其中Iout(n),Qout(n)分别表示最终输出信号的同相和正交分量,gm,0、gm,1、gm,2、gm,3分别表示组加权层中第m个组的第1、2、3、4个神经元的输出,θn-m表示输入信号延时m的相位。
神经网络模块相位恢复层的输出信号与多项式辅助模块的输出信号在最后的输出层相加,得到功率放大器的建模输出信号,如式(5)和(6)所示:
针对功率放大器的多项式辅助神经网络行为建模方法,包括以下步骤:
S1:将一组输入信号输入功率放大器,然后捕获输出信号;从而采集到功率放大器建模所需的输入数据和相应的输出数据,并将输入输出数据分成训练集和验证集。
S2:根据所需建模精度和功率放大器的非线性特性,选择需要嵌入到多项式辅助模块中的传统模型,可选的有:记忆多项式模型,广义记忆多项式模型等等。
S3:设置建模系统超参数,包括:多项式辅助模块输入信号数量,神经网络模块隐藏层神经元数量,批处理的大小,优化器的学习率,迭代次数,目标建模误差。
S4:将功率放大器输入输出数据训练集输入系统,使用Adam优化器更新模型系数,直到迭代次数或建模误差达到要求。
S5:保存模型系数,将验证集输入数据注入系统,得到测试集建模输出数据,与实际输出数据比较并计算归一化均方误差,如误差小于目标建模误差,则进入步骤S6,如不满足,则重复步骤S2~S5。
S6:导出模型系数,建立模型系统之后可根据功率放大器的输入信号对输出信号进行预测。
其中,传统模型为记忆多项式模型或广义记忆多项式模型。
图2展示了本发明具体实施方式中对一个输入信号为5G NR的GaN功率放大器进行建模的建模功率谱图和建模误差图。在图2中,采用本发明提出的多项式辅助神经网络方法建模该功率放大器,在频域上建模信号与实测信号拟合情况较好,建模误差在-50dB以下,建模效果不差于现有模型,且本发明提出的模型使用了更少的系数。由此获得了一种更加高效的建模方法。

Claims (3)

1.针对功率放大器的多项式辅助神经网络行为建模系统,其特征在于,该建模系统包括多项式辅助模块和神经网络模块,多项式辅助模块利用功率放大器的先验信息拟合功率放大器的主要非线性,神经网络模块补偿多项式辅助模块无法表征的特征,对功率放大器的非线性行为进行精细拟合;
多项式辅助模块和神经网络模块集成于同一个神经网络中,采用误差反向传播算法同时更新多项式辅助模块和神经网络模块的系数;
多项式辅助模块为一个不含隐藏层的神经网络结构,包括输入层和输出层,输入层为功率放大器的建模输入信号进行多项式操作后的实部和虚部,输入信号直接传递到输出层;输出层接收来自输入层的信号,对信号进行线性加权组合运算,得到多项式辅助模块的输出信号;
将传统模型的多项式核函数改为神经网络能处理的实部和虚部的形式,嵌入到神经网络内部,作为多项式辅助模块的输入信号;传统模型改为实数形式如下式所示:
其中,y(n)为时刻n的输出信号,Fg[·]为第g个核函数,G为核函数的个数,cg为第g个复数系数,cg=cg,I+jcg,Q,cg,I和cg,Q分别为cg的同相和正交分量,j为虚数单位,Ag为第g个对输入信号的非线性操作,Ag=Ag,I+jAg,Q,Aa,I和Ag,Q分别为Ag的同相和正交分量;
其中,多项式辅助模块的输入信号为Ag,I和Ag,Q,其中g取1到G;
多项式辅助模块输出层的线性加权组合运算表达式为:
其中,I(n)和Q(n)分别为多项式辅助模块输出信号的同相和正交分量,w1g,I、w2g,I、w1g,Q和w2g,Q为神经网络的权值;
神经网络模块采用矢量分解的结构,将复数信号分解为幅度和相位进行处理,以符合输入信号通过功率放大器的失真特性;
神经网络模块包括输入层、隐藏层、组加权层、相位恢复层和输出层,其中:
神经网络模块的输入层对输入信号的幅度进行延时,假设模型的记忆深度为M,则输入层有M个神经元,第m个神经元在时刻n的输入信号为xm(n)=|x(n-m)|;
神经网络模块的隐藏层为全连接层,激活函数为双曲正切,其运算表达式为:
其中,yk(n)为第k个隐藏层神经元的输出信号,tanh[·]为双曲正切激活函数,wmk为第m个输入层神经元到第k个隐藏层神经元的权值,bk第k个神经元的偏置;
组加权层对隐藏层输出信号进行分组加权,隐藏层神经元提取了功率放大器的幅度非线性特征,之后还需要对其进行相位恢复;组加权层将恢复相位相同的幅度非线性项进行合并,简化相位恢复工作;对于记忆深度为M的模型,一共有M个相位需要恢复,将隐藏层神经元分成M个组,对每一组内的神经元进行加权产生4个输出信号用于下一层的相位恢复;组加权层相当于是M个全连接层,每个全连接层均有4个输出神经元;
相位恢复层接收来自组加权层的信号,对合并的幅度非线性项进行相位恢复;每一组的前2个神经元gm,0gm,1分别乘以cosθn-m和sinθn-m输出到Iout(n),每一组的后2个神经元gm,2和gm,3分别乘以cosθn-m和sinθn-m输出到Qout(n);其中,Iout(n),Qout(n)分别表示最终输出信号的同相和正交分量,gm,0、gm,1、gm,2、gm,3分别表示组加权层中第m个组的第1、2、3、4个神经元的输出,θn-m表示输入信号延时m的相位;
神经网络模块相位恢复层的输出信号与多项式辅助模块的输出信号在最后的输出层相加,得到功率放大器的建模输出信号,计算公式如下:
其中,Iout(n),Qout(n)分别表示最终输出信号的同相和正交分量,gm,0、gm,1、gm,2、gm,3分别表示组加权层中第m个组的第1、2、3、4个神经元的输出,θn-m表示输入信号延时m的相位,M为神经元个数。
2.针对功率放大器的多项式辅助神经网络行为建模方法,其特征在于:采用权利要求1所述的针对功率放大器的多项式辅助神经网络行为建模系统,方法包括以下步骤:
S1、将一组输入信号输入功率放大器,然后捕获输出信号;从而采集到功率放大器建模所需的输入数据和相应的输出数据,并将输入输出数据分成训练集和验证集;
S2、根据所需建模精度和功率放大器的非线性特性,选择需要嵌入到多项式辅助模块中的传统模型;
S3、设置建模系统超参数:多项式辅助模块输入信号数量,神经网络模块隐藏层神经元数量,批处理的大小,优化器的学习率,迭代次数,目标建模误差;
S4、将功率放大器输入输出数据训练集输入系统,使用Adam优化器更新模型系数,直到迭代次数或建模误差达到要求;
S5、保存模型系数,将验证集输入数据注入系统,得到验证集建模输出数据,与实际输出数据比较并计算归一化均方误差,如误差小于目标建模误差,则进入步骤S6,如不满足,则重复步骤S2~S5;
S6、导出模型系数,建模系统之后可根据功率放大器的输入信号对输出信号进行预测。
3.根据权利要求2所述的针对功率放大器的多项式辅助神经网络行为建模方法,其特征在于,步骤S2中传统模型为记忆多项式模型或广义记忆多项式模型。
CN202010674084.2A 2020-07-14 针对功率放大器的多项式辅助神经网络行为建模系统及方法 Active CN111859795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010674084.2A CN111859795B (zh) 2020-07-14 针对功率放大器的多项式辅助神经网络行为建模系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010674084.2A CN111859795B (zh) 2020-07-14 针对功率放大器的多项式辅助神经网络行为建模系统及方法

Publications (2)

Publication Number Publication Date
CN111859795A CN111859795A (zh) 2020-10-30
CN111859795B true CN111859795B (zh) 2024-06-07

Family

ID=

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2538553A1 (en) * 2011-06-21 2012-12-26 Alcatel Lucent Apparatus and method for mitigating impairments of a transmit signal
CN102855417A (zh) * 2012-09-28 2013-01-02 中国科学院上海微系统与信息技术研究所 一种宽带射频功率放大器记忆非线性模型及建模方法
CN102969987A (zh) * 2012-12-17 2013-03-13 东南大学 基于欠采样的宽带功放预失真方法
CN103051293A (zh) * 2012-12-03 2013-04-17 广东省电信规划设计院有限公司 射频放大器预失真处理方法及其系统
CN104579187A (zh) * 2014-12-02 2015-04-29 南阳师范学院 用于建模宽带射频功放非线性的神经网络模型
CN105142177A (zh) * 2015-08-05 2015-12-09 西安电子科技大学 复数神经网络信道预测方法
CN105162738A (zh) * 2015-07-30 2015-12-16 南京信息工程大学 一种卫星信道复数神经多项式网络盲均衡系统及方法
CN105471784A (zh) * 2016-01-13 2016-04-06 中国人民解放军国防科学技术大学 一种联合补偿iq不平衡和pa非线性的数字预失真方法
CN109858616A (zh) * 2019-02-15 2019-06-07 东南大学 基于神经网络的功率放大器行为级建模系统及方法
CN110188382A (zh) * 2019-04-22 2019-08-30 南京航空航天大学 基于fft与bp神经网络的功率放大器频域行为建模方法
CN110392006A (zh) * 2019-06-20 2019-10-29 东南大学 基于集成学习和神经网络的自适应信道均衡器及方法
CN110472280A (zh) * 2019-07-10 2019-11-19 广东工业大学 一种基于生成对抗神经网络的功率放大器行为建模方法
CN110533169A (zh) * 2019-08-30 2019-12-03 海南电网有限责任公司 一种基于复值神经网络模型的数字预失真方法及系统
CN110598261A (zh) * 2019-08-16 2019-12-20 南京航空航天大学 一种基于复数反向神经网络的功率放大器频域建模方法
CN111200470A (zh) * 2020-01-10 2020-05-26 东南大学 一种适用于受非线性干扰的高阶调制信号传输控制方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2538553A1 (en) * 2011-06-21 2012-12-26 Alcatel Lucent Apparatus and method for mitigating impairments of a transmit signal
CN102855417A (zh) * 2012-09-28 2013-01-02 中国科学院上海微系统与信息技术研究所 一种宽带射频功率放大器记忆非线性模型及建模方法
CN103051293A (zh) * 2012-12-03 2013-04-17 广东省电信规划设计院有限公司 射频放大器预失真处理方法及其系统
CN102969987A (zh) * 2012-12-17 2013-03-13 东南大学 基于欠采样的宽带功放预失真方法
CN104579187A (zh) * 2014-12-02 2015-04-29 南阳师范学院 用于建模宽带射频功放非线性的神经网络模型
CN105162738A (zh) * 2015-07-30 2015-12-16 南京信息工程大学 一种卫星信道复数神经多项式网络盲均衡系统及方法
CN105142177A (zh) * 2015-08-05 2015-12-09 西安电子科技大学 复数神经网络信道预测方法
CN105471784A (zh) * 2016-01-13 2016-04-06 中国人民解放军国防科学技术大学 一种联合补偿iq不平衡和pa非线性的数字预失真方法
CN109858616A (zh) * 2019-02-15 2019-06-07 东南大学 基于神经网络的功率放大器行为级建模系统及方法
CN110188382A (zh) * 2019-04-22 2019-08-30 南京航空航天大学 基于fft与bp神经网络的功率放大器频域行为建模方法
CN110392006A (zh) * 2019-06-20 2019-10-29 东南大学 基于集成学习和神经网络的自适应信道均衡器及方法
CN110472280A (zh) * 2019-07-10 2019-11-19 广东工业大学 一种基于生成对抗神经网络的功率放大器行为建模方法
CN110598261A (zh) * 2019-08-16 2019-12-20 南京航空航天大学 一种基于复数反向神经网络的功率放大器频域建模方法
CN110533169A (zh) * 2019-08-30 2019-12-03 海南电网有限责任公司 一种基于复值神经网络模型的数字预失真方法及系统
CN111200470A (zh) * 2020-01-10 2020-05-26 东南大学 一种适用于受非线性干扰的高阶调制信号传输控制方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks;Zhai, JF等;IEEE Microwave and Wireless Components Letters;20100930;第20卷(第9期);528-530 *
基于神经网络的宽带功放动态非线性行为建模;刘太君等;《微波学报》;20200311;第36卷(第1期);131-136 *
基于神经网络的射频功放非线性模型研究;李玲;《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》;20160315(I135-1240);1-75 *
基于自适应扩展卡尔曼滤波与神经网络的HPA预失真算法;吴林煌等;《自动化学报》;20150922;第42卷(第1期);122-130 *
记忆非线性功率放大器的神经网络预失真;钱业青等;《计算机工程与应用》;20040721(2004年第21期);100-103 *

Similar Documents

Publication Publication Date Title
EP2641325B1 (en) Orthogonal basis function set for ditigal predistorter
CN103201949B (zh) 具有抽头输出归一化的非线性模型
US9813223B2 (en) Non-linear modeling of a physical system using direct optimization of look-up table values
CN101950315B (zh) 用于补偿基于第一原理的仿真模型的方法和装置
CN113676426B (zh) 面向动态传输的智能数字预失真系统及方法
CN110765720B (zh) 一种复值流水线递归神经网络模型的功放预失真方法
CN110414565B (zh) 一种用于功率放大器的基于Group Lasso的神经网络裁剪方法
CN111245375B (zh) 一种复值全连接递归神经网络模型的功放数字预失真方法
Raich et al. Digital baseband predistortion of nonlinear power amplifiers using orthogonal polynomials
WO2015107392A1 (en) Systems and methods for basis function orthogonalization for digital predistortion
CN103701414B (zh) 非线性项的选择装置及方法、辨识系统及补偿系统
CN111859795B (zh) 针对功率放大器的多项式辅助神经网络行为建模系统及方法
CN110086438B (zh) 一种针对无源多波束发射机的数字预失真系统及方法
CN111934694A (zh) 一种宽带零中频收发系统失真补偿装置
CN108111448A (zh) 预失真查找表的生成方法、装置与预失真校准设备
CN111859795A (zh) 针对功率放大器的多项式辅助神经网络行为建模系统及方法
CN113055323B (zh) 一种通信系统的数字预失真处理的方法及系统
CN113411056B (zh) 一种基于广义多项式和神经网络的非线性预失真方法
CN113553771B (zh) 基于rnn网络的动态x参数核计算方法
CN115392068A (zh) 一种基于恢复型后验误差估计的网格自适应方法
CN115079573A (zh) 一种非线性系统的高阶扩展强跟踪滤波器
JP5226468B2 (ja) プリディストータ
Sappal Simplified memory polynomial modelling of power amplifier
Jazlan et al. An improved parameterized controller reduction technique via new frequency weighted model reduction formulation
CN117033910B (zh) 一种海面高精度信号的处理方法及系统

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant