CN111848854A - 一种表面具有多毛结构的复合颗粒的制备方法 - Google Patents

一种表面具有多毛结构的复合颗粒的制备方法 Download PDF

Info

Publication number
CN111848854A
CN111848854A CN201910333210.5A CN201910333210A CN111848854A CN 111848854 A CN111848854 A CN 111848854A CN 201910333210 A CN201910333210 A CN 201910333210A CN 111848854 A CN111848854 A CN 111848854A
Authority
CN
China
Prior art keywords
monomer
preparation
cationic polymerization
composite particles
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910333210.5A
Other languages
English (en)
Inventor
杨振忠
万基平
梁福鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN201910333210.5A priority Critical patent/CN111848854A/zh
Publication of CN111848854A publication Critical patent/CN111848854A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F112/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开了一种表面具有多毛结构的复合颗粒的制备方法。所述制备方包括如下步骤:1)将无机纳米颗粒分散于有机溶剂中;2)向步骤1)的体系中加入引发剂和单体,所述单体进行阳离子聚合,即在所述无机纳米颗粒表面生成聚合物纳米纤维,至此即得到所述复合颗粒。本发明所提供的表面具有多毛结构的复合颗粒的制备方法,是通过阳离子沉淀聚合的方法,利用无机纳米颗粒表面的官能团对阳离子的淬灭作用,原位在颗粒表面生长聚合物纳米纤维。本发明方法,无机纳米颗粒的适用范围广,聚合物纤维的组成和形貌可以通过反应条件来控制。

Description

一种表面具有多毛结构的复合颗粒的制备方法
技术领域
本发明涉及一种表面具有多毛结构的复合颗粒的制备方法,属于高分子纳米材料技术领域。
背景技术
多毛结构在自然界中非常普遍,其可以赋予生物体特殊的性能,比如传感(J.CellSci.,2010,123,499-503)、防污(J.Mater.Chem.B 2013,1,3599-3606)、超疏水(Nature2004,432,36)、粘附(Nature,2000,405,681-685)等。比如,水黾腿上的分布有大量的具有多尺度结构的细长微刚毛,可以阻止水滴的浸润,宏观上表现为超疏水,使水黾可以在水面上快速的行走或奔跑。壁虎超强黏附力源于脚掌上大量微米级刚毛,刚毛的末端又分叉形成数百根更细小的铲状绒毛,这种多尺度的纤维状表面的结构可以和基底形成超强粘附力,使壁虎可以在垂直墙壁和天花板上爬行。
受自然界启发,科学家对仿生多毛结构开展了深入的研究。大部分报道的多毛结构是由碳纳米管或一维无机纳米材料所组成,它们可通过化学气相沉积(Adv.Mater.,2010,22,1654-1658)、水热法(Adv.Mater.,2010,22,1654-1658)、溶剂热(Soft Matter,2009,5,4687-4697)等方法制备。然而,这些制备方法的条件比较苛刻,通常需要高温或者高压。聚合物多毛结构主要采用模板法制备(Proc.Natl.Acad.Sci.USA,2009,106,5639-5644;J.Colloid Interface Sci.,2012,372,231-238)。然而模板法制备过程比较繁琐,无法大规模制备,而且不适合在在弯曲表面上制备多毛结构。因此,发展一种简单易行的方法来大量制备聚合物多毛结构是研究者极为关注而一直未能得到良好解决的问题,亟待进一步研究。
发明内容
本发明的目的是提供一种表面具有多毛结构的复合颗粒的制备方法,所述方法的反应条件温和,反应速度快,且可大批量制备。
本发明所提供的表面具有多毛结构的复合颗粒的制备方法,是通过阳离子沉淀聚合的方法,利用无机纳米颗粒表面的官能团对阳离子的淬灭作用,原位在颗粒表面生长聚合物纳米纤维。
本发明方法,无机纳米颗粒的适用范围广,聚合物纤维的组成和形貌可以通过反应条件来控制。
具体地,本发明所提供的表面具有多毛结构的复合颗粒的制备方法,包括如下步骤:
1)将无机纳米颗粒分散于有机溶剂中;
2)向步骤1)的体系中加入引发剂和单体,所述单体进行阳离子聚合,即在所述无机纳米颗粒表面生成聚合物纳米纤维,至此即得到所述复合颗粒。
本发明方法制备得到的复合颗粒由所述无机纳米颗粒和所述聚合物纳米纤维组成,所述聚合物纳米纤维均匀分布于所述无机纳米颗粒的表面,其中,所述聚合物纳米纤维的直径为50~100nm,长度为0~2μm,但不为零。
本发明方法能够制备得到所述复合纳米颗粒的原理如下:在所述引发剂的作用下,所述单体发生阳离子聚合,从溶液中析出并沉积到无机纳米颗粒表面,从而在颗粒表面形成一聚合物薄层。随着反应进行,引发剂与聚合物发生相分离,聚合物壳层的内应力使引发剂以小液滴的形式被挤压到聚合物表面。所述引发剂液滴继续引发单体生长形成纳米纤维,得到具有多毛结构的复合颗粒。
上述的制备方法中,步骤1)中,所述无机纳米颗粒为二氧化硅纳米颗粒或四氧化三铁纳米颗粒;
所述二氧化硅纳米颗粒的粒径可为200nm~10μm,如1.5μm;
所述四氧化三铁纳米颗粒的粒径可为200nm~400nm,如300nm。
上述的制备方法中,步骤1)中,所述有机溶剂为烷烃;所烷烃可为正己烷或正庚烷;
在表面活性剂的作用下将所述无机纳米颗粒分散于所述有机溶剂中。
上述的制备方法中,所述表面活性剂为Span-80(司班80);
所述表面活性剂于所述有机溶剂中的体积浓度为0.5‰~5‰。
上述的制备方法中,步骤2)中,所述阳离子聚合在搅拌或超声下进行。
上述的制备方法中,步骤2)中,所述引发剂为三氟化硼乙醚(BFEE);
所述三氟化硼乙醚于所述体系中的体积浓度为0.5‰~5‰;
所述阳离子聚合的温度为-78℃~60℃,如在室温下进行。
上述的制备方法中,步骤2)中,所述单体为单体A,所述单体A为二乙烯基苯、苯乙烯、苄基氯苯乙烯、甲基苯乙烯或叔丁基苯乙烯,即采用一种单体从而聚合生成均聚物的纳米纤维;
所述单体A于所述体系中的体积浓度为1~5%;
所述阳离子聚合的时间为30s~20min。
上述的制备方法中,步骤2)中,所述单体包括单体A和单体B,所述单体A和所述单体B依次加入至所述体系中,即采用两种不同的单体聚合;
所述单体A和所述单体B均为二乙烯基苯(DVB)、苯乙烯(St)、苄基氯苯乙烯(VBC)、甲基苯乙烯(MSt)或叔丁基苯乙烯(tBSt),且两者不同,从而共聚生成嵌段共聚物的纳米纤维;
所述单体A于所述体系中的体积浓度为1~5%;
所述单体B于所述体系中的体积浓度为0~5%,但不为零;
所述单体A和所述单体B进行所述阳离子聚合的时间均为5min~20min,优选5~10min、5min或10min。
本发明所制备的具有多毛结构的复合颗粒中,所述无机纳米颗粒的质量分数为10~50%,如25~40%、25%、30%或40%。
本发明方法制备的复合颗粒具有超疏水超亲油特性,可用于油水混合物的分离。
本发明提供的表面具有多毛结构的复合颗粒的制备方法,即通过阳离子沉淀聚合,原位在无机纳米颗粒表面生长聚合物纳米纤维,该方法具有如下优点:
1、该方法反应条件温和,可室温下反应,易批量制备
2、反应速度快,30min内反应完成。
3、方法普适性强,颗粒和纤维的组成可调。
附图说明
图1为SiO2微球的电镜照片。
图2为实施例1制备的复合微球PDVB@SiO2的电镜照片。
图3为Fe3O4微球的电镜照片。
图4为实施例4制备的磁性多毛微球PVBC-PDVB@Fe3O4的电镜照片。
图5为本发明实施例4制备的磁性多毛微球PVBC-PDVB@Fe3O4用于油水分离的照片(左图为油水混合物,右图为经分离后的照片)。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中使用的四氧化三铁微球按照如下方法制备而得:
5.4g FeCl3·6H2O搅拌超声分散在200mL乙二醇中,接着加入14.4g乙酸钠,超声约30min,得到黄色均一的溶液。
将其转移到聚四氟乙烯内衬的高压釜中,200℃反应12h。自然冷却,磁分离,水和乙醇各洗3次,45℃真空干燥12h得黑色产物备用。
颗粒尺寸约为250nm,为顺磁,磁饱和强度为76.67emu/g。
图3为所制备的磁性颗粒Fe3O4的电镜照片。
实施例1、在二氧化硅微球表面原位生长PDVB纳米纤维
将200mg二氧化硅微球加入到50ml溶有100mg司班80(Span-80,于正庚烷中的体积浓度为2‰)的正庚烷溶液中,超声15min使二氧化硅在溶液中均匀分散。
之后加入100μL三氟化硼乙醚络合物(BFEE,于体系中的体积浓度为2‰),作用30s后加入1ml二乙烯基苯单体(DVB,于体系中的体积浓度为2%),室温反应10min后加入过量乙醇使反应淬灭(阳离子聚合的淬灭可以通过外观颜色来判断,加入乙醇终止时,体系颜色会由橘红色转变为白色,并伴随有HF气体放出)。整个反应过程都在超声条件下进行。
反应结束后,用乙醇离心洗涤产物3次,45℃真空干燥得到PDVB@SiO2复合微球,其电镜照片如图2所示,可以看出,SiO2颗粒(其电镜照片如图1所示)表面被密集的PDVB纤维覆盖,纤维的直径约80nm,长度为500nm到1μm不等。
本实施例制备的PDVB@SiO2复合微球中SiO2的质量分数为40wt%。
实施例2、在二氧化硅微球表面原位生长PDVB纳米纤维
将200mg二氧化硅微球加入到50ml溶有100mg司班80(Span-80)的正庚烷溶液中,超声15min使二氧化硅在溶液中均匀分散。
之后加入100μL三氟化硼乙醚络合物(BFEE),作用30s后加入1ml二乙烯基苯单体(DVB),室温反应3min后加入过量乙醇使反应淬灭(阳离子聚合的淬灭可以通过外观颜色来判断,加入乙醇终止时,体系颜色会由橘红色转变为白色,并伴随有HF气体放出)。整个反应过程都在超声条件下进行。
电镜照片显示,SiO2颗粒表面还没有形成纳米纤维,只有一粗糙的聚合物壳层(形成纤维的过渡态,壳层的厚度约50nm,且表面有许多纳米尺度的孔。该实施例表明了纤维的演变过程,首先是在颗粒表面生成一个壳层,然后从壳层进一步发展成纤维。
实施例3、在二氧化硅微球表面原位生长PDVB-PVBC纳米纤维
将200mg二氧化硅微球加入到50ml溶有100mg Span-80的正庚烷溶液中,超声15min使二氧化硅分散均匀。
加入100μL三氟化硼乙醚(于体系中的体积浓度为2‰),作用30s后加入1ml DVB,室温反应10min。
往体系中一次加入200μL苄基氯苯乙烯(VBC,于体系中的体积浓度为0.4%),反应5min后加入过量乙醇使反应终止。用乙醇离心洗涤3次后即可得到产物PDVB-VBC@SiO2
纤维分成两段,其中靠近SiO2的一段成分为PDVB纳米纤维,朝向外侧的那一段成 分为PVBC纳米纤维,PVBC段的长度约为250nm。
本实施例制备的PDVB-VBC@SiO2复合微球中SiO2的质量分数为30wt%。
实施例4、在四氧化三铁颗粒表面原位生长PDVB-PVBC纳米纤维
将100mg Fe3O4加入到50ml溶有100mg Span-80(于正庚烷中的体积浓度为2‰)的正庚烷溶液中,超声15min使其分散均匀。
加入100μL三氟化硼乙醚(于体系中的体积浓度为2‰),作用30s后加入1ml DVB(于体系中的体积浓度为2%),室温反应10min。
往体系中一次加入200μL VBC(于体系中的体积浓度为0.4%),反应5min后加入过量乙醇使反应终止。乙醇离心洗涤3次后即可得到产物PVBC-PDVB@Fe3O4,电镜照片如图4所示,纤维分成两段,其中靠近SiO2的一段成分为PDVB纳米纤维,长度约为1000nm,朝向外侧的那一段成分为PVBC纳米纤维,PVBC段的长度约为500nm。
本实施例制备的PVBC-PDVB@Fe3O4的磁饱和强度为19.39emu/g,磁性多毛微球中Fe3O4的质量分数为25wt%(热重TGA分析)。
实施例5、复合微球用于油水分离
配置油水混合物:在装有2mL水的样品瓶中加入200μL油(正己烷),为了便于观察,采用香豆素6将油染成绿色。然后加入实施例4制备的PVBC-PDVB@Fe3O4复合颗粒,摇晃样品瓶,使复合颗粒与油充分接触,15s后水中油可以完全被复合颗粒吸收。如图5所示,复合颗粒在磁铁作用下可以被富集到样品瓶一侧,此时水相中看不到油,用红外测油仪检测水中残油量,结果显示,经复合颗粒处理后,水中油的含量低于5ppm。
分别采用实施例1制备的PDVB@SiO2复合微球和实施例3制备的PDVB-VBC@SiO2复合微球进行上述油水分离实验,实验结果与上述无实质性差异。

Claims (9)

1.一种表面具有多毛结构的复合颗粒的制备方法,包括如下步骤:
1)将无机纳米颗粒分散于有机溶剂中;
2)向步骤1)的体系中加入引发剂和单体,所述单体进行阳离子聚合,即在所述无机纳米颗粒表面生成聚合物纳米纤维,至此即得到所述复合颗粒。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)中,所述无机纳米颗粒为二氧化硅纳米颗粒或四氧化三铁纳米颗粒。
3.根据权利要求1或2所述的制备方法,其特征在于:步骤1)中,所述有机溶剂为烷烃;
在表面活性剂的作用下将所述无机纳米颗粒分散于所述有机溶剂中。
4.根据权利要求3所述的制备方法,其特征在于:所述表面活性剂为Span-80;
所述表面活性剂于所述有机溶剂中的体积浓度为0.5‰~5‰。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于:步骤2)中,所述阳离子聚合在搅拌或超声下进行。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于:步骤2)中,所述引发剂为三氟化硼乙醚;
所述三氟化硼乙醚于所述体系中的体积浓度为0.5‰~5‰;
所述阳离子聚合的温度为-78℃~60℃。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于:步骤2)中,所述单体为单体A,所述单体A为二乙烯基苯、苯乙烯、苄基氯苯乙烯、甲基苯乙烯或叔丁基苯乙烯;
所述单体A于所述体系中的体积浓度为1~5%;
所述阳离子聚合的时间为30s~20min。
8.根据权利要求1-6中任一项所述的制备方法,其特征在于:步骤2)中,所述单体包括单体A和单体B,所述单体A和所述单体B依次加入至所述体系中;
所述单体A和所述单体B均为二乙烯基苯、苯乙烯、苄基氯苯乙烯、甲基苯乙烯或叔丁基苯乙烯,且两者不同;
所述单体A和所述单体B进行所述阳离子聚合的时间均为30s~20min。
9.权利要求1-8中任一项所述方法制备的复合颗粒。
CN201910333210.5A 2019-04-24 2019-04-24 一种表面具有多毛结构的复合颗粒的制备方法 Pending CN111848854A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910333210.5A CN111848854A (zh) 2019-04-24 2019-04-24 一种表面具有多毛结构的复合颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910333210.5A CN111848854A (zh) 2019-04-24 2019-04-24 一种表面具有多毛结构的复合颗粒的制备方法

Publications (1)

Publication Number Publication Date
CN111848854A true CN111848854A (zh) 2020-10-30

Family

ID=72952076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910333210.5A Pending CN111848854A (zh) 2019-04-24 2019-04-24 一种表面具有多毛结构的复合颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN111848854A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604965A (zh) * 2021-08-25 2021-11-05 郑广翔 一种无纺布及其制备方法
CN114504880A (zh) * 2020-11-16 2022-05-17 清华大学 一种疏水改性金属网及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079580A1 (en) * 2012-11-26 2014-05-30 Eth Zurich Method for the preparation of macroporous particles and macroporous particles obtained using such a method
CN104695035A (zh) * 2015-03-30 2015-06-10 中国科学院化学研究所 一种超疏水珊瑚结构纳米纤维的制备方法和应用
CN105732861A (zh) * 2014-12-12 2016-07-06 中国科学院化学研究所 聚合物多毛球、其制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079580A1 (en) * 2012-11-26 2014-05-30 Eth Zurich Method for the preparation of macroporous particles and macroporous particles obtained using such a method
CN105732861A (zh) * 2014-12-12 2016-07-06 中国科学院化学研究所 聚合物多毛球、其制备方法及应用
CN104695035A (zh) * 2015-03-30 2015-06-10 中国科学院化学研究所 一种超疏水珊瑚结构纳米纤维的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENZHONGYANG等: ""Synthesis of hairy composite particles"", 《POLYMER》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114504880A (zh) * 2020-11-16 2022-05-17 清华大学 一种疏水改性金属网及其制备方法和用途
CN114504880B (zh) * 2020-11-16 2023-04-14 清华大学 一种疏水改性金属网及其制备方法和用途
CN113604965A (zh) * 2021-08-25 2021-11-05 郑广翔 一种无纺布及其制备方法
CN113604965B (zh) * 2021-08-25 2022-08-23 辽宁洁花环保科技装备有限公司 一种无纺布及其制备方法

Similar Documents

Publication Publication Date Title
Ma et al. Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface
Zhang et al. Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure
CN107790075B (zh) 一种核-壳-壳结构的磁性介孔SiO2纳米粒子的制备方法
CN103962074B (zh) 一种中空亚微米球、其制备方法与应用
CN111848854A (zh) 一种表面具有多毛结构的复合颗粒的制备方法
CN104445215A (zh) 中空二氧化硅纳米材料的制备方法
CN105647126B (zh) 低温用石墨烯增强增韧环氧树脂复合材料及其制备方法
Zeng et al. The synthesis of amphiphilic luminescent graphene quantum dot and its application in miniemulsion polymerization
CN104448168B (zh) 一种有机无机杂化中空微球的制备方法及其产物和应用
CN109880294A (zh) 一种单宁酸改性氧化石墨烯的环氧纳米复合材料
CN109985584A (zh) 一种可调控的草莓状二氧化硅-有机杂化复合微球的制备方法
CN112080033A (zh) 一种双亲性“碗”状Janus纳米粒子及其制备方法
Cong et al. Fabrication of monodisperse anisotropic silica hollow microspheres using polymeric cave particles as templates
CN111303643B (zh) 一种核壳结构的SiO2@石蜡纳米颗粒及其制备方法
CN104386699A (zh) 双模板法制备多壳层介孔氧化硅纳米材料的方法
Zhang et al. Facile fabrication of poly (acrylic acid) hollow nanogels via in situ Pickering miniemulsion polymerization
Han et al. Synthesis of mesoporous silica microspheres by a spray-assisted carbonation microreaction method
CN114685907A (zh) 一种可调节双疏性荧光聚苯乙烯微球填料的制备方法以及应用
Zhang et al. Preparation and characterization of TiO2/poly (St-co-MAA) core/shell composite particles
CN106731871A (zh) 无机粒子诱导相分离制备超疏水混合基质膜的方法
Shang et al. Facile fabrication of hollow mesoporous silica microspheres with hierarchical shell structure via a sol–gel process
CN111569797B (zh) 一种反蛋白石型大孔/介孔氮掺杂碳微球及其制备方法
CN108822302B (zh) 一种Janus纳米颗粒及其制备方法与应用
An et al. Colloidal crystals of monodisperse fluoro-nanoparticles by aqueous polymerization-induced self-assembly
CN108047364B (zh) 一种聚苯乙烯多孔微球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201030

WD01 Invention patent application deemed withdrawn after publication