CN111847571A - 纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法 - Google Patents

纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法 Download PDF

Info

Publication number
CN111847571A
CN111847571A CN202010675527.XA CN202010675527A CN111847571A CN 111847571 A CN111847571 A CN 111847571A CN 202010675527 A CN202010675527 A CN 202010675527A CN 111847571 A CN111847571 A CN 111847571A
Authority
CN
China
Prior art keywords
lithium niobate
composite material
nano
gold
nanogold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010675527.XA
Other languages
English (en)
Other versions
CN111847571B (zh
Inventor
刘晓燕
司东辉
贾碧
张均
范保艳
邢安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN202010675527.XA priority Critical patent/CN111847571B/zh
Publication of CN111847571A publication Critical patent/CN111847571A/zh
Application granted granted Critical
Publication of CN111847571B publication Critical patent/CN111847571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/682Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/38Polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种纳米金‑铌酸锂复合材料光诱导降解阴离子型染料的方法,首先制备纳米金‑铌酸锂复合材料;所述复合材料包括铌酸锂基底,该铌酸锂基底为平行于c轴晶轴的单畴结构,在该铌酸锂基底的+Z面上附着有纳米金;然后将纳米金‑铌酸锂复合材料附着有纳米金的面朝上置于阴离子型染料溶液中,并对纳米金‑铌酸锂复合材料施以近红外光照射,吸附在纳米金表面的阴离子型染料被氧化降解。采用本发明的显著效果是,通过对纳米金‑铌酸锂复合材料进行近红外光照射,使纳米金产生表面等离子体共振效应,电子从纳米金迁移至铌酸锂基底使纳米金表面聚集正电荷,能够充分吸附甲基橙等阴离子型染料并实现直接氧化降解,提供了降解有机物染料的新方法。

Description

纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法
技术领域
本发明涉及光催化处理有机染料废水的方法,具体涉及一种阴离子型染料废水的光诱导直接氧化降解方法。
背景技术
贵金属纳米颗粒(如Au、Ag、Cu)因其独特的表面等离子体共振(SPR)性质在表面增强光谱、光电器件、生物/化学传感器、催化等领域引起了极大关注并得到了广泛应用。铌酸锂晶体是一种具有代表性的铁电材料,由于其良好的铁电极化性能和光起电性能,作为功能型基底材料在合成及自组装纳米材料方面得到了很大的应用。用铌酸锂作为基底,通过控制溶液浓度、光照强度以及时间长短能够控制铌酸锂基底表面合成得到的纳米材料的尺寸和密度分布。中国专利CN201810723772.6公开了在铌酸锂基底上制备金纳米片的方法,其为金纳米片/铌酸锂复合催化剂的制备提供了基础。染料废水是主要的有害工业废水之一,需要对其进行处理后才能外排。现有处理染料废水的方式主要有:物理吸附法,混凝、氧化、电解等化学方法,以及生物法;而采用光诱导直接氧化降解染料废水的研究相对较少。
与本申请最接近的现有技术为中国专利CN201811645370.5,其公开了一种有机废水光降解方法,其中采用铌酸锂作为基底,并在铌酸锂的+Z面上沉积纳米氧化银颗粒,形成光解催化器,并在可见光照射下,用以上光解催化器对罗丹明B等有机废水进行降解。其机理为:在可见光照射下,氧化银颗粒(半导体)吸收光能后发生电子跃迁,产生电子-空穴对,铌酸锂基底的铁电极化能够促进半导体氧化银中的光生电子-空穴对有效分离,电子与水中的O2结合产生
Figure BDA0002583900820000011
空穴与溶液中的OH反应生成OH·。
Figure BDA0002583900820000012
和OH·能够将吸附于光解催化器表面的有机污染物氧化形成二氧化碳和水。
发明内容
有鉴于此,本发明提供了一种纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法。
技术方案如下:
一种纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其关键在于按以下步骤进行:
步骤一、制备纳米金-铌酸锂复合材料;
所述复合材料包括铌酸锂基底,该铌酸锂基底为平行于c轴晶轴的单畴结构,在该铌酸锂基底的+Z面上附着有纳米金;
步骤二、将纳米金-铌酸锂复合材料置于阴离子型染料溶液中,其附着有纳米金的面朝上,并对纳米金-铌酸锂复合材料施以近红外光照射,吸附在纳米金表面的阴离子型染料被氧化降解。
作为优选技术方案:
所述步骤二中,所述近红外光的波长为1000-1700nm;
所述近红外光垂直于所述铌酸锂基底照射;
所述近红外光的光强为50mW/cm2
在对复合材料进行近红外光照射的同时,搅拌阴离子型染料溶液。
进一步优选,所述纳米金包括纳米金片和/或纳米金颗粒。
所述步骤二中,纳米金在近红外光照射下产生表面等离子体共振(SPR)效应,光激发产生的高能量热电子从纳米金注入到铌酸锂基底,从而使纳米金表面聚集正电荷,将水和/或羟基负离子氧化为羟基自由基,从而氧化降解阴离子型染料。
所述步骤一中的纳米金-铌酸锂复合材料按以下步骤制备:
首先垂直c轴晶轴切割铌酸锂铁电单晶薄片,其表面平整度为光学级别,其铁电畴为平行于c轴晶轴的单畴结构,将浓度为25mM的氯金酸溶液滴在铌酸锂的+Z面上,再以波长为280-400nm,光强为20mW/cm2的紫外光在氯金酸溶液上方5-10mm处垂直照射10min,使铌酸锂的+Z面沉积附着上若干纳米金;
完成纳米金的沉积后,将复合材料先用酒精冲洗两次,每次冲洗1min,然后用去离子水冲洗两次,每次冲洗1min,洗掉附着在复合材料上的酸溶液和有机物,最后再用氮气吹干。
附图说明
图1为铌酸锂基底的层状结构图;
图2为利用KPFM测量表面电势的原理图;
图3为对纳米金-铌酸锂复合材料施以近红外光照射0-2hr后得到的表面电势变化图;
图4为甲基橙溶液的降解装置示意图;
图5为绘制得到的试验组和对照组的甲基橙溶液的C/C0-t曲线图。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
实施例1:
一种纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,按以下步骤进行:
步骤一、制备纳米金-铌酸锂复合材料;
所述铌酸锂基底包括三层,自上而下依次为:厚度为800nm的铌酸锂单晶薄膜层(+Z面朝上),厚度为100nm的ITO层,厚度为0.3mm的铌酸锂衬底。以上铌酸锂单晶薄膜层和铌酸锂衬底均为垂直c轴晶轴切割的5mm*5mm铌酸锂铁电单晶薄片,其中最上层800nm厚铌酸锂单晶薄膜层(+Z面朝上)为沉积纳米金用的样品层,其+Z面的表面平整度为光学级别,其铁电畴为平行于c轴晶轴的单畴结构;所述铌酸锂基底的结构如图1所示。
将浓度为25mM的氯金酸溶液滴在铌酸锂基底的+Z面上,再以波长为280-400nm,光强为20mW/cm2的紫外光在氯金酸溶液上方5-10mm处垂直照射10min,使铌酸锂+Z面沉积附着上若干纳米金,由此形成纳米金-铌酸锂复合材料;形成的复合材料包括铌酸锂基底,在该铌酸锂基底的+Z面上附着有纳米金;所述纳米金包括纳米金片和/或纳米金颗粒,其中,以比表面积更大的纳米金颗粒为宜;
完成纳米金沉积后,将复合材料先用酒精冲洗两次,每次冲洗1min,然后用去离子水冲洗两次,每次冲洗1min,洗掉附着在复合材料上的酸溶液和有机物,最后再用氮气吹干。
步骤二、将纳米金-铌酸锂复合材料(附着有纳米金的面朝上)置于甲基橙、刚果红或孔雀石绿等阴离子型染料溶液中,并对纳米金-铌酸锂复合材料施以近红外光照射,期间搅拌阴离子型染料溶液,所述近红外光的波长为1000-1700nm,光强为50mW/cm2。近红外光在溶液上方10-15mm处垂直照射所述复合材料2hr(小时);纳米金在近红外光照射下产生表面等离子体共振(SPR)效应,光激发产生的高能量热电子从纳米金注入到铌酸锂基底,从而使纳米金表面聚集正电荷;纳米金表面聚集的正电荷不仅能提高阴离子型染料在纳米金表面的吸附能力;同时还能与水和/或羟基负离子反应产生强氧化性羟基自由基,降解吸附在纳米金表面的阴离子型染料。
实施例2:
以实施例1步骤一制得的复合材料为实验样品,在复合材料+Z面上方15mm处,以波长为1000-1700nm,光强为50mW/cm2的近红外光对复合材料以垂直角度进行连续照射,选定某一纳米金片作为固定的检测对象,期间用开尔文探针力显微镜(KPFM)分别测试第0min、60min、120min时刻检测对象及周围的复合材料+Z面的表面电势,结果如图3所示。
从图3可以看出,近红外光照射前(0min),纳米金和铌酸锂基底的+Z面的表面电势基本相同,随着近红外光照射时间增加,纳米金的表面电势逐渐升高(高于铌酸锂+Z面的表面电势),表明纳米金表面正电荷显著聚集。
开尔文探针力显微镜(KPFM)测量表面电势的原理如图2所示。
实施例3:
切割2片相同规格的铌酸锂基底,铌酸锂基底的尺寸规格为10mm*10mm*0.3mm,铌酸锂基底为平行于c轴晶轴的单畴结构。
对照组:以1片铌酸锂基底直接对甲基橙溶液进行降解实验;
实验组:在另1片铌酸锂基底的+Z面上沉积纳米金,形成铌酸锂-纳米金复合材料,再以复合材料对甲基橙溶液进行降解实验。
降解实验的具体过程为:配置2份50ml、浓度为20mg/l的甲基橙溶液,将2份甲基橙溶液分别盛装于烧杯中,在烧杯内底部放置一圈环状的围堰,再将铌酸锂基底和复合材料分别置于围堰内部,并在围堰外部放置磁性搅拌子(如图4所示);以此避免在后续搅拌过程中,磁性搅拌子碰撞导致纳米金从铌酸锂基底的+Z面脱落;为了提高甲基橙溶液在搅拌时的流动性,可以在围堰上设置小孔或缝隙,小孔或缝隙尺寸小于磁性搅拌子的尺寸即可。
对实验组和对照组分别进行连续的近红外光照射,肉眼观察到:实验组的甲基橙溶液颜色逐渐变浅,对照组的甲基橙溶液颜色无变化。分别取第0min、30min、60min、90min、120min的甲基橙溶液各3ml,遮光静置10min后取上清液,再利用紫外-可见分光光度计测量溶液在波长465nm(甲基橙的特征吸收峰)处的吸光度,并计算C/C0,从而绘制C/C0-t曲线,结果如图5所示;
从图5可以看出:随着近红外光照射时间的增加,实验组的甲基橙溶液的浓度逐渐降低,说明甲基橙被降解;对照组的甲基橙溶液浓度维持不变(排除测量误差),说明甲基橙未被降解。
有益效果:本发明采用的技术方案,通过对纳米金-铌酸锂复合材料进行近红外光照射,使纳米金产生表面等离子体共振效应,电子从纳米金迁移至铌酸锂基底使纳米金表面聚集正电荷,能够充分吸附甲基橙等阴离子型染料并实现直接氧化降解,提供了降解有机物染料的新方法。
最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

Claims (8)

1.一种纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其特征在于按以下步骤进行:
步骤一、制备纳米金-铌酸锂复合材料;
所述复合材料包括铌酸锂基底,该铌酸锂基底为平行于c轴晶轴的单畴结构,在该铌酸锂基底的+Z面上附着有纳米金;
步骤二、将纳米金-铌酸锂复合材料置于阴离子型染料溶液中,其附着有纳米金的面朝上,并对纳米金-铌酸锂复合材料施以近红外光照射,吸附在纳米金表面的阴离子型染料被氧化降解。
2.根据权利要求1所述的纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其特征在于:所述步骤二中,所述近红外光的波长为1000-1700nm。
3.根据权利要求1所述的纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其特征在于:所述步骤二中,所述近红外光垂直于所述铌酸锂基底照射。
4.根据权利要求1所述的纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其特征在于:所述步骤二中,所述近红外光的光强为50mW/cm2
5.根据权利要求1所述的纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其特征在于:所述步骤二中,在对复合材料进行近红外光照射的同时,搅拌阴离子型染料溶液。
6.根据权利要求1所述的纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其特征在于:所述纳米金包括纳米金片和/或纳米金颗粒。
7.根据权利要求1-6任一项所述的纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其特征在于:所述步骤二中,纳米金在近红外光照射下产生表面等离子体共振效应,光激发产生的高能量热电子从纳米金注入到铌酸锂基底,从而使纳米金表面聚集正电荷,将水和/或羟基负离子氧化为羟基自由基,从而氧化降解阴离子型染料。
8.根据权利要求1-6任一项所述的纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法,其特征在于所述步骤一中的纳米金-铌酸锂复合材料按以下步骤制备:
首先垂直c轴晶轴切割铌酸锂铁电单晶薄片,其表面平整度为光学级别,其铁电畴为平行于c轴晶轴的单畴结构,将浓度为25mM的氯金酸溶液滴在铌酸锂的+Z面上,再以波长为280-400nm,光强为20mW/cm2的紫外光在氯金酸溶液上方5-10mm处垂直照射10min,使铌酸锂的+Z面沉积附着上若干纳米金;
完成纳米金的沉积后,将复合材料先用酒精冲洗两次,每次冲洗1min,然后用去离子水冲洗两次,每次冲洗1min,洗掉附着在复合材料上的酸溶液和有机物,最后再用氮气吹干。
CN202010675527.XA 2020-07-14 2020-07-14 纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法 Active CN111847571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010675527.XA CN111847571B (zh) 2020-07-14 2020-07-14 纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010675527.XA CN111847571B (zh) 2020-07-14 2020-07-14 纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法

Publications (2)

Publication Number Publication Date
CN111847571A true CN111847571A (zh) 2020-10-30
CN111847571B CN111847571B (zh) 2022-04-22

Family

ID=72983865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010675527.XA Active CN111847571B (zh) 2020-07-14 2020-07-14 纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法

Country Status (1)

Country Link
CN (1) CN111847571B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115212845A (zh) * 2022-07-08 2022-10-21 重庆科技学院 染料废水的处理方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828219A (zh) * 2012-07-13 2012-12-19 湖南大学 一种三元纳米复合材料Au/RGO-TiO2纳米管阵列及其制备方法和应用
WO2015148503A1 (en) * 2014-03-25 2015-10-01 Northwestern University Dopa-melanin formation in high ionic strength solutions
CN106267202A (zh) * 2016-09-07 2017-01-04 厦门大学 具有光热/光动力治疗性能的金纳米棒复合载体及其制备
CN107670040A (zh) * 2017-10-25 2018-02-09 深圳先进技术研究院 金纳米笼‑二氧化锰复合纳米颗粒及其制备方法和应用
EP3292909A1 (en) * 2016-09-12 2018-03-14 Repsol, S.A. Catalyst comprising ferroelectric substrate for reduction of nitrogen oxides
CN108346970A (zh) * 2018-03-06 2018-07-31 山东大学 基于铌酸锂晶片的可饱和吸收镜、制备方法及应用于1微米脉冲激光器
CN108560060A (zh) * 2018-04-18 2018-09-21 重庆科技学院 基于pfm的铌酸锂纳米畴加工及成像方法
US20180350397A1 (en) * 2017-06-06 2018-12-06 Western Digital Technologies Readback of information from a moving ferroelectric recording medium by means of a near-field optical transducer and 2nd harmonic generation in the medium
CN109574132A (zh) * 2018-12-29 2019-04-05 重庆科技学院 有机物光解催化器的制备方法
CN109574133A (zh) * 2018-12-29 2019-04-05 重庆科技学院 有机废水光降解方法
CN109837531A (zh) * 2017-11-27 2019-06-04 重庆科技学院 具有表面增强拉曼效应的金纳米三角片制备方法
CN209306989U (zh) * 2018-12-29 2019-08-27 重庆科技学院 有机物光解催化器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828219A (zh) * 2012-07-13 2012-12-19 湖南大学 一种三元纳米复合材料Au/RGO-TiO2纳米管阵列及其制备方法和应用
WO2015148503A1 (en) * 2014-03-25 2015-10-01 Northwestern University Dopa-melanin formation in high ionic strength solutions
CN106267202A (zh) * 2016-09-07 2017-01-04 厦门大学 具有光热/光动力治疗性能的金纳米棒复合载体及其制备
EP3292909A1 (en) * 2016-09-12 2018-03-14 Repsol, S.A. Catalyst comprising ferroelectric substrate for reduction of nitrogen oxides
US20180350397A1 (en) * 2017-06-06 2018-12-06 Western Digital Technologies Readback of information from a moving ferroelectric recording medium by means of a near-field optical transducer and 2nd harmonic generation in the medium
CN107670040A (zh) * 2017-10-25 2018-02-09 深圳先进技术研究院 金纳米笼‑二氧化锰复合纳米颗粒及其制备方法和应用
CN109837531A (zh) * 2017-11-27 2019-06-04 重庆科技学院 具有表面增强拉曼效应的金纳米三角片制备方法
CN108346970A (zh) * 2018-03-06 2018-07-31 山东大学 基于铌酸锂晶片的可饱和吸收镜、制备方法及应用于1微米脉冲激光器
CN108560060A (zh) * 2018-04-18 2018-09-21 重庆科技学院 基于pfm的铌酸锂纳米畴加工及成像方法
CN109574132A (zh) * 2018-12-29 2019-04-05 重庆科技学院 有机物光解催化器的制备方法
CN109574133A (zh) * 2018-12-29 2019-04-05 重庆科技学院 有机废水光降解方法
CN209306989U (zh) * 2018-12-29 2019-08-27 重庆科技学院 有机物光解催化器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIJIE HUANG等: "Tailorable Optical Response of Au-LiNbO3 Hybrid Matamaterial Thin Films for Optical Waveguide Applications", 《ADVANCED OPTICAL MATERIALS》 *
杨坤辉: "纳米金聚集引起的有机染料激发三重态增强", 《中国化学会第29届学术年会摘要集——第39分会:化学动力学》 *
陈铭祥等: "金纳米笼在近红外光激发下诱导产生活性氧的研究", 《中国药学杂志》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115212845A (zh) * 2022-07-08 2022-10-21 重庆科技学院 染料废水的处理方法
CN115212845B (zh) * 2022-07-08 2023-09-22 重庆科技学院 染料废水的处理方法

Also Published As

Publication number Publication date
CN111847571B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Wang et al. Effect of oxygen vacancy on enhanced photocatalytic activity of reduced ZnO nanorod arrays
Chang et al. Enhanced visible-light-driven photocatalytic degradation by metal wire-mesh supported Ag/flower-like Bi2WO6 photocatalysts
Chen et al. Inverse opal structured Ag/TiO 2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity
Li et al. Enhancing photodegradation of Methyl Orange by coupling piezo-phototronic effect and localized surface plasmon resonance
Wang et al. Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications
Zhang et al. Highly efficient photoinduced enhanced Raman spectroscopy (PIERS) from plasmonic nanoparticles decorated 3D semiconductor arrays for ultrasensitive, portable, and recyclable detection of organic pollutants
Zhang et al. Photocatalysis coupled with thermal effect induced by SPR on Ag-loaded Bi2WO6 with enhanced photocatalytic activity
Cozzoli et al. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution
Siuleiman et al. Photodegradation of Orange II by ZnO and TiO2 powders and nanowire ZnO and ZnO/TiO2 thin films
Li et al. Sandwich-like TiO2@ ZnO-based noble metal (Ag, Au, Pt, or Pd) for better photo-oxidation performance: Synergistic effect between noble metal and metal oxide phases
Temerov et al. Silver-decorated TiO2 inverse opal structure for visible light-induced photocatalytic degradation of organic pollutants and hydrogen evolution
Chen et al. Magnetic recyclable photocatalysts of Ni-Cu-Zn ferrite@ SiO2@ TiO2@ Ag and their photocatalytic activities
Xu et al. Photochemical synthesis of ZnO@ Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater
Zhang et al. Selective Pt deposition onto the face (110) of TiO2 assembled microspheres that substantially enhances the photocatalytic properties
Raj et al. Significance of Ni doping on structure-morphology-photoluminescence, optical and photocatalytic activity of CBD grown ZnO nanowires for opto-photocatalyst applications
Biswas et al. Novel green approach for fabrication of Ag2CrO4/TiO2/Au/r-GO hybrid biofilm for visible light-driven photocatalytic performance
Zhao et al. Novel Bi 2 O 2 CO 3/polypyrrole/gC 3 N 4 nanocomposites with efficient photocatalytic and nonlinear optical properties
Chuaicham et al. Importance of ZnTiO3 phase in ZnTi-mixed metal oxide photocatalysts derived from layered double hydroxide
Wang et al. Three-dimensional hierarchical anatase@ rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates
CN111289487B (zh) 一种石墨烯基表面增强拉曼散射衬底及其制备方法和应用
Yang et al. ZnO inverse opals with deposited Ag nanoparticles: Fabrication, characterization and photocatalytic activity under visible light irradiation
CN104259475A (zh) 一种纳米银/石墨烯衍生物表面增强拉曼基体的制备方法
CN111847571B (zh) 纳米金-铌酸锂复合材料光诱导降解阴离子型染料的方法
Šuligoj et al. Solar-driven photocatalytic films: synthesis approaches, factors affecting environmental activity, and characterization features
Huang et al. Construction of ternary multifunctional Fe3O4/Cu2O/Au nanocomposites: SERS detection and visible light driven photocatalysis for organic dyes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant