CN111844128A - 轨道计划装置以及轨道计划方法 - Google Patents

轨道计划装置以及轨道计划方法 Download PDF

Info

Publication number
CN111844128A
CN111844128A CN202010184143.8A CN202010184143A CN111844128A CN 111844128 A CN111844128 A CN 111844128A CN 202010184143 A CN202010184143 A CN 202010184143A CN 111844128 A CN111844128 A CN 111844128A
Authority
CN
China
Prior art keywords
trajectory
information
track
robot arm
smoothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010184143.8A
Other languages
English (en)
Inventor
山内雄太
中须信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN111844128A publication Critical patent/CN111844128A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1671Programme controls characterised by programming, planning systems for manipulators characterised by simulation, either to verify existing program or to create and verify new program, CAD/CAM oriented, graphic oriented programming systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/007Means or methods for designing or fabricating manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明提供轨道计划装置以及轨道计划方法。算出使关节角度变化顺畅、使机械臂的指尖姿势变化最小化且机械臂高速动作的轨道。轨道计划装置读入包含机械臂的结构、以及构成关节的轴的位置和姿势的机械臂结构信息、设定了开始姿势处的机械臂的各轴的开始关节角度的开始关节角度信息、在机械臂的指尖的终点设定目标位置和目标姿势的目标姿势信息、以及设定包含机械臂的指尖要经过的位置和姿势的经由点的经由点姿势信息,通过经由点间的插补来生成机械臂的指尖的从开始点起到终点的轨道,根据机械臂结构信息,从机械臂的指尖的姿势以及位置来算出各轴的关节角度,将在物理空间中生成的轨道利用逆运动学部变换到关节角度空间之后对该轨道进行平滑化。

Description

轨道计划装置以及轨道计划方法
技术领域
本发明涉及一种多轴机械臂的轨道计划技术。
背景技术
作为本技术领域的背景技术,已知有专利文献1。在该专利文献1中记载了“然而,在以往例的情况下,由于经过经由示教点时动作方向急剧地发生变化,因此,在该经由示教点会产生大的加速度。其结果,可能会产生如下问题:引起振动,无法得到所要的精度,或者因施加过分的力导致晶片、玻璃基板等搬送对象、设备主体的损坏。本发明是为了解决上述课题而做出的,其目的在于,提供一种即使在对应于考虑外部干扰而设定的经由示教点来使机械手移动的情况下,也能够使速度变化顺畅的控制装置等。”。
现有技术文献
专利文献
专利文献1:日本特开2014-104558号公报
发明要解决的课题
在前述的专利文献1中记载了如下一种方法:以开始示教点、目标示教点、经由示教点作为输入,算出连结曲线插补点的轨道,以便经过在将所述开始示教点、经由示教点、目标示教点间各自连结而得的线段上定义的曲线插补点。然而,在将专利文献1的控制方法应用于多轴机械臂的情况下,需要利用各轴的关节角度值或者指尖的姿势来输入全部示教点,因此,产生以下问题。
当利用各轴的关节角度来指定全部的示教点时,确实在关节角度空间上能够顺畅地连接,然而,需要用户输入实现相同指尖姿势的多个关节角度中的任意一个。因此,由于输入的示教点,导致有在轨道上指尖姿势可能发生大的变化的问题。
另一方面,在利用指尖姿势来决定全部示教点的情况下,尽管指尖会顺畅地移动,然而,在曲线插补点附近,各轴的关节角度的变化可能会变大,因此,存在在机械臂的各轴的角速度、角加速度的制约上,机械臂的动作变慢的问题。也就是说,在专利文献1的控制方法中,有时无法得到使指尖姿势的变化最小并且机械臂高速动作的轨道。
发明内容
因此,本发明提供一种装置,通过利用指尖姿势来输入经由点以及目标点,来实现指尖姿势的顺畅移动,并通过在路径计划中导入在关节角度空间中的平滑化处理,来使关节角度变化顺畅,从而输出使机械臂的指尖姿势的变化最小化且机械臂高速动作的轨道
用于解决课题的手段
本发明涉及一种具有处理器和存储器来算出由多轴构成的机械臂的指尖的轨道的轨道计划装置,其具有处理器和存储器,来算出由多轴构成的机械臂的指尖的轨道,所述轨道计划装置具有:机械臂结构信息,其包含机械臂的结构和构成机械臂的关节的轴的位置以及轴的姿势;开始关节角度信息,其将计划的轨道的开始姿势处的所述机械臂的各轴的角度设定为开始关节角度;目标姿势信息,其在所述机械臂的指尖的终点设定目标位置和所述机械臂的指尖的目标姿势;经由点姿势信息,其设定包含在计划的轨道内所述机械臂的指尖要经过的位置和姿势的经由点;物理空间经由点间轨道计划部,其读入所述机械臂结构信息、所述开始关节角度信息、所述目标姿势信息和所述经由点姿势信息,对所述经由点间进行插补,来生成从机械臂的指尖的开始点起到所述终点为止的轨道;逆运动学部,其根据所述机械臂结构信息,从所述机械臂的指尖的姿势以及位置来算出各轴的关节角度;以及关节角度空间轨道平滑化部,其在将由所述物理空间经由点间轨道计划部生成的所述轨道利用所述逆运动学部变换到关节角度空间之后,对该轨道进行平滑化。
发明的效果
根据本发明,能够提供一种对能够使指尖姿势的变化最小化,并且机械臂经过多个经由点高速移动的轨道进行算出的装置。
上述以外的课题、结构以及效果,通过以下的实施方式的说明而变得明确。
附图说明
图1表示本发明的实施例,是表示多轴机械臂的轨道计划装置的结构的一例的框图。
图2表示本发明的实施例,是表示在轨道计划装置中进行的处理的一例的流程图。
图3表示本发明的实施例,是表示机械臂结构数据的一例的图。
图4表示本发明的实施例,是表示干扰物结构数据的一例的图。
图5表示本发明的实施例,是表示开始关节角度数据的一例的图。
图6表示本发明的实施例,是表示目标姿势数据的一例的图。
图7表示本发明的实施例,是表示经由点姿势数据的一例的图。
图8表示本发明的实施例,是表示轨道插补方法数据的一例的图。
图9表示本发明的实施例,是表示轨道数据的一例的图。
图10表示本发明的实施例,是表示在图2的步骤S103中进行的物理空间经由点间轨道计划部所执行的处理的一例的流程图。
图11表示本发明的实施例,是表示在图2的步骤S104中进行的关节角度空间轨道平滑化部所执行的处理的一例的流程图。
图12表示本发明的实施例,是表示输出画面的一例的图。
图13表示本发明的实施例,是表示机械臂的轨道的一例的图。
图14表示本发明的实施例,是表示在部分轨道实施了轨道计划的结果的一例的图。
图15表示本发明的实施例,是表示使用了可否平滑化的信息的关节角度空间上的轨道的一例的图。
图16表示本发明的实施例,是表示在物理空间中的指尖的轨道的一例的图。
图17表示本发明的实施例,是表示在关节角度空间进行了平滑化的指尖的轨道的一例的图。
-附图标记说明-
100 轨道计划装置
110 处理装置
120 存储装置
130 输入输出接口
140 输入输出装置
201 数据读入部
202 干扰判定部
203 逆运动学部
204 物理空间经由点间轨道计划部
205 关节角度空间轨道平滑化部
206 结果输出部
207 控制时刻赋予部
301 机械臂结构存储部
302 干扰物结构存储部
303 开始关节角度存储部
304 目标姿势存储部
305 经由点姿势存储部
306 轨道插补方法存储部
307 轨道存储部。
具体实施方式
以下,使用附图来说明实施例。此外,在用于说明实施方式的全部附图中,针对同一部件原则上赋予同一附图标记,并省略其重复的说明。在本实施例中,说明作为本发明的基本方式的轨道计划装置的一例。
<系统结构>
图1表示应用本发明的计算机系统,是表示包含机械臂的轨道计划装置100以及周边设备的结构例的框图。计算机系统全体具有:轨道计划装置100、以及输入输出装置140。用户通过输入输出装置140的操作,来利用轨道计划装置100的功能。轨道计划装置100能够由计算机(PC、服务器等)构成,通过例如软件程序处理来实现作为本发明的特征的功能(处理装置110的各处理部)。
轨道计划装置100具有:处理装置110、存储装置120以及输入输出接口130等。
输入输出装置140是通过用户的操作来进行测量数据等的输入的输入装置、进行基准形状保留结果等的输出的输出装置,例如有键盘、鼠标、显示器、打印机、智能手机、平板型PC等。
输入输出接口130是与输入输出装置140进行数据交换等接口控制(周边设备控制)的处理的构成要素。在本计算机系统中,根据处理装置110的处理以及输入输出接口130的处理,在输入输出装置140的画面中提供图形用户界面(GUI),并显示各种信息。
处理装置110由例如CPU30、RAM10、ROM20等公知或周知的要素构成。处理装置110是进行实现本发明的特征性功能的处理的构成要素,具有:数据读入部201、干扰判定部202、逆运动学部203、物理空间经由点间轨道计划部204、关节角度空间轨道平滑化部205、以及结果输出部206。
此外,对于轨道计划装置100,虽然未图示,然而具有OS、中间件(middleware)、应用等公知要素,特别地,包含在用于在显示器等输入输出装置140中显示GUI画面的已有的处理功能。处理装置110使用上述的处理功能,来进行描画给定画面并显示的处理、画面上的由用户输入的数据的处理等。
数据读入部201、干扰判定部202、逆运动学部203、物理空间经由点间轨道计划部204、关节角度空间轨道平滑化部205以及结果输出部206各功能部作为程序被加载至RAM10。
CPU30通过按照各功能部的程序执行处理而作为提供给定功能的功能部而工作。例如,CPU30通过按照干扰判定程序执行处理而作为干扰判定部202来发挥功能。关于其他程序也是同样的。此外,CPU30还作为提供各程序所执行的多个处理的每一个的功能的功能部而工作。计算机以及计算机系统是包含这些功能部的装置以及系统。
存储装置120由例如HDD、SSD等公知或周知的非易失性存储介质构成,包含:机械臂结构存储部301、干扰物结构存储部302、开始关节角度存储部303、目标姿势存储部304、经由点姿势存储部305、轨道插补方法存储部306以及轨道存储部307。各存储部具有例如数据库、表。
机械臂结构存储部301是对在轨道计划、逆运动学等中使用的机械臂结构数据401进行存储的区域。
干扰物结构存储部302是对用于在轨道计划中进行的干扰判定的干扰物结构数据402进行存储的区域。
开始关节角度存储部303是对作为轨道计划中的开始点的开始关节角度数据403进行存储的区域。此外,关节角度表示机械臂的关节绕轴的角度。此外,还可以设为与轴连结的一对连杆(1ink)所形成的角度。
目标姿势存储部304是对作为轨道计划中的终止点的目标姿势数据404进行存储的区域。
经由点姿势存储部305是对作为轨道计划中的经由点的经由点姿势数据405进行存储的区域。
轨道插补方法存储部306是对当计划各经由点间的轨道时所使用的轨道插补方法数据406进行存储的区域。
轨道存储部307是对由结果输出部206输出的轨道数据407进行存储的区域。
此外,在本实施例中,关于机械臂的构造、形状并不进行特定,但是,设想了例如通过6轴机械臂利用指尖(前端)的机械手来把持对象物的例子。此外,机械臂是多轴即可,各轴(关节)串联配置,各轴间利用连杆连接。此外,机械臂的前端并不限于机械手,能够由驱动器、焊接装置等工具、设备构成。
此外,在本实施例中,轨道、经由点由机械臂的指尖的位置和姿势构成。机械臂的指尖的位置表示构成机械臂的多个轴中的前端的轴的位置。机械臂的指尖的姿势表示构成机械臂的多个轴中的前端的轴的角度(关节角度)。在以下的说明中,机械臂的位置、姿势这样的记述表示机械臂的指尖的位置和姿势。
<流程图>
图2是表示轨道计划处理的一例的流程图。使用图13、图14、图15、图16来说明该流程图的各步骤的内容。此外,在以下的说明中,将各功能部作为处理的主体来进行说明,然而还可以如上述那样将CPU30作为处理的主体。例如在轨道计划装置100的用户从输入输出装置140输入了给定指令的情况下,开始该处理。
在步骤S101中,数据读入部201根据用户通过输入输出装置140输入的信息,分别地,在机械臂结构存储部301中存放机械臂结构数据401、在干扰物结构存储部302中存放干扰物结构数据402、在开始关节角度存储部303中存放开始关节角度数据403、在目标姿势存储部304中存放目标姿势数据404、在经由点姿势存储部305中存放经由点姿势数据405、并在轨道插补方法存储部306中存放轨道插补方法数据406。
此外,在本实施例中,设想了用户经由输入输出装置140来输入前述数据,然而,还可以设为使以过去的输入数据为首的已经生成完成的数据读入到处理装置110。
关于本步骤中的输入数据,基于图13来进行说明。图13是表示了输入数据的一例的图,是表示在机械臂进行工作的实际空间(物理空间)当中的X-Y平面的轨道的图。
在X-Y平面,设定P1作为开始关节角度数据,设定P5作为目标数据。设定P2、P3、P4作为在从P1向P5的途中的经由点姿势数据。
此外,作为轨道插补方法,设想了给出(P1、P2、直线(直线(straight))、不平滑化(平滑化(Smoothing)=不成立(False))、(P2、P3、曲线、平滑化)、(P3、P4、曲线、平滑化)、(P4、P5、直线、不平滑化)这样的信息的情况。在该例中,制定机械臂的指尖从P1起经由P2、P3、P4而移动到P5时的轨道计划是目标。
此外,在图示的例中,将从点P1到点P2的区间的轨道处理为部分轨道T1,关于其他的经由点间,也同样地设为部分轨道T2~T4。此外,在本实施例中,在经由点姿势数据405中,将相邻的姿势ID451处理为一个部分轨道Ti。
在步骤S102中,物理空间经由点间轨道计划部204取得在轨道存储部307中存放的轨道数据407,判定存放的轨道是否已经到达了目标姿势数据404。若算出经过全部经由点间的轨道,则物理空间经由点间轨道计划部204前进到步骤S104,若存在未处理的区间,则物理空间经由点间轨道计划部204前进到步骤S103。
在步骤S103中,物理空间经由点间轨道计划部204使用在存储装置120中存放的必要数据,按照轨道数据407的格式来算出部分轨道,并追记到在轨道存储部307中存放的轨道数据407中。此外,后文叙述本步骤S103的详情。
关于本步骤S103中的输出,使用图14来说明。图14是将针对图13中所示的输入而在各个部分轨道中实施了轨道计划的结果在机械臂的关节角度空间中进行显示而得的结果。
例如,针对部分轨道T1(P1、P2),在图13所示的物理空间上分配直线轨道(直线),为了实现该直线轨道,在关节角度空间中成为连接θ1、θ2的曲线那样的轨道。
关于其他部分轨道,也是同样的,在许多机械臂中,即使在物理空间中指尖的轨道是曲线或直线,然而在关节角度空间中不会是同样的。此外,即使在物理空间上指尖在顺畅的线上动作的情况下,在关节角度空间上,有时也无法利用经由姿势等顺畅地连接。
图14中表示将关节角度空间中的轴J1配置于横轴,将轴J2配置于纵轴的例子。关节角度空间是与机械臂的轴数对应的多维度空间,例如,在6轴机械臂的情况下,利用轴J1~轴J6的六维度来表现。
在步骤S104中,关节角度空间轨道平滑化部205针对在轨道存储部307中存放的轨道数据407,在关节角度空间中应用平滑化,由此来修正轨道数据407。此外,后文叙述本步骤S104的详情。
关于本步骤S104中的处理的概要,使用图15、图16来进行说明。如图14所示的那样,在连接了多个轨道的情况下,在关节角度空间上有时无法顺畅地连接。在本步骤中,实施将它们顺畅地连接的处理。
图15是使用可否平滑化的信息而选择可以实施平滑化的轨道、并在关节角度空间上进行修正以便顺畅地连接而得的轨道。图15与上述图14同样地,是表示了关节角度空间中的轴J1、轴J2的图。通过本处理,由多个部分轨道T1~T4构成的轨道经过经由点(P2~P4)而在关节角度空间上顺畅地连接。
图16是根据图15的关节角度空间上的轨道,计算出物理空间中的指尖的轨道的图。如图16的实线所示那样,通过本处理,得到了经过输入的经由点并且在物理空间上也顺畅地连接的轨道。
在步骤S105中,控制时刻赋予部207针对轨道数据407,将控制时刻476分别赋予给各轨道点。此外,控制时刻赋予部207针对赋予了控制时刻476的轨道数据407,算出与控制时刻476对应的关节角速度信息473和关节角加速度信息474。为了赋予该控制时刻476,需要满足机械臂的各关节的速度、角速度的制约来进行,作为该方法的一例,能够应用以下文献中记载的技术。“Time-Optimal Parabolic Interpolation with Velocity,Acceleration,and Minimum-Switch-Time Constraints”,Puttichai Lertkultanon andQuang-Cuong Pham、Published online:16Jul 2016。
在步骤S106中,结果输出部206根据在存储装置120中存放的数据,生成GUI(图形用户界面),并显示于输入输出装置140。
通过上述处理,关节角度空间轨道平滑化部205针对经由点间的部分轨道,导入关节角度空间中的平滑化处理,由此,能够生成使机械臂的指尖姿势的变化最小化、并使机械臂能够高速动作的轨道。
<机械臂结构数据>
图3是表示在机械臂结构存储部301中存储的机械臂结构数据401的一例的图。机械臂结构数据401由分类411、项目412以及例413构成的一个条目(entry)。分类411包含关节信息、以及连杆信息的分类。
所谓关节信息,是指构成机械臂的各关节的信息,作为项目412包含的关节名、关节的种类、关节的位置、关节的朝向、关节的动作下限、关节的动作上限、最大加速度、最大速度等信息。
所谓连杆信息,是指表示构成机械臂的连杆的结构的信息。作为项目412,包含连杆名、母关节名、子关节名、连杆形状。所谓连杆形状,是指连杆的实际形状,例如是以STEP(产品模型数据交换标准)等格式保存的立体数据、以STL(立体光固化,StereoLithography)等格式保存的多边形数据等的三维模型数据。
此外,在例413中,设定了与各项目412对应的值。机械臂结构数据401能够使用由机械臂的制造商等预先设定的数据。
<干扰物结构数据>
图4是表示在干扰物结构存储部302中存放的干扰物结构数据402的一例的图。干扰物结构数据402将干扰物ID421、干扰物形状422、以及干扰物姿势423包含于一个条目。
干扰物形状422表示干扰物的形状,是例如以STEP等格式保存的立体数据、以STL等格式保存的多边形数据等的三维模型数据。
干扰物姿势423是表示干扰物被置于空间上的哪个位置的信息,是表示AFFINE变换矩阵或三维空间上的位置、以及以滚转-俯仰-偏摆(Roll-Pitch-Yaw)等表示的姿势的信息。例如,对于干扰物ID421=“COL1”的干扰物姿势423,(0,0,1)表示位置,(0,0,0)表示姿势。
<开始关节角度数据>
图5是表示在开始关节角度存储部303中存放的开始关节角度数据403的一例的图。开始关节角度数据403将关节名431以及开始关节角度432包含于一个条目。
关节名431与机械臂结构数据401中包含的关节信息内的关节名对应。在开始关节角度432中,设定关节的角度。
<目标姿势数据>
图6是表示在目标姿势存储部304中存放的目标姿势数据404的一例的图。目标姿势数据404将姿势ID441、对象连杆名442以及姿势信息443包含于一个条目。
在姿势ID441中,设定对机械臂的指尖的位置以及姿势进行确定的识别符。在对象连杆名442中存放在机械臂结构数据401中包含的连杆信息内的连杆名。
此外,姿势信息443是表示AFFINE变换矩阵或三维空间上的位置、以及以滚转-俯仰-偏摆等表示的姿势的信息。例如,对于姿势ID441=“POSE001”的姿势信息443,(0,0,1)表示位置,(0,0,0)表示姿势。
<经由点姿势数据>
图7是表示在经由点姿势存储部305中存放的经由点姿势数据405的一例的图。经由点姿势数据405将姿势ID451、对象连杆名452、以及姿势信息453包含于一个条目。
在姿势ID451中,设定对机械臂的指尖的位置以及姿势进行确定的识别符。对象连杆名452存放了在机械臂结构数据401中包含的连杆信息内的连杆名。此外,姿势信息是表示AFFINE变换矩阵或三维空间上的位置、以及以此时的滚转-俯仰-偏摆等表示的姿势的信息。例如,对于姿势ID451=“POSE002”的姿势信息453,(0,0,1)表示位置,(0,0,0)表示姿势。
<轨道插补方法数据>
图8是表示在轨道插补方法存储部306中存放的轨道插补方法数据406的一例的图。轨道插补方法数据406将开始姿势ID361、终止姿势ID362、轨道算出方法363以及平滑化可否364包含于一个条目。
开始姿势ID361以及终止姿势ID362与经由点姿势数据405的姿势ID451、目标姿势数据404的姿势ID441对应。
轨道算出方法463存放在从开始姿势ID361起到终止姿势ID362为止的部分轨道T中,在关节角度空间中对轨道进行算出(插补)的方法。作为算出方法,包含例如样条曲线、NURBS曲线、贝塞尔曲线这样的曲线图案、指定表示曲线的数学式、直线的描述。
平滑化可否364是表示是否要将从开始点(开始姿势ID461)起到终止点(终止姿势ID462)为止的部分轨道以关节角度进行平滑化的标志。
轨道插补方法数据406是针对在由经由点姿势数据405指定的经由点间构成的部分轨道Ti预先设定了在关节角度空间中算出轨道的方法(463)、以及表示是否要实施在关节角度空间中的平滑化的信息(464)的表。
<轨道数据>
图9是表示在轨道存储部307中存放的轨道数据407的一例的图,与轨道计划装置100的输出相当。轨道数据407将轨道点ID471、关节角度信息472、关节角速度信息473、关节角加速度信息474、平滑化可否475、以及控制时刻476包含于一个条目。
轨道点ID471存放机械臂的指尖所经过的位置的识别符。关节角度信息472是在轨道点ID471的位置处的关节角度的集合,是关节名以及其关节值的集合。
关节角速度信息473、关节角加速度信息474也同样地,是关节名和在轨道点ID471的位置处的角速度、角加速度的信息。平滑化可否475是关节角度空间轨道平滑化部205所利用的信息,是表示是否可以以关节角度执行平滑化来修正关节角度信息的标志。“TRUE(成立)”表示能够进行平滑化,“FALSE(不成立)”表示不能进行平滑化。
控制时刻476存放根据机械臂的速度的制约、加速度的制约而算出的实施轨道点ID471的控制的时刻(相对时刻)。
<部分轨道算出处理>
图10是表示在图2的步骤S103中进行的物理空间经由点间轨道计划部204所执行的处理的一例的流程图。以下,说明本流程图。
在步骤S201中,物理空间经由点间轨道计划部204取得开始关节角度以及终止姿势。从与轨道数据407中包含的最后追加的轨道点ID471对应的关节角度信息472,来取得开始关节角度。
此外,轨道计算所需要的轨道的开始位置、终止位置等数据使用在上述步骤S101中输入的数据。根据目标姿势数据404的姿势信息443来设定终止姿势。
在步骤S202中,物理空间经由点间轨道计划部204从与终止姿势ID462对应的轨道插补方法数据406取得轨道算出方法463。
在步骤S203中,物理空间经由点间轨道计划部204计算在经由点姿势数据405中作为对象的对象连杆名452的在开始关节角度数据403中的开始姿势P1。能够使用机械臂结构数据401的信息,通过正运动学来容易地算出该开始姿势P1。
在步骤S204中,物理空间经由点间轨道计划部204将从开始姿势P1起到终止姿势Pn为止按照取得的轨道算出方法463分割为开始姿势ID461和终止姿势ID462的一个部分轨道。
为了方便说明,设与姿势信息的位置相关的信息为O,并设与姿势相关的信息为Q。例如,在作为轨道算出方法463指定了直线(直线)的情况下,物理空间经由点间轨道计划部204以如下那样来算出从开始姿势P1起到终止姿势Pn为止的各分割点Pi所对应的Oi、Qi。
【数学式1】
Oi=(1-t)O1+tOn
Qi=Slerp(Q1、Qn、t)
这里,所谓Slerp,是指球面插补,t是指从0到1的等间隔的值。此外,在作为轨道算出方法463指定了三阶贝塞尔曲线(贝塞尔,BEZIER)的情况下,若设两个控制点为A、B,则如以下那样来算出与各分割点Pi对应的Oi、Qi。
【数学式2】
Oi=(1-t)3O1+3t(1-t)2A+3t2(1-t)B+t3On
Qi=Slerp(Q1、Qn、t)
物理空间经由点间轨道计划部204通过使用上述式子,得到了使指尖姿势的变化最小、并且在物理空间上按照指定的方法运动的轨道。
在步骤S205中,物理空间经由点间轨道计划部204将从步骤S206到S210为止的处理,按分割点的数量循环地执行。
在步骤S206中,物理空间经由点间轨道计划部204取得轨道数据407中包含的最后追加的轨道点ID471所对应的关节角度信息472,以该关节角度为起点,使用逆运动学部203来计算成为分割点姿势Pi+1的关节角度θi+1。
在逆运动学部203中进行的处理能够使用基于以下文献那样的收敛计算的方法作为一例。“Solvability-unconcerned Inverse Kinematics based on Levenberg-Marquardt method with Robust Damping”(Tomomichi Sugihara、School ofInformation Science and Electrical Engineering,Kyushu University)。
在步骤S207中,物理空间经由点间轨道计划部204使用在上述步骤S206中得到的关节角度θi+1、机械臂结构数据401以及干扰物结构数据402,通过干扰判定部202判定在计算出的关节角度θi+1是否存在与干扰物的接触。
干扰判定部202根据机械臂结构数据401的三维模型数据、机械臂的指尖的位置以及姿势、以及干扰物结构数据402的三维模型数据和位置,来判定干扰的有无。此外,关于干扰的判定,应用周知或公知的技术即可,因此在本实施例中不进行详述。
这里,干扰判定部202所进行的处理除了障碍物与机械臂是否接触的判定之外,还可以基于障碍物和机械臂的距离将给定的余隙(clearance)设为阈值,若余隙不足阈值,则判定为存在干扰。
在步骤S208中,物理空间经由点间轨道计划部204基于上述步骤S207中的干扰判定结果,进行处理的分支,若不存在干扰则前进到步骤S209,若存在干扰则前进到步骤S211。
在步骤S209中,物理空间经由点间轨道计划部204将上述步骤S207中得到的关节信息θi+1作为轨道点ID471、关节角度信息472、平滑化可否475追加到轨道数据407。该情况下,基于轨道插补方法数据406中包含的平滑化可否464,来设定平滑化可否475。此外,在上述步骤S105的处理中设定控制时刻476。
此外,在本实施例的轨道数据407中,关节角度信息472等表示6轴机械臂的例子,然而并不受限于此,设为与机械臂的轴数对应的维度即可。
在步骤S211中,物理空间经由点间轨道计划部204在存在干扰的情况下,在输入输出装置140显示表示轨道计划失败了的信息,来终止处理。
通过上述处理,从指定出的开始位置起到终止位置为止的轨道被分割为开始姿势P1~终止姿势Pn为止的部分轨道,利用按每个部分轨道所指定的轨道算出方法363来算出轨道数据407,按每个轨道点ID471来决定物理空间中的关节角度θi。
<轨道平滑化处理>
图11是表示在图2的步骤S104中关节角度空间轨道平滑化部205所执行的轨道平滑化处理的一例的流程图。
通过本处理,更新轨道数据407内的关节角度信息472以使机械臂平稳地动作,由此,在机械臂的各轴的角度变化变小。由此,在控制时刻赋予部207所进行的控制时刻赋予处理中,关节角速度、关节角加速度的制约的遵守变得容易,机械臂的动作速度提高。
此外,在部分轨道所连接的点Pi(经由点),具有关节角速度、关节角加速度的变化(差分)一致或者最小化、部分轨道间的接合处变得顺畅的效果。此外,关节角度空间轨道平滑化部205还可以在将相邻的部分轨道Ti连接的经由点(Pi),使相邻的部分轨道的角速度或角加速度一致。
以下,说明本流程图。
在步骤S301中,关节角度空间轨道平滑化部205针对轨道内的各轨道点,将步骤S302的处理进行循环处理,直到平滑化结束为止。在与步骤S313之间重复该循环处理,直到轨道内的各轨道点的处理结束为止。
在步骤S302中,关节角度空间轨道平滑化部205基于平滑化可否475,从轨道数据407取得在不能平滑化中夹着的能够平滑化的轨道点的集合。
在步骤S303中,关节角度空间轨道平滑化部205针对从步骤S304到步骤S312为止的处理,按照在上述步骤S302中取得的被不能平滑化中夹着的能够平滑化的轨道点的集合的数量,进行循环处理。
在步骤S304中,关节角度空间轨道平滑化部205基于夹着能够平滑化的轨道点的不能平滑化的轨道点的信息,针对平滑化对象的轨道点间,计算在关节角度空间上的插补曲线S。
使用图17来说明本步骤。图17是表示在关节角度空间中进行了平滑化的指尖的轨道点的一例的图。将平滑化对象的轨道点的关节角度设为θ-2~θ~θ+2。图中插补曲线S是针对平滑化对象的轨道点间在关节角度空间上算出的曲线。
将位于平滑化对象的部分的前后的不能平滑化的轨道点的关节角度设为θa、θb。根据该关节角度值、以及其前后的关节角度θa-1、θb+1的值,来计算满足以下制约的插补方程式F(t)。
【数学式3】
F(0)=θa
F(1)=θb
F′(0)=θaa-1
F′(1)=θb+1b
F″(0)=F″(1)=0
上述例子是当设区间[θa-1、θa]和[θb、θb+1]为直线的情况下的插补曲线中的制约。该插补曲线的求取方式是一例,还可以是例如穿过与全部的不能平滑化的轨道点对应的关节角度值的三维样条插补曲线中的、符合该区间的曲线等。
在步骤S305中,关节角度空间轨道平滑化部205按照在步骤S303中作为对象的部分中包含的能够平滑化的轨道点的数量,进行循环处理。在直到步骤S311为止的期间重复该循环处理。
在步骤S306中,计算在插补曲线S上挪动轨道点(θi)的方向di,并计算使得向di移动的新的轨道点(θ’i)。此外,在以下的说明中,利用轨道点(θi)表示与图17的关节角度θi对应的轨道点。
轨道点(θi)以及轨道点(θ’i)的计算结果成为如图17所示那样。在该步骤中,在使轨道点(θ’i)在插补曲线S上移动了一次的情况下,若在移动目的地存在与干扰物的干扰,则无法平滑化。因此,需要每次一点地使其移动。即,关节角度空间轨道平滑化部205从轨道点(θi)起每次以给定距离向方向di移动轨道点(θ’i),并最终向插补曲线S上的轨道点(θ’i)移动。
在步骤S307中,关节角度空间轨道平滑化部205使用干扰判定部202,判定在预定更新的关节角度(θ’i)的位置是否不存在机械臂与干扰物的干扰。
在步骤S308中,关节角度空间轨道平滑化部205通过干扰的有无,对处理进行分支。若不存在干扰则前进到步骤S309,若存在干扰则前进到步骤S310。
在步骤S309中,关节角度空间轨道平滑化部205将符合的轨道点的关节角度θi更新为θ’i。
另一方面,在步骤S310中,由于发生了干扰,因此,关节角度空间轨道平滑化部205将与当前的轨道点对应的平滑化可否475变更为“FALSE(不成立)”。也就是说,若在插补曲线S上挪动机械臂,则会发生干扰的轨道点新成为固定点,因此,在以后的步骤S304中进行的插补曲线发生变化。
通过上述处理,如图17所示那样,对于在不能平滑化的轨道点(θa、θb)中夹着的能够平滑化的轨道点(θi),能够一边判定与干扰物的干扰一边逐渐向插补曲线S上的轨道点(θ’i)移动,在关节角度空间上得到顺畅的轨道。
这样,通过对将由物理空间经由点间轨道计划部204生成的轨道利用逆运动学部203变换到关节角度空间而得的轨道实施平滑化,能够抑制机械臂的各轴的角速度、角加速度的急变、过大的变动。由此,能算出在使机械臂的指尖姿势的变化最小化的同时能够在多个经由点高速移动的机械臂的轨道。
<输出画面>
图12是表示作为轨道计划装置100的输出的输出画面105的一例的图。在输出画面105中包含:读入输入数据的读入按钮(图中的“读入”)101、使得执行轨道计算的计算开始按钮(图中的“计算开始”)102、表示轨道的计算结果的表103、以及显示机械臂的动作的模拟区域104。
利用鼠标等来操作读入按钮101,由此,经由输入输出接口130而输入的输入数据被读入至RAM10。通过计算开始按钮102的操作,在轨道计划装置100中执行轨道计划计算,生成模拟区域104和表103。
在表103中,显示了例如平滑化的处理次数、以及平滑化引起的动作时间。此外,通过操作表内的动作重现按钮,能够在模拟区域104中视觉辨识机械臂的动作。
如以上说明的那样。根据本系统(多轴机械臂的轨道计划装置100),能够生成在指定的经由点经过且将指尖姿势顺畅地连接、机械臂易于平稳地动作的轨道。
<总结>
如以上那样,上述实施例的轨道计划装置能够设为以下结构。
(1)一种轨道计划装置(100),其具有处理器(CPU30)和存储器(RAM10),来算出由多轴构成的机械臂的指尖的轨道,其具有:机械臂结构信息(机械臂结构数据401),其包含机械臂的结构和构成机械臂的关节的轴的位置以及轴的姿势;开始关节角度信息(开始关节角度数据403),其将在计划的轨道的开始姿势处的所述机械臂的各轴的角度设定为开始关节角度(432);目标姿势信息(目标姿势数据404),其在所述机械臂的指尖的终点设定目标位置和所述机械臂的指尖的目标姿势(姿势信息443);经由点姿势信息(经由点姿势数据405),其在计划的轨道内设定包含所述机械臂的指尖要经过的位置和姿势的经由点;物理空间经由点间轨道计划部(204),其读入所述机械臂结构信息(401)、所述开始关节角度信息(403)、所述目标姿势信息(404)和所述经由点姿势信息(405),对所述经由点间进行插补,来生成从机械臂的指尖的开始点起到终点为止的轨道;逆运动学部(203),其根据所述机械臂结构信息(401),从所述机械臂的指尖的姿势以及位置来算出各轴的关节角度;以及关节角度空间轨道平滑化部(205),其在将由所述物理空间经由点间轨道计划部(204)生成的所述轨道利用所述逆运动学部(203)变换到关节角度空间之后,对该轨道进行平滑化。
通过上述结构,轨道计划装置100通过对将由物理空间经由点间轨道计划部204生成的轨道利用逆运动学部203变换到关节角度空间而得的轨道实施平滑化,能够抑制机械臂的各轴的角速度、角加速度的急变、过大的变动。由此,能够算出在使机械臂的指尖姿势的变化最小化的同时能够在多个经由点高速移动的机械臂的轨道。
(2)上述(1)中记载的轨道计划装置还具有:轨道时刻赋予部(207),其对利用所述关节角度空间轨道平滑化部(205)平滑化了的轨道赋予在该轨道的经由点经过的时刻。
通过上述结构,由于机械臂的指尖姿势的变化最小化,因此,轨道计划装置100能够算出满足机械臂的速度(角速度)的制约、加速度(角加速度)的制约的平稳的轨道。
(3)上述(1)中记载的轨道计划装置(100)还具有:轨道插补信息(轨道插补方法数据406),其设定了以相邻的经由点间为部分轨道并表示该部分轨道的平滑化的可否的平滑化可否信息(464)以及进行该平滑化时的插补方法(463),所述关节角度空间轨道平滑化部(205)参照所述轨道插补信息(406),若算出轨道的对象的部分轨道的平滑化可否信息(475)为可平滑化,则根据所述插补方法对所述轨道进行插补。
通过上述结构,在平滑化可否475为“可平滑化”的部分轨道中,利用指定的轨道算出方法363来进行关节角度空间中的平滑化。由此,轨道计划装置100能够算出在使机械臂的指尖姿势的变化最小化同时能够在多个经由点高速移动的机械臂的轨道。
(4)上述(1)中记载的轨道计划装置(100)中,所述机械臂结构信息(401)包含机械臂的三维模型信息,所述轨道计划装置还具有:干扰物结构信息(402),其包含在所述机械臂的周围配置的干扰物的三维模型信息和位置;以及干扰判定部(202),其针对由所述物理空间经由点间轨道计划部(204)或所述关节角度空间轨道平滑化部(205)算出的轨道,参照所述机械臂结构信息(401)和所述干扰物结构信息(402),来判定所述机械臂和所述干扰物是否发生干扰。
通过上述结构,轨道计划装置100能够避开机械臂和干扰物发生干扰的轨道,来算出平稳的轨道。
(5)上述(2)中记载的轨道计划装置(100)还具有:轨道插补信息(406),其设定了以相邻的经由点间为部分轨道并表示该部分轨道的平滑化的可否的平滑化可否信息(475)以及进行该平滑化时的插补方法(406),所述轨道时刻赋予部(207)在相邻的所述部分轨道的经由点使相邻的部分轨道的速度或加速度一致。
通过上述结构,轨道计划装置100在部分轨道所连接的点Pi(经由点),机械臂的角速度、角加速度的变化一致或者最小化,部分轨道间的接合处变得顺畅,能够实现机械臂的平稳的动作。
此外,本发明并不限于实施例,包含各种变形例。例如,上述的实施例是为了以易于理解的方式说明本发明而详细说明的,并不一定受限于具备所说明的全部结构。此外,能够将某实施例的结构的一部分置换成其他实施例的结构,此外还能够在某实施例的结构中添加其他实施例的结构。此外,针对各实施例的结构的一部分,能够进行其他结构的追加/删除/置换。
此外,对于上述的各结构、功能、处理部、处理手段等,它们的一部分或者全部例如还可以通过在集成电路中进行设计等以硬件来实现。此外,上述各结构、功能等还可以通过由处理器对实现各个功能的程序进行解释、执行而以软件来实现。实现各功能的程序、表、文件等信息能够置于存储器、硬盘、SSD(Solid State Drive,固态驱动器)等记录装置、或者IC卡、SD卡、DVD等记录介质。
此外,对于控制线、信息线,示出了认为在说明上需要的内容,在制品上,并不一定受限于示出全部的控制线、信息线。实际上,可以认为,几乎全部的结构是相互连接的。

Claims (10)

1.一种轨道计划装置,其具有处理器和存储器,来算出由多轴构成的机械臂的指尖的轨道,其特征在于,
所述轨道计划装置具有:
机械臂结构信息,其包含机械臂的结构和构成机械臂的关节的轴的位置以及轴的姿势;
开始关节角度信息,其将计划的轨道的开始姿势处的所述机械臂的各轴的角度设定为开始关节角度;
目标姿势信息,其在所述机械臂的指尖的终点设定目标位置和所述机械臂的指尖的目标姿势;
经由点姿势信息,其设定包含在计划的轨道内所述机械臂的指尖要经过的位置和姿势的经由点;
物理空间经由点间轨道计划部,其读入所述机械臂结构信息、所述开始关节角度信息、所述目标姿势信息和所述经由点姿势信息,对所述经由点间进行插补,来生成从机械臂的指尖的开始点起到所述终点为止的轨道;
逆运动学部,其根据所述机械臂结构信息,从所述机械臂的指尖的姿势以及位置来算出各轴的关节角度;以及
关节角度空间轨道平滑化部,其在将由所述物理空间经由点间轨道计划部生成的所述轨道利用所述逆运动学部变换到关节角度空间之后,对该轨道进行平滑化。
2.根据权利要求1所述的轨道计划装置,其特征在于,
所述轨道计划装置还具有:轨道时刻赋予部,其对利用所述关节角度空间轨道平滑化部平滑化了的轨道赋予在该轨道的经由点经过的时刻。
3.根据权利要求1所述的轨道计划装置,其特征在于,
所述轨道计划装置还具有:轨道插补信息,其设定了以相邻的经由点间为部分轨道并表示该部分轨道的平滑化的可否的平滑化可否信息、以及进行该平滑化时的插补方法,
所述关节角度空间轨道平滑化部参照所述轨道插补信息,若算出轨道的对象的部分轨道的平滑化可否信息为可平滑化,则根据所述插补方法对所述轨道进行插补。
4.根据权利要求1所述的轨道计划装置,其特征在于,
所述机械臂结构信息包含机械臂的三维模型信息,
所述轨道计划装置还具有:
干扰物结构信息,其包含在所述机械臂的周围配置的干扰物的三维模型信息和位置;以及
干扰判定部,其针对由所述物理空间经由点间轨道计划部或所述关节角度空间轨道平滑化部算出的轨道,参照所述机械臂结构信息和所述干扰物结构信息,来判定所述机械臂和所述干扰物是否发生干扰。
5.根据权利要求2所述的轨道计划装置,其特征在于,
所述轨道计划装置还具有:轨道插补信息,其设定了以相邻的经由点间为部分轨道并表示该部分轨道的平滑化的可否的平滑化可否信息、以及进行该平滑化时的插补方法,
所述轨道时刻赋予部在相邻的所述部分轨道的经由点,使相邻的部分轨道的速度或加速度一致。
6.一种轨道计划方法,具有处理器和存储器的轨道计划装置算出由多轴构成的机械臂的指尖的轨道,其特征在于,
所述轨道计划方法包含如下步骤:
物理空间轨道计划步骤,所述轨道计划装置读入包含机械臂的结构、以及构成机械臂的关节的轴的位置和轴的姿势的机械臂结构信息、将计划的轨道的开始姿势处的所述机械臂的各轴的角度设定为开始关节角度的开始关节角度信息、在所述机械臂的指尖的终点设定目标位置和所述机械臂的指尖的目标姿势的目标姿势信息、以及设定包含在计划的轨道内所述机械臂的指尖要经过的位置和姿势的经由点的经由点姿势信息,对所述经由点间进行插补,来生成从所述机械臂的指尖的开始点起到所述终点为止的轨道;
逆运动学步骤,所述轨道计划装置针对生成的所述轨道,参照所述机械臂结构信息,从所述机械臂的指尖的姿势以及位置来算出各轴的关节角度,并将所述轨道变换到关节角度空间;以及
关节角度空间平滑化步骤,所述轨道计划装置对变换到所述关节角度空间的所述轨道进行平滑化。
7.根据权利要求6所述的轨道计划方法,其特征在于,
所述轨道计划方法还包含:轨道时刻赋予步骤,所述轨道计划装置对利用所述关节角度空间平滑化步骤平滑化了的轨道赋予经过该轨道的经由点的时刻。
8.根据权利要求6所述的轨道计划方法,其特征在于,
在所述关节角度空间平滑化步骤中,读入设定了以相邻的经由点间为部分轨道并表示该部分轨道的平滑化的可否的平滑化可否信息以及进行该平滑化时的插补方法的轨道插补信息,若算出所述轨道的对象的部分轨道的平滑化可否信息为可平滑化,则根据所述插补方法将所述轨道进行插补。
9.根据权利要求6所述的轨道计划方法,其特征在于,
所述机械臂结构信息包含所述机械臂的三维模型信息,
所述轨道计划方法还包含:干扰判定步骤,所述轨道计划装置读入包含在所述机械臂的周围配置的干扰物的三维模型信息和位置的干扰物结构信息,针对在所述物理空间轨道计划步骤或所述关节角度空间平滑化步骤中算出的轨道,根据所述机械臂结构信息和所述干扰物结构信息来判定所述机械臂和所述干扰物是否发生干扰。
10.根据权利要求7所述的轨道计划方法,其特征在于,
在所述轨道时刻赋予步骤中,读入设定了以相邻的经由点间为部分轨道并表示该部分轨道的平滑化的可否的平滑化可否信息以及进行该平滑化时的插补方法的轨道插补信息,在相邻的所述部分轨道的经由点,使相邻的部分轨道的速度或加速度一致。
CN202010184143.8A 2019-04-25 2020-03-16 轨道计划装置以及轨道计划方法 Pending CN111844128A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-084367 2019-04-25
JP2019084367A JP7222803B2 (ja) 2019-04-25 2019-04-25 軌道計画装置、軌道計画方法及びプログラム

Publications (1)

Publication Number Publication Date
CN111844128A true CN111844128A (zh) 2020-10-30

Family

ID=72921211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010184143.8A Pending CN111844128A (zh) 2019-04-25 2020-03-16 轨道计划装置以及轨道计划方法

Country Status (3)

Country Link
US (1) US20200338730A1 (zh)
JP (1) JP7222803B2 (zh)
CN (1) CN111844128A (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2903532T3 (es) 2016-06-10 2022-04-04 Univ Duke Planificación de movimiento para vehículos autónomos y procesadores reconfigurables de planificación de movimiento
EP3328308B1 (en) * 2016-09-27 2019-05-29 Brainlab AG Efficient positioning of a mechatronic arm
WO2019139815A1 (en) 2018-01-12 2019-07-18 Duke University Apparatus, method and article to facilitate motion planning of an autonomous vehicle in an environment having dynamic objects
TWI822729B (zh) 2018-02-06 2023-11-21 美商即時機器人股份有限公司 用於儲存一離散環境於一或多個處理器之一機器人之運動規劃及其改良操作之方法及設備
EP3769174B1 (en) 2018-03-21 2022-07-06 Realtime Robotics, Inc. Motion planning of a robot for various environments and tasks and improved operation of same
WO2020214723A1 (en) 2019-04-17 2020-10-22 Real Time Robotics, Inc. Motion planning graph generation user interface, systems, methods and articles
JP7479064B2 (ja) 2019-06-03 2024-05-08 リアルタイム ロボティクス, インコーポレーテッド 動的障害物を有する環境における動作計画を容易にする装置、方法及び物品
WO2021041223A1 (en) 2019-08-23 2021-03-04 Realtime Robotics, Inc. Motion planning for robots to optimize velocity while maintaining limits on acceleration and jerk
TWI725630B (zh) * 2019-11-21 2021-04-21 財團法人工業技術研究院 加工路徑生成裝置及其方法
TW202146189A (zh) 2020-01-22 2021-12-16 美商即時機器人股份有限公司 於多機器人操作環境中之機器人之建置
JP7375587B2 (ja) * 2020-02-05 2023-11-08 株式会社デンソー 軌道生成装置、多リンクシステム、及び軌道生成方法
EP4221945A4 (en) * 2020-12-02 2024-04-03 Realtime Robotics, Inc. SYSTEMS, METHODS, AND USER INTERFACES USING CLEARANCE DETERMINATIONS IN ROBOTE MOVEMENT PLANNING AND CONTROL
US11787054B2 (en) * 2020-12-22 2023-10-17 Intrinsic Innovation Llc Robot planning
CN112936264B (zh) * 2021-01-28 2022-08-05 华中科技大学 一种面向臂手假肢的拟人运动规划方法及系统
CN113352289A (zh) * 2021-06-04 2021-09-07 山东建筑大学 一种高空挂拆接地线作业车的机械臂轨迹规划控制系统
JP7351539B2 (ja) * 2021-09-13 2023-09-27 株式会社メルティンMmi 操作者の動きに基づいてロボットの動きを制御するためのプログラム、方法、およびシステム
JP2023068268A (ja) * 2021-11-02 2023-05-17 株式会社日立製作所 軌道計画装置、軌道計画方法および軌道計画プログラム
CN114179085B (zh) * 2021-12-16 2024-02-06 上海景吾智能科技有限公司 机器人控制、轨迹衔接与平滑处理的方法及系统
CN114131612B (zh) * 2021-12-20 2024-01-30 中国科学院长春光学精密机械与物理研究所 基于nurbs曲线插补算法的冗余机械臂实时前瞻轨迹规划方法
CN114227695B (zh) * 2022-01-11 2023-09-08 中国煤炭科工集团太原研究院有限公司 一种锚杆支护机器人工作臂轨迹规划方法及系统
TW202332555A (zh) * 2022-01-21 2023-08-16 美商靈巧公司 具有獨立可控制之高階導數之機器人系統
CN114310918A (zh) * 2022-03-14 2022-04-12 珞石(北京)科技有限公司 一种人机协作下的机械臂轨迹生成与修正方法
CN114571457B (zh) * 2022-03-17 2023-07-18 中科新松有限公司 一种奇异位姿规避方法、装置、设备以及存储介质
CN114603558B (zh) * 2022-03-21 2023-12-05 合肥哈工图南智控机器人有限公司 混合空间过渡轨迹规划方法及装置
CN114851190B (zh) * 2022-04-21 2024-05-14 深圳市华成工业控制股份有限公司 面向低频驱控一体的机械臂轨迹规划方法及系统
CN114748100B (zh) * 2022-06-15 2023-02-03 深圳瀚维智能医疗科技有限公司 超声波扫查的控制方法、视觉伺服系统及可读存储介质
CN117549316B (zh) * 2024-01-12 2024-03-12 唐山先河智能机器有限公司 多轴机械臂控制方法及主从控制系统
CN117944057B (zh) * 2024-03-26 2024-06-21 北京云力境安科技有限公司 一种机械臂轨迹规划方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180591A (zh) * 2005-03-23 2008-05-14 赫克有限公司 基于公差的轨迹规划和控制方法
WO2011067621A1 (en) * 2009-12-04 2011-06-09 Toyota Jidosha Kabushiki Kaisha Robot control system, motion data creation apparatus and its creating method
CN102794767A (zh) * 2012-08-31 2012-11-28 江南大学 视觉引导的机器人关节空间b样条轨迹规划方法
CN103823467A (zh) * 2012-05-23 2014-05-28 浙江大学 具备运动规划功能的工业机器人示教规划器的控制方法
CN106773739A (zh) * 2017-02-28 2017-05-31 山东大学 基于遗传混沌优化算法的机器人轨迹规划方法
CN107000223A (zh) * 2014-12-25 2017-08-01 川崎重工业株式会社 臂型机械手的障碍物自动回避方法及控制装置
CN108453702A (zh) * 2017-02-21 2018-08-28 株式会社安川电机 机器人仿真器、机器人系统以及仿真方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023307A1 (de) * 2009-05-29 2010-12-02 Kuka Roboter Gmbh Verfahren und Vorrichtung zur Steuerung eines Manipulators
JP6046994B2 (ja) 2012-11-29 2016-12-21 株式会社ダイヘン 制御装置
JP6282140B2 (ja) 2014-02-26 2018-02-21 キヤノン株式会社 軌道生成方法、ロボット装置、プログラム及び記録媒体
US10029372B2 (en) * 2015-12-11 2018-07-24 General Electric Company Control system and method for brake bleeding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180591A (zh) * 2005-03-23 2008-05-14 赫克有限公司 基于公差的轨迹规划和控制方法
WO2011067621A1 (en) * 2009-12-04 2011-06-09 Toyota Jidosha Kabushiki Kaisha Robot control system, motion data creation apparatus and its creating method
CN103823467A (zh) * 2012-05-23 2014-05-28 浙江大学 具备运动规划功能的工业机器人示教规划器的控制方法
CN102794767A (zh) * 2012-08-31 2012-11-28 江南大学 视觉引导的机器人关节空间b样条轨迹规划方法
CN107000223A (zh) * 2014-12-25 2017-08-01 川崎重工业株式会社 臂型机械手的障碍物自动回避方法及控制装置
CN108453702A (zh) * 2017-02-21 2018-08-28 株式会社安川电机 机器人仿真器、机器人系统以及仿真方法
CN106773739A (zh) * 2017-02-28 2017-05-31 山东大学 基于遗传混沌优化算法的机器人轨迹规划方法

Also Published As

Publication number Publication date
JP7222803B2 (ja) 2023-02-15
US20200338730A1 (en) 2020-10-29
JP2020179466A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
CN111844128A (zh) 轨道计划装置以及轨道计划方法
US11331803B2 (en) Mixed reality assisted spatial programming of robotic systems
JP6249936B2 (ja) 軌道を生成する方法およびシステム
US9827675B2 (en) Collision avoidance method, control device, and program
Palmer et al. Real-time method for tip following navigation of continuum snake arm robots
WO2018086226A1 (zh) 机械臂的控制方法和装置
JP4962123B2 (ja) 把持候補位置選出装置、把持候補位置選出方法、把持経路生成装置、および把持経路生成方法
US20180036883A1 (en) Simulation apparatus, robot control apparatus and robot
US11292132B2 (en) Robot path planning method with static and dynamic collision avoidance in an uncertain environment
JP5490080B2 (ja) スケルトンモデルの姿勢制御方法,及びプログラム
JP2015066668A (ja) ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体
EP3520084B1 (en) System and method for element quality improvement in 3d quadrilateral-dominant surface meshes
Ślusarczyk et al. Hypergraph grammars in hp-adaptive finite element method
JP6862849B2 (ja) 演算装置、演算方法、演算プログラムおよびロボットシステム
CN113608496B (zh) 空间路径g2转接光顺方法、设备及计算机可读存储介质
JP2017131990A (ja) 干渉回避方法
JP2020175471A (ja) 情報処理装置、情報処理方法、プログラム、及び記録媒体
US20210129331A1 (en) Control method, control apparatus, robot apparatus, method of manufacturing an article, motion program creation method, motion program creation apparatus, display apparatus, and control program recording medium
CN109434840A (zh) 一种基于样条曲线的机器人自由路径生成方法
Abu-Dakka et al. Evolutionary path planning algorithm for industrial robots
WO2023145309A1 (ja) 動作経路生成装置、方法、及びプログラム
CN117348577B (zh) 一种生产工艺仿真检测方法、装置、设备以及介质
WO2023079809A1 (ja) 軌道計画装置、軌道計画方法および軌道計画プログラム
Koo et al. Motion capture based dual arm control of a humanoid robot using kinect
Xu et al. Trajectory Generation Method for Serial Robots in Hybrid Space Operations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201030