JP2015066668A - ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体 - Google Patents

ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体 Download PDF

Info

Publication number
JP2015066668A
JP2015066668A JP2013206322A JP2013206322A JP2015066668A JP 2015066668 A JP2015066668 A JP 2015066668A JP 2013206322 A JP2013206322 A JP 2013206322A JP 2013206322 A JP2013206322 A JP 2013206322A JP 2015066668 A JP2015066668 A JP 2015066668A
Authority
JP
Japan
Prior art keywords
point
robot
teaching
teaching point
interpolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013206322A
Other languages
English (en)
Inventor
裕宣 佐々木
Hironobu Sasaki
裕宣 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013206322A priority Critical patent/JP2015066668A/ja
Publication of JP2015066668A publication Critical patent/JP2015066668A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】ロボットの軌道と特異点とが干渉しないように対象教示点の位置を調整する際の手間を削減する。
【解決手段】多関節のロボットの動作を教示する複数の教示点のうち対象教示点の位置を調整するための演算を演算部が行う。演算部は、対象教示点p2と対象教示点p2に隣接する教示点p1との間を補間した補間軌道L1を求める。次に、演算部は、補間軌道L1上の補間点q1,q2,q3を求める。次に、演算部は、対象教示点p2に近接する特異点s及び各補間点q1,q2,q3に近接する特異点s1,s2,s3の位置をそれぞれ求める。次に、演算部は、対象教示点p2が特異点sに干渉せずかつ各補間点q1,q2,q3が各特異点s1,s2,s3に干渉しない対象教示点p2の調整可能距離を求める。
【選択図】図7

Description

本発明は、複数の教示点のうち対象教示点の位置を調整するための演算を行うロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体に関する。
複雑で精密な動作が可能な垂直多関節型のロボットは、近年様々な製造現場で用いられるようになっている。このようなロボットは、様々な動作や姿勢を設定できるが故にその動作設定に非常に時間がかかるという側面を持っている。ロボット動作の設定は、任意のロボット姿勢を手先座標で表した「教示点」で設定し、教示点間には補間軌道を設定するのが一般的である。この教示点や補間軌道、ロボット動作を様々な手法で評価することにより、より洗練された動作設定を行うための手法が考えられてきていた。
従来はロボットが適用される工程が単純であったため、ロボット動作の評価には、ロボットの特異点に関する厳密な考察は必要とされず、ロボットが到達可能かどうかや、障害物との干渉の有無、ロボットの操作容易性を表す可操作度が用いられてきた。
特許文献1に記載のロボットの設置位置決定方法では、予めロボットの作業点とロボット位置が入力され、通過点間の経路上の各作業点についての可操作度を積み上げることでロボット位置の評価を行い、評価値が最良となるロボット位置を計算している。
特許文献2に記載のロボット動作評価方法では、現在の作業点から次の作業点方向への可操作度に注目し、動作方向のみに関わる動かしやすさ、アクチュエータの負荷に注目してロボット動作の評価を行っている。
特許第4730337号公報 特開平9−66481号公報
しかし、ロボットを用いたセル生産で行われるような、一つのロボットが狭い範囲で複数工程をこなすような場合は、ロボット軌道が複雑になり、ロボット軌道と特異点の関係性を考慮した教示点やロボット位置の設定が必要である。
例えば、計算機上で決定したロボットの配置を実環境で実現する際、設置位置の微妙な誤差やロボットの個体差などによって教示点位置が想定位置とずれてしまうため、教示点の移動・調整作業が行われる。また、位置が厳密に決定していないワークに対応するような教示点については、別途視覚センサなどによるワーク認識によって教示点の位置が移動・調整される。
このような実環境では、教示点位置の調整作業が頻繁に行われるが、上記特許文献1,2のような可操作度で評価するものでは、調整後の教示点位置によっては、調整対象の教示点の前後のロボット軌道が特異点に干渉することがあった。そのため、教示点の調整の度にロボット軌道が特異点に干渉するかどうかを判断し、干渉する場合には再度教示点を調整し直す作業が必要であり、手間がかかっていた。
そこで、本発明は、ロボットの軌道と特異点とが干渉しないように対象教示点の位置を調整する際の手間を削減することを目的とするものである。
本発明は、多関節のロボットの動作を教示する複数の教示点のうち対象教示点の位置を調整するための演算を演算部が行うロボットの教示点調整方法であって、前記演算部が、前記対象教示点と該対象教示点に隣接する教示点との間を補間した補間軌道を求める補間軌道算出工程と、前記演算部が、前記補間軌道上の補間点を求める補間点算出工程と、前記演算部が、前記対象教示点に近接する第1特異点及び前記補間点に近接する第2特異点の位置をそれぞれ求める特異点算出工程と、前記演算部が、前記対象教示点が前記第1特異点に干渉せずかつ前記補間点が前記第2特異点に干渉しない前記対象教示点の調整可能距離を求める調整可能距離算出工程と、を備えたことを特徴とする。
本発明によれば、補間軌道上の補間点を用いて対象教示点の調整可能距離を求めているので、ロボット軌道と特異点との干渉を回避するための対象教示点の調整作業の手間を削減することができる。
実施形態に係るロボットシステムの概略構成を示す説明図である。 ロボットシステムの構成を示すブロック図である。 ロボットの肩特異点を説明するための模式図である。 ロボットの肘特異点を説明するための模式図である。 ロボットの手首特異点を説明するための模式図である。 実施形態に係る制御装置のCPUによるロボットの教示点調整方法を示すフローチャートである。 実施形態に係るロボットの教示点調整方法を説明するための図である。 補間点に対応する最近特異点と評価距離を示した説明図である。 モニタに表示される調整可能範囲に関する情報の一例を示す説明図である。 対象教示点の調整可能範囲を模式的に表した斜視図である。 対象教示点の調整可能範囲を模式的に表した斜視図である。 対象教示点の前後の補間軌道を考慮した調整可能範囲を表した図である。 教示点の調整可能距離を評価値としたロボットの設置位置算出方法を説明するための図である。 調整可能範囲を最大にする教示点位置の計算方法を説明するための図である。
以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。図1は、本発明の実施形態に係るロボットシステムの概略構成を示す説明図である。生産装置であるロボットシステム100は、垂直多関節ロボットであるロボット200と、ロボット200を制御する制御装置300と、表示部であるモニタ400と、教示部であるティーチングペンダント500と、を備えている。
ロボット200は、多関節のロボットアーム201と、ロボットアーム201の先端に取り付けられたエンドエフェクタ(例えばロボットハンド)202とを有している。ロボットアーム201の基端は、架台等に位置決め固定される。ロボットアーム201は、各関節軸J1〜J6で回転又は旋回可能に連結された複数のリンク210〜216を有している。ロボットアーム201の基端から先端に向かって、第1関節軸J1,第2関節軸J2,第3関節軸J3,第4関節軸J4,第5関節軸J5,第6関節軸J6とする。
ティーチングペンダント500は、ユーザ(作業者)の操作により、教示点の指定や補間方法の指定をするものである。補間方法としては直線補間、円弧補間、関節補間などがある。
図2は、ロボットシステム100の構成を示すブロック図である。制御装置300は、コンピュータで構成されており、演算部(制御部)としてのCPU(Central Processing Unit)301を備えている。また、制御装置300は、記憶部として、ROM(Read Only Memory)302、RAM(Random Access Memory)303、HDD(Hard Disk Drive)304を備えている。また、制御装置300は、記録ディスクドライブ305及び各種のインタフェース307〜309を備えている。
CPU301には、ROM302、RAM303、HDD304、記録ディスクドライブ305及び各種のインタフェース307〜309が、バス306を介して接続されている。ROM302には、BIOS等の基本プログラムが格納されている。
RAM303は、CPU301による演算実行時の一時記憶用のメモリや必要に応じて設定されるレジスタ領域として使用される。
HDD304は、CPU301の演算処理結果や外部から取得した各種データ等を記憶すると共に、CPU301に、システム全体100を制御するプログラムや、ロボットの教示点調整方法の各工程を実行させるためのプログラム330を記録するものである。例えば、メモリとしてのHDD304には、物理量を表す情報と、運動学計算手法と、制御手法が格納されている。物理量を表す情報は、シミュレートするロボット200を構成する部品の形状や各関節の種類、三次元空間上の配置情報、教示点の位置情報などの物理量を指す。運動学計算手法は、各関節角度から各関節の3次元空間上での位置情報やロボット姿勢、教示点の補間軌道を計算する手法を指す。制御手法は、最近特異点の位置や調整可能距離、調整可能距離生成点、調整可能範囲を計算する手法を指す。
CPU301は、HDD304に記録(格納)されたプログラム330に基づいて各種演算処理(ロボット200の教示点調整方法の各工程)を実行する。
記録ディスクドライブ305は、記録ディスク331に記録された各種データやプログラム等を読み出すことができる。
インタフェース307には、ロボット200(具体的には、ロボット200の各関節軸を制御するサーボ回路)が接続されており、CPU301は、教示された教示点に基づきロボット200の動作を制御する。
インタフェース308には、モニタ400が接続されており、CPU301は、モニタ400に画像を表示させることができる。このモニタ400は、シミュレーション結果として、ロボット200の教示点とロボット200の設置位置の決定を支援する上記制御手法の結果を表示することができる。
インタフェース309には、ティーチングペンダント500が接続されており、CPU301は、インタフェース309及びバス306を介してティーチングペンダント500からの教示点や補間方法の指定の入力を受ける。
CPU301は、ティーチングペンダント500或いはHDD304から、複数の教示点を取得する。そして、CPU301は、各教示点間を指定された補間方法で補間して補間軌道(補間関数)を演算し、ロボット200(ロボットアーム201)の各関節軸を駆動するサーボモータのサーボ回路に所定時間間隔で位置指令を出力する。これによりロボット200(ロボットアーム201)は、複数の教示点(補間軌道)を辿るロボット軌道に沿って動作する。
なお、制御装置300には、不図示の、書き換え可能な不揮発性メモリや外付けHDD等の外部記憶装置等が接続されていてもよい。
本実施形態では、任意のロボット姿勢から最近特異点までの距離を計算する。ここで「最近特異点」とは、あるロボット姿勢におけるエンドエフェクタ202の先端の姿勢方向を保ったまま移動した際にロボット200が特異姿勢となる点の内、手先の相対距離が最も短い点を示している。
6軸のロボットアーム201には、肩特異点、肘特異点、手首特異点の3種類の特異点があるため、任意姿勢から各最近特異点までの距離の計測方法について以下に説明する。以下、特異点とは、ロボット200が特異姿勢を取る場合の手先位置またはロボット200の第4,第5,第6関節軸J4,J5,J6の交点の3次元空間座標を指す。
図3は、ロボットの肩特異点を説明するための模式図である。図3には、ロボット200の姿勢から最も近い肩特異点までの距離daと位置Paが図示されている。ロボット200がこの肩特異点をとったとき、ロボットの姿勢は図3において破線で示す姿勢A1のようになる。肩特異姿勢は、第4,第5,第6関節軸J4,J5,J6の交点Pxが第1関節軸J1の直上に来たときに発生する。そのため、エンドエフェクタ202の先端の姿勢方向を保ったまま第4,第5,第6関節軸J4,J5,J6の交点Pxを第1関節軸J1の直上まで持って行った場合の位置Paを、最も近い肩特異点とする。
つまり、第1関節軸J1を通り同軸方向に延びる直線から第4,第5,第6関節軸J4,J5,J6の交点Pxまでの距離daが、最も近い肩特異点までの距離である。任意姿勢における第4,第5,第6関節軸J4,J5,J6の交点Pxの座標は一般的な順運動学計算により求めることができ、第1関節軸J1の位置は自明であるため、肩特異点までの距離daと位置Paは容易に求めることができる。
図4は、ロボットの肘特異点を説明するための模式図である。図4には、ロボット200の姿勢から最も近い肘特異点までの距離dbと位置Pbが図示されている。ロボット200がこの肘特異点をとったとき、ロボット200の姿勢は図4において破線で示す姿勢A2のようになる。肘特異姿勢は、第4,第5,第6関節軸J4,J5,J6の交点Pxが第2,第3関節軸J2,J3を結ぶ直線上にある場合に発生する。そのため、エンドエフェクタ202の先端の姿勢を保ったまま第4,第5,第6関節軸J4,J5,J6の交点Pxが第2,第3関節軸J2,J3の直線上にある場合の位置Pbを肘特異点とする。
このとき肘特異点は第2関節軸J2を中心とし第2関節軸J2から第4,第5,第6関節軸J4,J5,J6の交点Pxまでの距離の合計Rxを半径とする円C1上にプロットすることができる。任意姿勢から肘特異点までの最短距離dbは、第2関節軸J2から第3関節軸J3までの距離と第3関節軸J3から交点Pxまでの距離の合計から、第2関節軸J2から交点Pxまでの距離を引いた値であり、一般的な順運動学計算により求めることができる。よって、肘特異点までの距離dbと位置Pbは、容易に求めることができる。
図5は、ロボットの手首特異点を説明するための模式図である。図5には、ロボット200の姿勢から最も近い手首特異点までの距離dcと位置Pcが図示されている。ロボット200がこの手首特異点をとったとき、ロボット200の姿勢は図5において破線で示す姿勢A3のようになる。手首特異姿勢は、第4,第6関節軸J4,J6から同軸方向に延びる直線が同一直線上となる場合に発生するため、エンドエフェクタ202の先端姿勢を保ったまま第4,第6関節軸J4,J6が一直線上になる場合の位置Pcを手首特異点とする。つまり、手首特異姿勢が実現された際には第3関節軸J3の先端方向r1とエンドエフェクタ202の先端方向r2とが同一になる。このとき手首特異点は、関節軸J2からエンドエフェクタ202の先端方向へ関節軸J3から交点Pxまでの距離dv分移動した点Oを中心とし、関節軸J2から関節軸J3までの距離dwを半径とする円C2上にプロットすることが可能である。
ここでは手首特異点は現在の位置姿勢から最も近接した特異姿勢を選ぶ必要があるため、適切な第2,第3関節軸J2,J3の角度セットを選択しなければならない。以上を踏まえ任意姿勢から手首特異点までの距離dcは以下のように求めることができる。まず任意姿勢における第4,第5,第6関節軸J4,J5,J6の交点Pxの座標を計算する。次に第2関節軸J2からエンドエフェクタ202の先端の姿勢方向へ、第3関節軸J3から第4,第5,第6関節軸J4,J5,J6の交点Pxまでの距離分進んだ点Oの座標を計算する。この点Oと第4,第5,第6関節軸J4,J5,J6の交点Pxとの相対距離を計算し、第2関節軸J2から第3関節軸J3までの距離を引いた値が手首特異点までの距離dcである。各関節の座標は一般的な順運動学計算により求めることができるので、手首特異点までの距離dcと位置Pcは、容易に求めることができる。
以上で任意のロボット姿勢に対応する最近肩特異点、最近肘特異点、最近手首特異点を得ることができる。さらにこの3つの特異点までの距離で最も短いものを、任意のロボット姿勢に対応する最近特異点とする。
本実施形態では、教示点間の補間軌道上を通過する補間点を複数求め、各補間点に最も近接する最近特異点の位置を計算した後、各補間点に対応する評価距離を計算し、最終的に位置調整対象の対象教示点の調整可能距離(半径)を計算することを特徴とする。ここで、対象教示点の調整可能距離とは、その距離分、調整教示点の位置を調整(移動)すると、対象教示点の前後の補間軌道が特異点又はその近傍と干渉する距離をいう。
図6は、本実施形態に係る制御装置300のCPU301によるロボットの教示点調整方法を示すフローチャートである。図6に示すフローチャートの各ステップ(各工程)の処理は、図2に示すプログラム330をCPU301が実行することにより行われる。なお、CPU301が各ステップを実行した後、ユーザがティーチングペンダント500を操作して、ロボット200の動作を教示する複数の教示点のうち対象教示点の位置を調整することができる。つまり、CPU301は、ユーザが対象教示点の位置を調整するための演算(シミュレーション)を行う。
CPU301は、仮想上の作業環境内に対象となるロボット200を、世界座標系原点に仮想的に設置する(S1)。
次に、CPU301は、ユーザがティーチングペンダント500により指定した複数の教示点又はHDD304に予め格納された複数の教示点を読み込むことで、複数の教示点を設定する(S2)。教示点は、世界座標系を基準とし、例えば第4,第5,第6関節軸J4,J5,J6の交点Px(つまり第5関節軸P5の中心)の位置とする。
図7は、本実施形態に係るロボットの教示点調整方法を説明するための図である。以下、3つの教示点p1,p2,p3を設定したものとし、調整対象(評価対象)の対象教示点を教示点p2とする。対象教示点p2の指定は、ユーザがティーチングペンダント500等の入力装置を用いて行う。
次に、CPU301は、対象教示点p2と、対象教示点p2に隣接する教示点(例えばp1,p3)との間を、指定された補間方法で補間した補間軌道を演算により求める(S3:補間軌道算出工程)。図7では、教示点p1と教示点p2との間、教示点p2と教示点p3との間の補間方法は直線補間であり、CPU301は、直線補間で補間した、教示点p1,p2を通過する補間軌道L1と、教示点p2,p3を通過する補間軌道L2とを求める。なお、本実施形態では、CPU301は、複数の教示点のうち始点から終点に亘って(全区間に亘って)補間軌道を求めることで、始点から終点までのロボット軌道を生成する。
次に、CPU301は、対象教示点p2を含む補間軌道L1上の複数の補間点q1,q2,q3及び補間軌道L2上の複数の補間点q4,q5,q6を求める(S4:補間点算出工程)。補間点q1,q2,q3は、補間軌道L1が通過する通過点であり、補間点q4,q5,q6は、補間軌道L2が通過する通過点である。なお、本実施形態では、補間点を複数求めているが、少なくとも1つ求めればよく、補間点の数が多いほど、後に求める調整可能距離の精度が上がる。
次に、CPU301は、対象教示点p2に最も近接している第1特異点である特異点(最近特異点)sまでの距離、及び各補間点q1〜q6に最も近接している第2特異点である特異点(最近特異点)s1〜s6までの距離を計算する(S5)。具体的には、CPU301は、各補間点q1〜q6及び教示点p2に対して肩特異点、肘特異点、手首特異点までの距離を計算し、最も距離が近接している特異点の種類を特定する。
次に、CPU301は、特異点s及び特異点s1〜s6の位置をそれぞれ求める(S6:特異点算出工程)。肩特異点、肘特異点、手首特異点の位置の計算手法は、前述したとおりである(図3〜図5)。
次に、CPU301は、教示点p2の前段の補間軌道L1について対象教示点p2が特異点sに干渉せずかつ各補間点q1〜q3が各特異点s1〜s3に干渉しない対象教示点p2の調整可能距離を求める(S7:調整可能距離算出工程)。同様に、教示点p2の後段の補間軌道L2について対象教示点p2が特異点sに干渉せずかつ各補間点q4〜q6が各特異点s4〜s6に干渉しない対象教示点p2の調整可能距離を求める。
以下、具体的に説明する。図8は、補間点に対応する最近特異点と評価距離(調整距離)を示した説明図である。図8(a)は閾値を設けない場合、図8(b)は閾値を設けた場合を示している。
CPU301は、それぞれの補間点q1〜q6(図8(a)では補間点q2)の位置に対応する評価距離(調整距離)d2を計算する。評価距離d2は、対象教示点p2の位置と隣接する教示点p1の位置と補間点q2に対応する最近特異点s2の位置から計算する。
以下、補間軌道L1について具体的に説明すると、補間軌道L1は直線補間により求めているので、まず、隣接する教示点p1と補間点q2に対応する最近特異点s2の位置を結ぶ直線l2を計算する。次にその直線l2と対象教示点p2との距離を計算する。これが、補間点q2に対応する評価距離d2である。また、他の補間点及び対象教示点p2に対応する評価距離についても同様に計算する。
つまり、CPU301は、特異点sに対象教示点p2が達する対象教示点p2の調整距離(評価距離)、及び各特異点s1〜s3に各補間点q1〜q3が達する対象教示点p2の調整距離(評価距離)をそれぞれ演算する。そして、CPU301は、各調整距離のうち最短となる最短調整距離を抽出する。CPU301は、抽出した最短調整距離に基づき、調整可能距離を求める。具体的には、抽出した最短調整距離を調整可能距離とする。このように、調整可能距離は、軌道上の補間点に対応する最近特異点の位置や隣接する教示点p1の位置関係から計算することができる。
ここで、図8(b)に示すように、補間軌道L1と特異点s2とが干渉したと判断するための閾値(所定距離)Thを設けてもよい。つまり、単純にロボット軌道と特異点が重なるまでの距離を考えてもよいが、ロボット軌道と特異点が干渉したと判断するための閾値を設けてもよい。この場合CPU301は、対象教示点p2の位置と隣接する教示点p1の位置と補間点q2に対応する最近特異点s2がなす平面上において、教示点p1を通り閾値Thとする球(円)に接する2直線l2a,l2bを計算する。そして、CPU301は、対象教示点p2と各直線l2a,l2bとの距離d2a,d2bを計算する。このとき、短い方の距離d2aが、閾値を考慮した補間点q2に対応する評価距離(調整距離)である。
つまりCPU301は、特異点sから所定距離離れた位置(閾値Th離れた位置)に教示点p2が達する教示点p2の調整距離、及び各特異点s1〜s3から所定距離離れた位置に各補間点q1〜q3が達する教示点p2の調整距離をそれぞれ演算する。そして、CPU301は、各調整距離のうち最短となる最短調整距離を抽出する。CPU301は、抽出した最短調整距離を、調整可能距離として求める。
なお、本実施形態では、対象教示点p2が複数の教示点のうち始点及び終点以外の中間点であるので、対象教示点p2の前後の補間軌道L1,L2それぞれについて調整可能距離(暫定値)を求め、いずれか短い方を、真の調整可能距離として求める。つまり、評価対象とする対象教示点p2の前後に教示点p1,p3がある場合でも、全ての補間点において評価距離を計算し、それらの内最も短いものを教示点p2の調整可能距離としている。
対象教示点が複数の教示点のうち始点p1又は終点p3である場合は、隣接する補間軌道は1つであり、その補間軌道について調整可能範囲を上述したように求めればよい。
以上が、対象教示点p2の調整可能距離の計算手法である。本手法を用いることにより、対象となる教示点p2の調整(移動)可能な距離がどの程度であるかを示す評価指標である調整可能距離を得ることができる。
次に、CPU301は、調整可能距離に関する情報をモニタ400に表示させる(S8:調整可能距離表示工程)。
図9は、モニタ400に表示される調整可能範囲に関する情報の一例を示す説明図である。対象教示点の調整可能範囲の表示は、具体的には、ロボット200に設定した教示点p1〜p3と補間軌道L1,L2をモニタ400に表示するロボットシミュレータシステムの機能である。CPU301は、図9に示すように、対象教示点p2の調整可能距離D、その調整可能距離Dを構成する特異点、及びその特異点に対応する補間点を、教示点p1〜p3と補間軌道L1,L2とともにモニタ400に表示させる。
なお、調整可能距離に関する情報として、調整可能距離Dをグラフィカルにモニタ400に表示する場合について説明したが、数値データとしてモニタ400に表示するようにしてもよい。
また、対象教示点p2は、調整可能距離Dの分動かしても、補間軌道が特異点と干渉しないことが分るため、調整可能範囲を計算することもできる。
図10は、対象教示点p2と隣接教示点p1におけるエンドエフェクタ202の方向が同一で、これらの教示点p1,p2を接続する補間軌道L1が直線補間だった場合の、対象教示点p2の調整可能範囲Rを模式的に表した斜視図である。
CPU301は、対象教示点p2を中心に調整可能距離Dを半径とする球の範囲Raを含む対象教示点p2の調整可能範囲Rを算出する(調整可能範囲算出工程)。そして、CPU301は、算出した調整可能範囲Rを、モニタ400へ表示させる(調整可能範囲表示工程)。
具体的に説明すると、CPU301は、調整可能距離Dを構成する補間点q2に対応する最近特異点s2と調整可能距離生成点Pとを結ぶ区間直線を求める。そして、CPU301は、該区間直線を補間軌道L1の周りに回転させて得られる範囲Rbを、球の範囲Raに追加し、調整可能範囲Rとして、モニタ400へ表示させる。ここで調整可能距離生成点Pは、調整可能距離Dを計算した際に用いた隣接教示点p1と最近特異点s2を結ぶ直線上の点であり、調整可能距離生成点Pと対象教示点p2との距離は調整可能距離Dとなる。
図11は、対象教示点p2と隣接教示点p1におけるエンドエフェクタ202の方向が同一で、これらの教示点p1,p2を接続する補間軌道L1が円弧補間だった場合の、対象教示点p2の調整可能範囲を模式的に表した斜視図である。
この場合、調整可能距離Dは以下のように計算できる。すなわち、隣接教示点p1と最近特異点s3を通る、補間軌道L1を拡大縮小した線L1’を計算し、その端点e1の座標を計算する。次に、最近特異点s3と端点e1を結ぶ直線と、対象教示点p2との距離を計算し、調整可能距離Dとする。こうすることで、直線補間の場合と同様に、調整可能距離Dを半径とした球の内部の範囲Raを含む調整可能範囲Rが算出され、モニタ400へ表示することができる。
また、最近特異点s3と調整可能距離生成点Pとを結ぶ直線を、最近特異点s3から補間軌道L1に垂線Lvを下した交差点Pvと対象教示点p2を結ぶ直線の周りに回転させる。この回転により得られる範囲から、交差点Pvを中心として最近特異点s3を通る円Cvよりも隣接教示点p1側を除いた範囲Rbを、範囲Raに追加し、調整可能範囲Rとして、モニタ400へ表示することができる。
図12は、対象教示点p2の前後の補間軌道L1,L2を考慮した調整可能範囲Rを表した図である。対象教示点p2の前後の補間軌道L1,L2に対応する調整可能範囲R1,R2を図10や図11のように計算し、その重なり合う範囲を対象教示点p2の調整可能範囲Rとし、モニタ400へ表示することができる。
本実施形態によれば、補間軌道L1,L2上の補間点を用いて対象教示点p2の調整可能距離Dを求めているので、ロボット軌道と特異点との干渉を回避するための対象教示点p2の調整作業の手間を削減することができる。
そして、ユーザは任意の教示点についてどの範囲で調整可能か、調整によって前後の補間軌道が特異点に入りにくいか否か、また注意すべき特異点はどこか、を容易に確認することができる。
また、任意の教示点について調整可能距離の計算を行うことで、ユーザは、教示点位置の評価やロボットの設置位置の評価を行い、ユーザによるそれらの決定を支援することができる。調整可能距離が大きいほど、教示点の移動・調整により変更された前後の補間軌道が特異点と干渉すること抑えることができる。
本実施形態の最も直接的な利用法は、任意教示点の調整可能距離を計算し、教示点位置の評価を行うことである。また調整可能距離に関する情報をモニタに表示することで、ユーザの教示点位置決定を支援することができる。
間接的な利用法の1つは、ロボット設置位置について任意教示点の調整可能距離を用いた評価を行い、評価値が最大となるロボット位置を計算することである。ロボット位置を自動的に計算しモニタに表示することで、ロボット位置の決定を支援することができる。
もう一つの間接的な利用法は、任意の教示点位置に関して調整可能距離が最大となる位置へ教示点を調整することである。調整可能距離が最大となる特異点位置を自動的に計算しモニタへ表示することで、教示点位置の決定を支援することができる。
(実施例1)
上記実施形態について、数値例を挙げて具体的に説明する。図6のステップS1では、作業環境内に対象となるロボット200を、世界座標系原点(x=0,y=0,z=0)に設置する。設置するロボット200(図1)のリンクパラメータは以下の通りとする。
Figure 2015066668
次に、ステップS2では、対象となるロボット200に対して、任意の作業を行わせるための教示点を設置する。教示点は、第4,第5,第6関節軸J4,J5,J6の交点Px(つまり第5関節軸J5の中心)の位置を示すこととした。ここでは以下の3つの教示点p1,p2,p3を設定した。また、エンドエフェクタ202の先端方向は鉛直下向きとした。
Figure 2015066668
次に、ステップS3では、任意の作業を実行するために、本実施例1では直線補間方式を用いた補間を行った。
次に、ステップS4では、調整可能範囲を表示しようとする対象教示点を選択し、対象教示点の前後に存在する教示点を選択し、当該教示点と繋がる補間軌道を分割した。このとき分割数が多いほど正確な調整可能範囲の計算が行えるが、分割数多いほど計算時間がかかるため、必要に応じて適切な分割数を選択するのがよい。またこのとき選択する教示点は前後どちらかの教示点のみでも構わない。本実施例1では対象教示点を教示点p2とし、教示点p1〜教示点p2と教示点p2〜教示点p3を以下のようにそれぞれ5分割した。
Figure 2015066668
次に、ステップS5では、各補間点q1〜q8及び対象教示点p2に関して最も近接している特異点(最近特異点)までの距離を計算する。具体的には、各補間点q1〜q8及び対象教示点p2に対して肩特異点、肘特異点、手首特異点までの距離を計算し、最も距離が近接している特異点の種類を特定する。
Figure 2015066668
次に、ステップS6では、補間軌道L1,L2上の補間点q1〜q8及び対象教示点p2に対応する最近特異点の位置を計算する。本実施例1では、各補間点における最近特異点の種類はすべて手首特異点であった。手首特異点の位置計算手法は、上記実施形態(図5)で説明したとおりである。
Figure 2015066668
次に、ステップS7では、特異点と教示点の関係から調整可能距離を計算する(図8)。まず、各補間点q1〜q8及び対象教示点p2について、最近特異点と、隣接する教示点p1を通る直線を求め、その直線と対象教示点p2との距離を計算し、評価距離(調整距離)とする。次に各補間点q1〜q8及び対象教示点p2の評価距離を比較し、最も短い最短評価距離(最短調整距離)を、対象教示点p2の調整可能距離とする。
図8のように対象教示点p2の前後に隣り合う教示点p1,p3がある場合は、前後の教示点p1,p3に関して同様の計算を行い、両方の調整可能距離を比較し、短い方を対象教示点p2の調整可能距離として利用できる。以下は、各補間点q1〜q8及び対象教示点p2に対応する評価距離である。
Figure 2015066668
本実施例1では、教示点p2の調整可能距離は補間点q4による評価距離である21.16255(mm)だとわかる。ステップS8では、計算した調整可能距離に関する情報について、図9のような情報をモニタ400に表示する。その際、教示点、補間軌道、近接特異点と対応する補間点、図10や図11、図12のような調整可能範囲を同時に表示しても良い。
このように教示点の調整可能距離と対応する最近特異点を計算し提示することで、ユーザは任意教示点が調整(移動)に対してどの程度頑強であるかを容易に理解することができる。また、調整可能距離を構成する特異点や軌道上の補間点を同時に提示することで、ユーザは教示点を修正する指標を容易に得ることができる。
(実施例2)
実施例2では、教示点の調整可能距離を評価値としたロボットの設置位置算出方法について、図13を用いて説明する。実施例2では、調整可能距離が最大となるロボット位置をモニタへの表示について説明する。実施例1と異なる点は、複数の教示点の調整可能距離情報を利用してロボット位置を評価している点である。
実施例2では、任意の条件において任意教示点の調整可能距離によって計算されたロボット設置位置の評価値が最大となる位置を探索し、その位置をモニタに表示する。まず初めに教示点p1,p2,p3を設定する。次に、ロボット設置位置Prを設定する。これにより、特異点sa,sbの位置が決定する。教示点間を結ぶ補間軌道L1,L2上の各補間点から最近特異点sa,sbの位置を計算し、調整可能距離を計算し、任意教示点の調整可能距離の合計値や平均値や最低値を利用してロボット設置位置の評価を行う。ロボット設置位置(Pr’)を次々に変更することで特異点(sa’,sb’)の位置が次々に変化するため、各ロボット位置で評価値を計算し各ロボット位置評価の比較を行う。
以下、具体的に説明すると、CPU301は、各教示点p1,p2,p3を順次対象教示点とし、上記実施形態で説明した方法(図6)の各工程(ステップS1〜S7)を実行する。
次いで、CPU301は、各教示点p1〜p3の調整可能距離を合計又は平均した評価値を演算する(評価値算出工程)。CPU301は、ロボット200の設置位置を仮想的に変更して、評価値が最大となるロボット200の設置位置を求める(設置位置算出工程)。そして、CPU301は、評価値が最大となるロボット200の設置位置に関する情報を、モニタ400に表示させる(設置位置表示工程)。
実施例2により、任意条件における教示点の調整可能距離が最大となるロボット設置位置を計算し、モニタに表示することができる。つまり、実環境における教示点調整によって、軌道が特異点近傍に侵入するリスクを低減したロボット設置位置をユーザに提示することが可能である。
上記実施例1と同様のロボット200及び教示点p1,p2,p3を用いる。ロボット200の初期位置は、世界座標系原点(x=0,y=0,z=0)とする。すると、教示点p1、教示点p2、教示点p3に関する補間点の評価距離は以下のように計算できる。
Figure 2015066668
教示点p2については、前後に教示点p1、教示点p3があるため、2回に分けて評価距離を計算している。つまり、各教示点の調整可能距離は以下のようになる。
Figure 2015066668
ロボット200の位置調整範囲内で、同様に調整可能距離を計算する。本実施例2では、各教示点の調整可能距離の合計をロボット位置の評価値とし、ロボット200の周囲8点においてロボット200の位置の評価値を計算した。
Figure 2015066668
以上より評価値が最も高いのは、ロボット200の設置位置を世界座標系(x=0.0,y=+10.0,z=0)の場合であり、この位置にロボット200の設置位置を変更すると、各教示点が調整された際にも補間軌道が特異点と干渉する可能性が低くなる。
本実施例2の処理を繰り返すことで、より評価値の高いロボット200の位置を計算し、モニタ400に表示することができる。計算したロボット200の設置位置については、計算前後の位置や特異点を同時にモニタ400に表示しても良いし、単に最終的な計算結果であるロボット200の位置のみモニタ400に表示しても良い。その際、計算前後での評価値の変化をユーザに提示すると、より効果的に位置決定を支援することができる。
(実施例3)
実施例3では、調整可能範囲を最大にする教示点位置の計算方法について図14を用いて説明する。実施例3では、調整可能距離が最大となるように任意の対象教示点の位置を調整する。実施例1と異なる点は、対象教示点の調整可能距離を、任意条件において最大にするように教示点位置を更新する点にある。
まず初めに教示点p1,p2,p3を設定する。調整の対象となる教示点p2と、補間軌道L1,L2に対応する調整可能距離D1,D2と、各調整可能距離を計算するための調整可能距離生成点P1,P2と対象教示点p2との距離及び方向の情報を利用して、対象となる教示点の位置を調整する。調整可能距離生成点P1,P2から仮想的な斥力f1,f2が働いていると考え、調整方向や調整距離を決定し、対象教示点p2について微小距離調整を行う。調整を繰り返すことで、任意条件において調整可能距離が最大となる教示点位置を探索することができる。このとき調整の繰り返し終了条件は、「初期値からの調整量が一定値を超えたら終了」,「対象教示点の調整可能距離が一定値以上になったら終了」,「繰り返し回数が規定数に達したら終了」など、さまざまに設定することができる。本手法を用いることで、任意条件において任意教示点の調整可能距離を最大にするような教示点の調整結果p2’を計算し、モニタに表示することが可能である。
つまり、CPU301は、対象教示点p2の位置を仮想的に変更して、調整可能距離が最大となる対象教示点p2の変更位置を求める(変更位置算出工程)。そして、CPU301は、調整可能距離が最大となる対象教示点p2の変更位置に関する情報を、モニタ400に表示させる(変更位置表示工程)。
任意の調整量内で、調整可能範囲を最大にする教示点の位置の計算する例として、実施例1と同様の状況において教示点p2を調整する方法について示す。
まず、調整方向を決定するために、教示点p2の前後の補間軌道L1,L2に対応する調整可能距離生成点P1,P2の位置を計算する。
Figure 2015066668
調整可能距離生成点から仮想的な斥力f1,f2が働いていると考え、教示点の調整方向を決定する。各斥力が働く方向は、各調整可能距離生成点P1,P2から対象教示点p2への方向である。それぞれの方向を単位ベクトルで表すと以下のようになる。
Figure 2015066668
各調整方向に調整する距離の比率は調整可能距離を用いて計算する。調整距離を1mmとすると、各調整可能距離D1,D2によって計算できる教示点の調整距離は以下のようになる。
Figure 2015066668
以上より、調整後の教示点p2の位置は以下のようになる。
Figure 2015066668
教示点p2を調整することにより、補間軌道が変化するため補間点の位置が変化する。このとき、教示点2の前後補間軌道に対応する調整可能距離は以下のようになる。
Figure 2015066668
以上のように、教示点の位置を調整(変更)することによって当該教示点の調整可能距離を改善することができる。本処理を繰り返すことで、より調整可能距離が改善される位置に教示点を調整することができる。さらに、教示点の最大調整量や調整回数などの終了条件を付与することで、条件内で最良となる教示点位置を計算しモニタ400に表示することができる。このように調整位置を計算しユーザに提示することで、ロボット設置位置の決定支援となる。
計算した教示点位置については、図14のように計算前後の教示点位置や特異点、調整可能距離生成点などの情報を同時にモニタ400に表示しても良いし、単に最終的な計算結果である教示点位置のみモニタ400に表示しても良い。その際、計算前後での評価値の変化をユーザに示すことでより効果的に位置決定を支援することができる。
なお、本発明は、以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で多くの変形が可能である。
上記実施形態では、ロボットを制御する制御装置がシミュレーションを行う場合について説明したが、これに限定するものではなく、制御装置とは別の装置がシミュレーションを行うようにしてもよい。
また、上記実施形態の各処理動作は具体的には制御部としてのCPU301により実行されるものである。従って上述した機能を実現するプログラムを記録した記録媒体を制御装置に供給し、制御装置のコンピュータ(CPUやMPU)が記録媒体に格納されたプログラムを読み出し実行することによって達成されるようにしてもよい。この場合、記録媒体から読み出されたプログラム自体が上述した実施形態の機能を実現することになり、プログラム自体及びそのプログラムを記録した記録媒体は本発明を構成することになる。
また、上記実施形態では、コンピュータ読み取り可能な記録媒体がHDD304であり、HDD304にプログラム330が格納される場合について説明したが、これに限定するものではない。プログラムは、コンピュータ読み取り可能な記録媒体であれば、いかなる記録媒体に記録されていてもよい。例えば、プログラムを供給するための記録媒体としては、図2に示すROM302、記録ディスク331、不図示の外部記憶装置等を用いてもよい。具体例を挙げて説明すると、記録媒体として、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、書き換え可能な不揮発性のメモリ(例えばUSBメモリ)、ROM等を用いることができる。
また、上記実施形態におけるプログラムを、ネットワークを介してダウンロードしてコンピュータにより実行するようにしてもよい。
また、コンピュータが読み出したプログラムコードを実行することにより、上記実施形態の機能が実現されるだけに限定するものではない。そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)等が実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれる。
さらに、記録媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれてもよい。そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部または全部を行い、その処理によって上記実施形態の機能が実現される場合も含まれる。
また、上記実施形態では、コンピュータがHDD等の記録媒体に記録されたプログラムを実行することにより、画像処理を行う場合について説明したが、これに限定するものではない。プログラムに基づいて動作する演算部の一部又は全部の機能をASICやFPGA等の専用LSIで構成してもよい。なお、ASICはApplication Specific Integrated Circuit、FPGAはField-Programmable Gate Arrayの頭字語である。
100…ロボットシステム、200…ロボット、301…CPU(演算部)

Claims (14)

  1. 多関節のロボットの動作を教示する複数の教示点のうち対象教示点の位置を調整するための演算を演算部が行うロボットの教示点調整方法であって、
    前記演算部が、前記対象教示点と該対象教示点に隣接する教示点との間を補間した補間軌道を求める補間軌道算出工程と、
    前記演算部が、前記補間軌道上の補間点を求める補間点算出工程と、
    前記演算部が、前記対象教示点に近接する第1特異点及び前記補間点に近接する第2特異点の位置をそれぞれ求める特異点算出工程と、
    前記演算部が、前記対象教示点が前記第1特異点に干渉せずかつ前記補間点が前記第2特異点に干渉しない前記対象教示点の調整可能距離を求める調整可能距離算出工程と、を備えたことを特徴とするロボットの教示点調整方法。
  2. 前記演算部が、前記調整可能距離に関する情報を表示部に表示させる調整可能距離表示工程を備えたことを特徴とする請求項1に記載のロボットの教示点調整方法。
  3. 前記調整可能距離算出工程では、前記演算部が、前記第1特異点に前記対象教示点が達する前記対象教示点の調整距離、及び前記第2特異点に前記補間点が達する前記対象教示点の調整距離をそれぞれ演算し、前記各調整距離のうち最短となる最短調整距離に基づき、前記調整可能距離を求めることを特徴とする請求項1又は2に記載のロボットの教示点調整方法。
  4. 前記調整可能距離算出工程では、前記演算部が、前記第1特異点から所定距離離れた位置に前記対象教示点が達する前記対象教示点の調整距離、及び前記第2特異点から前記所定距離離れた位置に前記補間点が達する前記対象教示点の調整距離をそれぞれ演算し、前記各調整距離のうち最短となる最短調整距離を、前記調整可能距離として求めることを特徴とする請求項1又は2に記載のロボットの教示点調整方法。
  5. 前記演算部が、前記対象教示点を中心に前記調整可能距離を半径とする球を含む前記対象教示点の調整可能範囲を算出する調整可能範囲算出工程を備えたことを特徴とする請求項1乃至4のいずれか1項に記載のロボットの教示点調整方法。
  6. 前記演算部が、前記調整可能範囲に関する情報を、表示部に表示させる調整可能範囲表示工程を備えたことを特徴とする請求項5に記載のロボットの教示点調整方法。
  7. 前記演算部が、前記対象教示点を仮想的に変更して、前記調整可能距離が最大となる前記対象教示点の変更位置を求める変更位置算出工程を備えたことを特徴とする請求項1乃至6のいずれか1項に記載のロボットの教示点調整方法。
  8. 前記演算部が、前記調整可能距離が最大となる前記対象教示点の変更位置に関する情報を、表示部に表示させる変更位置表示工程を備えたことを特徴とする請求項7に記載のロボットの教示点調整方法。
  9. 請求項1乃至6のいずれか1項に記載のロボットの教示点調整方法の各工程と、
    前記演算部が、前記各教示点を前記対象教示点とし、前記各教示点の前記調整可能距離を合計又は平均した評価値を演算する評価値算出工程と、
    前記演算部が、前記ロボットの設置位置を仮想的に変更して、前記評価値が最大となる前記ロボットの設置位置を求める設置位置算出工程と、を備えたことを特徴とするロボットの設置位置算出方法。
  10. 前記演算部が、前記評価値が最大となる前記ロボットの設置位置に関する情報を、表示部に表示させる設置位置表示工程を備えたことを特徴とする請求項9に記載のロボットの設置位置算出方法。
  11. 多関節のロボットと、
    前記ロボットの動作を教示する複数の教示点のうち対象教示点の位置を調整するための演算を行う演算部と、を備え、
    前記演算部が、
    前記対象教示点と該対象教示点に隣接する教示点との間を補間した補間軌道を求め、
    前記補間軌道上の補間点を求め、
    前記対象教示点に近接する第1特異点及び前記補間点に近接する第2特異点の位置をそれぞれ求め、
    前記対象教示点が前記第1特異点に干渉せずかつ前記補間点が前記第2特異点に干渉しない前記対象教示点の調整可能距離を求めることを特徴とするロボットシステム。
  12. コンピュータに請求項1乃至8のいずれか1項に記載のロボットの教示点調整方法の各工程を実行させるためのプログラム。
  13. コンピュータに請求項9又は10に記載のロボットの設置位置算出方法の各工程を実行させるためのプログラム。
  14. 請求項12又は13に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
JP2013206322A 2013-10-01 2013-10-01 ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体 Pending JP2015066668A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206322A JP2015066668A (ja) 2013-10-01 2013-10-01 ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206322A JP2015066668A (ja) 2013-10-01 2013-10-01 ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体

Publications (1)

Publication Number Publication Date
JP2015066668A true JP2015066668A (ja) 2015-04-13

Family

ID=52833948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206322A Pending JP2015066668A (ja) 2013-10-01 2013-10-01 ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体

Country Status (1)

Country Link
JP (1) JP2015066668A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108972568A (zh) * 2017-05-31 2018-12-11 发那科株式会社 显示用于机器人的示教的信息的机器人系统
CN109551485A (zh) * 2019-01-21 2019-04-02 北京镁伽机器人科技有限公司 运动控制方法、装置和系统及存储介质
WO2019112110A1 (ko) * 2017-12-07 2019-06-13 한화정밀기계 주식회사 로봇의 직접교시 방법
WO2021241398A1 (ja) * 2020-05-25 2021-12-02 ファナック株式会社 オフライン教示装置および動作プログラム生成方法
WO2022249363A1 (ja) * 2021-05-26 2022-12-01 ファナック株式会社 プログラミング装置及びプログラム
US11559893B2 (en) * 2020-04-02 2023-01-24 Intrinsic Innovation Llc Robot control for avoiding singular configurations
US11887880B2 (en) 2017-08-17 2024-01-30 Persimmon Technologies Corporation Material handling robot
JP7444603B2 (ja) 2019-12-26 2024-03-06 株式会社トヨタプロダクションエンジニアリング ロボット駆動領域シミュレーション装置、およびロボット駆動領域シミュレーション方法並びにロボット駆動領域シミュレーションプログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108972568A (zh) * 2017-05-31 2018-12-11 发那科株式会社 显示用于机器人的示教的信息的机器人系统
CN108972568B (zh) * 2017-05-31 2019-11-15 发那科株式会社 显示用于机器人的示教的信息的机器人系统
US11887880B2 (en) 2017-08-17 2024-01-30 Persimmon Technologies Corporation Material handling robot
WO2019112110A1 (ko) * 2017-12-07 2019-06-13 한화정밀기계 주식회사 로봇의 직접교시 방법
CN109551485A (zh) * 2019-01-21 2019-04-02 北京镁伽机器人科技有限公司 运动控制方法、装置和系统及存储介质
US11975452B2 (en) 2019-01-21 2024-05-07 Megarobo Technologies Co., Ltd. Motion control method, device and system, and storage medium
JP7444603B2 (ja) 2019-12-26 2024-03-06 株式会社トヨタプロダクションエンジニアリング ロボット駆動領域シミュレーション装置、およびロボット駆動領域シミュレーション方法並びにロボット駆動領域シミュレーションプログラム
US11559893B2 (en) * 2020-04-02 2023-01-24 Intrinsic Innovation Llc Robot control for avoiding singular configurations
WO2021241398A1 (ja) * 2020-05-25 2021-12-02 ファナック株式会社 オフライン教示装置および動作プログラム生成方法
JP7448651B2 (ja) 2020-05-25 2024-03-12 ファナック株式会社 オフライン教示装置および動作プログラム生成方法
WO2022249363A1 (ja) * 2021-05-26 2022-12-01 ファナック株式会社 プログラミング装置及びプログラム

Similar Documents

Publication Publication Date Title
JP2015066668A (ja) ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体
JP7222803B2 (ja) 軌道計画装置、軌道計画方法及びプログラム
US20180036882A1 (en) Layout setting method and layout setting apparatus
JP6576255B2 (ja) ロボット軌道生成方法、ロボット軌道生成装置、および製造方法
JP6137155B2 (ja) 干渉回避方法、制御装置及びプログラム
US20070242073A1 (en) Robot simulation apparatus
US8606402B2 (en) Manipulator and control method thereof
JP5113666B2 (ja) ロボット教示システム及びロボットの動作のシミュレーション結果の表示方法
KR20190114752A (ko) 로봇 제어 장치, 로봇의 관절의 각도를 구하는 방법, 프로그램
US20180036883A1 (en) Simulation apparatus, robot control apparatus and robot
JP5268495B2 (ja) オフライン教示データの作成方法及びロボットシステム
CN105487481A (zh) 离线示教机器人的机器人示教装置
JP6796557B2 (ja) 溶接ロボットのトーチケーブル干渉評価情報出力装置、評価情報出力方法及びプログラム
JP2015174184A (ja) 制御装置
JP2020175471A (ja) 情報処理装置、情報処理方法、プログラム、及び記録媒体
JP5474739B2 (ja) 干渉検出方法及び干渉検出装置
US20220395985A1 (en) Information processing apparatus, information processing method, display apparatus, display method, robot system, article production method, program, and storage medium
EP4052865A1 (en) Information processing apparatus, robot system, information processing method, program, and recording medium
JP6576125B2 (ja) シミュレーション方法及びシミュレーション装置
US20210129331A1 (en) Control method, control apparatus, robot apparatus, method of manufacturing an article, motion program creation method, motion program creation apparatus, display apparatus, and control program recording medium
JP7249221B2 (ja) センサ位置姿勢キャリブレーション装置及びセンサ位置姿勢キャリブレーション方法
JP2006072673A (ja) 溶接ロボットのポジショナ設定方法
JP2000112510A (ja) ロボットの教示方法及びその装置
US20230398688A1 (en) Motion trajectory generation method for robot, motion trajectory generation apparatus for robot, robot system, and program
WO2023276149A1 (ja) 最適化支援装置