CN111834486A - 波导型GePb红外光电探测器及其制造方法 - Google Patents

波导型GePb红外光电探测器及其制造方法 Download PDF

Info

Publication number
CN111834486A
CN111834486A CN201910243160.1A CN201910243160A CN111834486A CN 111834486 A CN111834486 A CN 111834486A CN 201910243160 A CN201910243160 A CN 201910243160A CN 111834486 A CN111834486 A CN 111834486A
Authority
CN
China
Prior art keywords
layer
waveguide
silicon substrate
device structure
gepb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910243160.1A
Other languages
English (en)
Other versions
CN111834486B (zh
Inventor
汪巍
方青
涂芝娟
曾友宏
蔡艳
王庆
王书晓
余明斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Industrial Utechnology Research Institute
Original Assignee
Shanghai Industrial Utechnology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Industrial Utechnology Research Institute filed Critical Shanghai Industrial Utechnology Research Institute
Priority to CN201910243160.1A priority Critical patent/CN111834486B/zh
Priority to PCT/CN2019/096552 priority patent/WO2020191961A1/zh
Publication of CN111834486A publication Critical patent/CN111834486A/zh
Application granted granted Critical
Publication of CN111834486B publication Critical patent/CN111834486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及光电子技术领域,尤其涉及一种波导型GePb红外光电探测器及其制造方法。所述波导型GePb红外光电探测器,包括硅衬底以及均位于所述硅衬底表面的波导层和器件结构;所述器件结构包括沿垂直于所述硅衬底的方向依次叠置的下接触层、吸收层和上接触层,所述吸收层的材料为Ge1‑xPbx,其中,0<x<1;所述波导层中的光信号通过倏逝波耦合进入所述器件结构。本发明使得光电探测器在短波红外到中波红外波段都能实现高效吸收。

Description

波导型GePb红外光电探测器及其制造方法
技术领域
本发明涉及光电子技术领域,尤其涉及一种波导型GePb红外光电探测器及其制造方法。
背景技术
光电探测器用途广泛,涵盖军事和国民经济的各个领域,如在可见光和短波红外波段主要用于射线测量和探测、工业自动控制、光度计量等。
红外光电探测器在通信、夜视、制导、天文观测、生物医疗等领域都有着广泛的应用。现今常用的红外探测器主要为Ⅲ-Ⅴ族材料光电探测器和Ⅱ-Ⅴ族材料光电探测器。然而,Ⅲ-Ⅴ族材料和Ⅱ-Ⅴ族材料存在与Si基CMOS(Complementary Metal OxideSemiconductor,互补金属氧化物半导体)标准工艺平台不兼容的问题,增加了器件成本,降低了器件可靠性。
相较于传统的Ⅲ-Ⅴ族红外光电探测器和Ⅱ-Ⅴ族红外光电探测器,IV族红外光电探测器因其在制备工艺上与Si基CMOS工艺兼容,具有体积小、易集成、低成本、高性能等潜在优势。基于Si衬底或者SOI(Silicon On Insulator,绝缘体上硅)衬底的Ge光电探测器在通讯及传感领域获得了广泛应用。然而,单一的Ge材料在波长大于1.55微米时,吸收系数急剧下降,这就使得Ge光电探测器无法满足短波红外乃至中红外波段的探测需求,从而限制了Ge光电探测器的探测范围。为此,现有技术中已经出现了垂直型GeSn红外光电探测器,用以解决Ge光电探测器无法满足短波红外乃至中红外波段的探测需求。但是,受限于Ge中极低的Sn固溶度,GeSn材料的外延生长极具挑战。
因此,如何拓宽Ge光电探测器的探测范围,是目前亟待解决的技术问题。
发明内容
本发明提供一种波导型GePb红外光电探测器及其制造方法,用于解决现有的Ge光电探测器的探测范围较窄的问题。
为了解决上述问题,本发明提供了一种波导型GePb红外光电探测器,包括硅衬底以及均位于所述硅衬底表面的波导层和器件结构;所述器件结构包括沿垂直于所述硅衬底的方向依次叠置的下接触层、吸收层和上接触层,所述吸收层的材料为Ge1-xPbx,其中,0<x<1;所述波导层中的光信号通过倏逝波耦合进入所述器件结构。
优选的,所述器件结构还包括:
位于所述下接触层与所述吸收层之间的第一缓冲层;
位于所述吸收层与所述上接触层之间的第二缓冲层。
优选的,所述第一缓冲层与所述第二缓冲层的材料均为Ge或者SiGe。
优选的,所述波导层的材料为硅;所述下接触层的材料为具有第一掺杂离子的硅材料;所述上接触层的材料为具有第二掺杂离子的Ge材料,且所述第二掺杂离子与所述第一掺杂离子的导电类型相反。
优选的,0.001<x<0.02。
为了解决上述问题,本发明还提供了一种波导型GePb红外光电探测器的制造方法,包括如下步骤:
提供硅衬底;
形成波导层于所述硅衬底表面;
形成器件结构于所述硅衬底表面,所述器件结构包括沿垂直于所述硅衬底的方向依次叠置的下接触层、吸收层和上接触层,所述吸收层的材料为Ge1-xPbx,其中,0<x<1;所述波导层中的光信号通过倏逝波耦合进入所述器件结构。
优选的,所述硅衬底包括沿其轴向方向依次叠置的底层硅、埋氧化层和顶层硅;形成波导层于所述硅衬底表面的具体步骤包括:
刻蚀所述顶层硅,形成所述波导层、并于所述顶层硅中定义出器件区域。
优选的,形成器件结构于所述硅衬底表面的具体步骤包括:
于所述器件区域注入第一掺杂离子,形成所述下接触层;
形成第一缓冲层于所述下接触表面;
形成吸收层于所述第一缓冲层表面;
形成第二缓冲层于所述吸收层表面;
形成上接触层于所述第二缓冲层表面。
优选的,形成吸收层于所述下接触层表面的具体步骤包括:
沉积Ge材料于所述下接触层表面,形成预吸收层;
自所述预吸收层背离所述下接触层的表面注入Pb离子,形成材料为Ge1-xPbx的所述吸收层。
优选的,0.001<x<0.02。
本发明波导型GePb红外光电探测器及其制造方法,通过在器件结构的吸收层中设置Ge1-xPbx材料,使得光电探测器在短波红外到中波红外波段都能实现高效吸收。与Ⅲ-Ⅴ族红外光电探测器相比,容易与Si集成;与现有的Ge光电探测器相比,具有更广的探测范围;与垂直入射型光电探测器相比,更容易与其他光有源或无源器件集成,且拥有更高的探测灵敏度。
附图说明
附图1是本发明具体实施方式中波导型GePb红外光电探测器的整体结构示意图;
附图2是本发明具体实施方式中波导型GePb红外光电探测器中器件结构的截面示意图;
附图3是本发明具体实施方式中波导型GePb红外光电探测器的制造方法流程图;
附图4A-4F是本具体实施方式在制造波导型GePb红外光电探测器过程中的主要工艺截面示意图。
具体实施方式
下面结合附图对本发明提供的波导型GePb红外光电探测器及其制造方法的具体实施方式做详细说明。
本具体实施方式提供了一种波导型GePb红外光电探测器,附图1是本发明具体实施方式中波导型GePb红外光电探测器的整体结构示意图,附图2是本发明具体实施方式中波导型GePb红外光电探测器中器件结构的截面示意图。如图1、图2所示,本具体实施方式提供的波导型GePb红外光电探测器包括硅衬底10以及均位于所述硅衬底10表面的波导层11和器件结构;所述器件结构包括沿垂直于所述硅衬底10的方向依次叠置的下接触层12、吸收层13和上接触层14,所述吸收层13的材料为Ge1-xPbx,其中,0<x<1;所述波导层11中的光信号通过倏逝波耦合进入所述器件结构。
具体来说,所述硅衬底10优选为包括底层硅20、埋氧化层21和顶层硅的SOI衬底,通过对所述SOI衬底的顶层硅进行刻蚀,形成所述波导层11。所述波导层11可以与所述下接触层12连接,外界光信号经所述波导层11耦合进所述器件结构。本具体实施方式通过在所述吸收层13中引入Pb组分,一方面可以拓展Ge光电探测器的探测范围,使得Ge光电探测器在短波红外到中波红外波段都能实现高效吸收;另一方面,由于只需引入较小含量的Pb组分即可实现光电探测器探测范围的拓宽,并且可以采用离子注入等方式向Ge材料中注入Pb组分,打破了现有技术中吸收层外延生长的局限性。
本领域技术人员可以根据实际需要调整所述吸收层13中Pb的组分(即x的数值),从而实现对所述吸收层13吸收系数的调整,使得用户可以制造出具有不同探测范围的红外光电探测器。本具体实施方式中所述的组分是指摩尔分数。
为了使得探测器具有较宽的探测范围,例如使得所述红外光电探测器的探测范围延伸至3μm以上,以适应于不同的探测需求,优选的,0.001<x<0.02。
为了减小所述器件结构内部的应力,从而进一步改善红外光电探测器的性能,优选的,所述器件结构还包括:
位于所述下接触层12与所述吸收层13之间的第一缓冲层17;
位于所述吸收层13与所述上接触层14之间的第二缓冲层18。
由于本具体实施方式中只需引入较小含量的Pb组分,即可实现光电探测器探测范围的延伸。因此,可以采用Ge材料的选择性外延生长与Pb离子注入相结合的方式来形成所述吸收层13。
优选的,所述第一缓冲层17与所述第二缓冲层18的材料均为Ge或者SiGe。其中,所述第一缓冲层17与所述第二缓冲层18的具体厚度,本领域技术人员可以根据实际需要进行选择。
优选的,所述波导层11的材料为硅;所述下接触层12的材料为具有第一掺杂离子的硅材料;所述上接触层14的材料为具有第二掺杂离子的Ge材料,且所述第二掺杂离子与所述第一掺杂离子的导电类型相反。
所述第一掺杂离子为N-型离子,所述第二掺杂离子为P-型离子;或者,所述第一掺杂离子为P-型离子,所述第二掺杂离子为N-型离子。以下以所述第一掺杂离子为N-型离子、所述第二掺杂离子为P-型离子为例进行说明。具体来说,所述下接触层12为掺杂有N-型离子的硅材料层,其掺杂浓度可以为2×1019cm-3;所述上接触层14为掺杂有P-型离子的Ge材料层,其掺杂浓度可以为2×1019cm-3;所述第一缓冲层17的材料为Ge或者SiGe;所述第二缓冲层18的材料可以为Ge或者SiGe。所述器件结构还包括位于所述下接触层12表面的N-电极16、位于所述上接触14表面的P-电极15。所述N-电极16与所述P-电极15的材料可以是但不限于金属铝。
不仅如此,本具体实施方式还提供了一种波导型GePb红外光电探测器的制造方法,附图3是本发明具体实施方式中波导型GePb红外光电探测器的制造方法流程图,附图4A-4F是本具体实施方式在制造波导型GePb红外光电探测器过程中的主要工艺截面示意图,本具体实施方式制造的波导型GePb红外光电探测器的结构可参见图1、图2。如图1-图3、图4A-图4F所示,本具体实施方式提供的波导型GePb红外光电探测器的制造方法,包括如下步骤:
步骤S31,提供硅衬底。
步骤S32,形成波导层11于所述硅衬底表面,如图4B所示。
优选的,所述硅衬底包括沿其轴向方向依次叠置的底层硅20、埋氧化层21和顶层硅22,如图4A所示;形成波导层11于所述硅衬底表面的具体步骤包括:
刻蚀所述顶层硅22,形成所述波导层11、并于所述顶层硅22中定义出器件区域40,如图4B所示。
具体来说,可以采用光刻及干法刻蚀工艺对所述硅衬底中的所述顶层硅22进行刻蚀,形成所述波导层11,并在所述顶层硅22中定义出器件区域40。其中,所述器件区域40的宽度大于所述波导层11的宽度,例如所述波导层11的宽度为500nm、所述器件区域40的宽度为10μm。
步骤S33,形成器件结构于所述硅衬底表面,所述器件结构包括沿垂直于所述硅衬底的方向依次叠置的下接触层12、吸收层13和上接触层14,所述吸收层13的材料为Ge1- xPbx,其中,0<x<1;所述波导层11中的光信号通过倏逝波耦合进入所述器件结构,如图2、图4F所示。
优选的,形成器件结构于所述硅衬底表面的具体步骤包括:
于所述器件区域40注入第一掺杂离子,形成所述下接触层12;
形成第一缓冲层17于所述下接触层12表面;
形成吸收层13于所述第一缓冲层17表面;
形成第二缓冲层18于所述吸收层13表面;
形成上接触层14于所述第二缓冲层18表面。
优选的,形成吸收层13于所述下接触层12表面的具体步骤包括:
沉积Ge材料于所述下接触层12表面,形成预吸收层41,如图4C所示;
自所述预吸收层背离所述下接触层的表面注入Pb离子,形成材料为Ge1-xPbx的吸收层13。
以下以所述第一掺杂离子为N-型离子、第二掺杂离子为P-型离子为例进行说明。具体来说,在所述顶层硅22中定义出所述器件区域40后,首先采用光刻工艺于所述器件区域40中定义所述下接触层12的范围,然后采用离子注入及高温退火的方法,形成所述下接触层12。其中,所述下接触层12中所述第一掺杂离子的掺杂浓度为2×1019cm-3。然后,采用化学气相沉积、物理气相沉积或者原子层沉积等方式于所述下接触层12表面沉积Ge材料或者SiGe材料,形成所述第一缓冲层17。之后,采用二氧化硅硬掩模于所述第一缓冲层17背离所述下接触层12的表面定义吸收区,并采用化学气相沉积的方法于所述吸收区外延生长所述Ge材料,形成所述预吸收层41,如图4C所示。
接着,自所述预吸收层41背离所述下接触层12的表面注入Pb离子,并进行激光退火,形成材料为Ge1-xPbx的吸收层13,如图4D所示。其中,Pb离子的注入剂量可以为6×1015cm-2、注入能量为40keV;注入之后采用248nm准分子激光器进行退火处理,激光脉冲宽度与数量分别为23ns和5次,激光能量密度为400mJ/cm2
然后,于所述吸收层13背离所述第一缓冲层17的表面沉积Ge材料或者SiGe材料,形成所述第二缓冲层18;最后,于所述第二缓冲层18表面选择性外延生长P-型Ge材料,形成所述上接触层14,如图4E所示。其中,所述上接触层14中P-型离子的掺杂浓度可以为2×1019cm-3
之后,于所述上接触层14以及所述下接触层12表面沉积钝化材料,形成减反层;并采用光刻及干法刻蚀工艺对所述减反层进行刻蚀,形成暴露所述下接触层12的N-电极沟槽和暴露所述上接触层14的P-电极沟槽;最后,采用磁控溅射等工艺分别沉积金属材料于所述N-电极沟槽和所述P-电极沟槽,形成N-电极16和P-电极15,如图4F所示。其中,所述金属材料可以是但不限于金属铝。
为了使得探测器具有较宽的探测范围,例如使得所述红外光电探测器的探测范围延伸至3μm以上,以适应于不同的探测需求,优选的,0.001<x<0.02。
本具体实施方式波导型GePb红外光电探测器及其制造方法,通过在器件结构的吸收层中设置Ge1-xPbx材料,使得光电探测器在短波红外到中波红外波段都能实现高效吸收。与Ⅲ-Ⅴ族红外光电探测器相比,容易与Si集成;与现有的Ge光电探测器相比,具有更广的探测范围;与垂直入射型光电探测器相比,更容易与其他光有源或无源器件集成,且拥有更高的探测灵敏度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种波导型GePb红外光电探测器,其特征在于,包括硅衬底以及均位于所述硅衬底表面的波导层和器件结构;所述器件结构包括沿垂直于所述硅衬底的方向依次叠置的下接触层、吸收层和上接触层,所述吸收层的材料为Ge1-xPbx,其中,0<x<1;所述波导层中的光信号通过倏逝波耦合进入所述器件结构。
2.根据权利要求1所述的波导型GePb红外光电探测器,其特征在于,所述器件结构还包括:
位于所述下接触层与所述吸收层之间的第一缓冲层;
位于所述吸收层与所述上接触层之间的第二缓冲层。
3.根据权利要求2所述的波导型GePb红外光电探测器,其特征在于,所述第一缓冲层与所述第二缓冲层的材料均为Ge或者SiGe。
4.根据权利要求1所述的波导型GePb红外光电探测器,其特征在于,所述波导层的材料为硅;所述下接触层的材料为具有第一掺杂离子的硅材料;所述上接触层的材料为具有第二掺杂离子的Ge材料,且所述第二掺杂离子与所述第一掺杂离子的导电类型相反。
5.根据权利要求1所述的波导型GePb红外光电探测器,其特征在于,0.001<x<0.02。
6.一种波导型GePb红外光电探测器的制造方法,其特征在于,包括如下步骤:
提供硅衬底;
形成波导层于所述硅衬底表面;
形成器件结构于所述硅衬底表面,所述器件结构包括沿垂直于所述硅衬底的方向依次叠置的下接触层、吸收层和上接触层,所述吸收层的材料为Ge1-xPbx,其中,0<x<1;所述波导层中的光信号通过倏逝波耦合进入所述器件结构。
7.根据权利要求6所述的波导型GePb红外光电探测器的制造方法,其特征在于,所述硅衬底包括沿其轴向方向依次叠置的底层硅、埋氧化层和顶层硅;形成波导层于所述硅衬底表面的具体步骤包括:
刻蚀所述顶层硅,形成所述波导层、并于所述顶层硅中定义出器件区域。
8.根据权利要求7所述的波导型GePb红外光电探测器的制造方法,其特征在于,形成器件结构于所述硅衬底表面的具体步骤包括:
于所述器件区域注入第一掺杂离子,形成所述下接触层;
形成第一缓冲层于所述下接触表面;
形成吸收层于所述第一缓冲层表面;
形成第二缓冲层于所述吸收层表面;
形成上接触层于所述第二缓冲层表面。
9.根据权利要求8所述的波导型GePb红外光电探测器的制造方法,其特征在于,形成吸收层于所述下接触层表面的具体步骤包括:
沉积Ge材料于所述下接触层表面,形成预吸收层;
自所述预吸收层背离所述下接触层的表面注入Pb离子,形成材料为Ge1-xPbx的所述吸收层。
10.根据权利要求6所述的波导型GePb红外光电探测器的制造方法,其特征在于,0.001<x<0.02。
CN201910243160.1A 2019-03-28 2019-03-28 波导型GePb红外光电探测器及其制造方法 Active CN111834486B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910243160.1A CN111834486B (zh) 2019-03-28 2019-03-28 波导型GePb红外光电探测器及其制造方法
PCT/CN2019/096552 WO2020191961A1 (zh) 2019-03-28 2019-07-18 波导型GePb红外光电探测器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910243160.1A CN111834486B (zh) 2019-03-28 2019-03-28 波导型GePb红外光电探测器及其制造方法

Publications (2)

Publication Number Publication Date
CN111834486A true CN111834486A (zh) 2020-10-27
CN111834486B CN111834486B (zh) 2022-06-10

Family

ID=72610186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910243160.1A Active CN111834486B (zh) 2019-03-28 2019-03-28 波导型GePb红外光电探测器及其制造方法

Country Status (2)

Country Link
CN (1) CN111834486B (zh)
WO (1) WO2020191961A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629159A (zh) * 2021-08-06 2021-11-09 中国科学院半导体研究所 硅红外增强倏逝波耦合雪崩光电探测器及其制作方法
CN113793879A (zh) * 2021-08-19 2021-12-14 杨荣 一种吸收增强型硅基光电探测器及其制备方法
CN115440834A (zh) * 2021-06-03 2022-12-06 上海新微技术研发中心有限公司 波导型硅基短波红外波段雪崩光电探测器及其制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097335B (zh) * 2021-03-04 2023-02-10 西安电子科技大学 波导耦合等离增强型Ge基红外光电探测器及其制备方法
CN114639753B (zh) * 2022-03-16 2023-03-24 中国科学院半导体研究所 单片集成光收发芯片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204130564U (zh) * 2014-08-12 2015-01-28 深圳市芯思杰联邦国际科技发展有限公司 侧入光式pin光电探测器芯片
US20150048300A1 (en) * 2008-04-18 2015-02-19 Invisage Technologies, Inc. Materials, fabrication equipment, and methods for stable, sensitive photodetectors and image sensors made therefrom
CN107394583A (zh) * 2016-05-13 2017-11-24 欧司朗光电半导体有限公司 半导体芯片和用于制造半导体芯片的方法
CN107871800A (zh) * 2017-02-24 2018-04-03 乔丽萍 n+‑GeSn/i‑GeSn/p+‑Ge结构光电探测器及其制备方法
CN108063168A (zh) * 2017-12-14 2018-05-22 中国科学院微电子研究所 基于应变调控的Ge光电探测器及其制作方法
US20180374650A1 (en) * 2016-01-06 2018-12-27 Nutech Ventures Narrow band perovskite single crystal photodetectors with tunable spectral response

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897471B1 (en) * 2003-11-28 2005-05-24 The United States Of America As Represented By The Secretary Of The Air Force Strain-engineered direct-gap Ge/SnxGe1-x heterodiode and multi-quantum-well photodetectors, laser, emitters and modulators grown on SnySizGe1-y-z-buffered silicon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150048300A1 (en) * 2008-04-18 2015-02-19 Invisage Technologies, Inc. Materials, fabrication equipment, and methods for stable, sensitive photodetectors and image sensors made therefrom
CN204130564U (zh) * 2014-08-12 2015-01-28 深圳市芯思杰联邦国际科技发展有限公司 侧入光式pin光电探测器芯片
US20180374650A1 (en) * 2016-01-06 2018-12-27 Nutech Ventures Narrow band perovskite single crystal photodetectors with tunable spectral response
CN107394583A (zh) * 2016-05-13 2017-11-24 欧司朗光电半导体有限公司 半导体芯片和用于制造半导体芯片的方法
CN107871800A (zh) * 2017-02-24 2018-04-03 乔丽萍 n+‑GeSn/i‑GeSn/p+‑Ge结构光电探测器及其制备方法
CN108063168A (zh) * 2017-12-14 2018-05-22 中国科学院微电子研究所 基于应变调控的Ge光电探测器及其制作方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
WENQI HUANG 等: "Comparative studies of clustering effect, electronic and optical properties forGePb and GeSn alloys with low Pb and Sn concentration", 《PHYSICA B》 *
WENQI HUANG 等: "Comparative studies of clustering effect, electronic and optical properties forGePb and GeSn alloys with low Pb and Sn concentration", 《PHYSICA B》, 30 June 2014 (2014-06-30), pages 43 - 48 *
WENQI HUANG 等: "The band structure and optical gain of a new IV-ground alloy GePb: a first-principles calculation", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
WENQI HUANG 等: "The band structure and optical gain of a new IV-ground alloy GePb: a first-principles calculation", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 701, 15 April 2017 (2017-04-15), pages 816 - 821, XP029922237, DOI: 10.1016/j.jallcom.2017.01.195 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115440834A (zh) * 2021-06-03 2022-12-06 上海新微技术研发中心有限公司 波导型硅基短波红外波段雪崩光电探测器及其制作方法
CN113629159A (zh) * 2021-08-06 2021-11-09 中国科学院半导体研究所 硅红外增强倏逝波耦合雪崩光电探测器及其制作方法
CN113629159B (zh) * 2021-08-06 2022-11-22 中国科学院半导体研究所 硅红外增强倏逝波耦合雪崩光电探测器及其制作方法
CN113793879A (zh) * 2021-08-19 2021-12-14 杨荣 一种吸收增强型硅基光电探测器及其制备方法
CN113793879B (zh) * 2021-08-19 2023-11-07 苏州希卓科技有限公司 一种吸收增强型硅基光电探测器及其制备方法

Also Published As

Publication number Publication date
WO2020191961A1 (zh) 2020-10-01
CN111834486B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN111834486B (zh) 波导型GePb红外光电探测器及其制造方法
CN110729373B (zh) 基于Ge波导的GeSn红外光电探测器及其制造方法
US9748429B1 (en) Avalanche diode having reduced dark current and method for its manufacture
CN101714591B (zh) 一种硅光电二极管的制作方法
CN110896112B (zh) 波导集成的GeSn光电探测器及其制造方法
US7067394B2 (en) Manufacturing of monolithically integrated pin structures
CN111211181B (zh) 一种波导型光电探测器及其制造方法
CN107615495B (zh) 光接收元件和光学集成电路
CN108010982B (zh) 波导复合式耦合型单行载流子探测器
US10901150B2 (en) Metal contact free photodetector with sidewall doping
CN104576786B (zh) 新型零伏响应雪崩光电探测器芯片及其制作方法
KR20100015272A (ko) 후면-조사 이미징 센서들에서의 암전류 감소 및 이를제조하는 방법
WO2020103396A1 (zh) 一种波导型光电探测器及其制造方法
CN210006746U (zh) 波导型锗基光电探测器
CN113097335B (zh) 波导耦合等离增强型Ge基红外光电探测器及其制备方法
CN111668324A (zh) 一种集成光栅反射结构的光探测器
US10942315B2 (en) Reducing back reflection in a photodiode
CN110890436B (zh) 波导型GeSn光电晶体管及其制造方法
CN110767766B (zh) 应变平衡GeSn红外光电探测器及其制造方法
CN204067379U (zh) 新型零伏响应雪崩光电探测器芯片
CN112366235A (zh) 波导型锗基光电探测器及其制备方法
CN101082687A (zh) 一种与标准cmos工艺完全兼容的片上光波导及其制备方法
CN110211980A (zh) 一种图像传感器及其制作方法
CN115440834A (zh) 波导型硅基短波红外波段雪崩光电探测器及其制作方法
CN111755553B (zh) 铅掺杂型锗红外光电探测器及其形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant