CN113097335B - 波导耦合等离增强型Ge基红外光电探测器及其制备方法 - Google Patents

波导耦合等离增强型Ge基红外光电探测器及其制备方法 Download PDF

Info

Publication number
CN113097335B
CN113097335B CN202110241681.0A CN202110241681A CN113097335B CN 113097335 B CN113097335 B CN 113097335B CN 202110241681 A CN202110241681 A CN 202110241681A CN 113097335 B CN113097335 B CN 113097335B
Authority
CN
China
Prior art keywords
layer
waveguide
absorption layer
absorption
metal grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110241681.0A
Other languages
English (en)
Other versions
CN113097335A (zh
Inventor
王利明
景文龙
张一驰
孙浩
王博
韩钊
张峻岷
胡辉勇
王斌
舒斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110241681.0A priority Critical patent/CN113097335B/zh
Publication of CN113097335A publication Critical patent/CN113097335A/zh
Application granted granted Critical
Publication of CN113097335B publication Critical patent/CN113097335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only Ge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种波导耦合等离增强型Ge基红外光电探测器及其制备方法,该光电探测器包括SOI衬底,SOI衬底自下而上依次包括Si衬底层、SiO2层和顶部Si层;其中,顶部Si层上表面一侧设有Ge吸收层,Ge吸收层与顶部Si层相接触的一面设有若干金属光栅结构;顶部Si层和Ge吸收层上均设有金属电极,以与Ge吸收层、SOI衬底形成Ge基探测器主体;顶部Si层的另一侧还形成有波导结构,波导结构与探测器主体通过一锥形模斑转换结构连接。本发明采用波导结构和金属光栅实现了Ge吸收层的本征吸收以及金属光栅中热电子吸收的双吸收机制,扩大了吸收范围,提高了探测效率,同时扩展了探测器的探测范围。

Description

波导耦合等离增强型Ge基红外光电探测器及其制备方法
技术领域
本发明属于光电探测技术领域,具体涉及一种波导耦合等离增强型Ge基红外光电探测器及其制备方法。
背景技术
光电探测器是一种将光信号转换为电信号的器件,根据不同的制备材料对不同波长的敏感特性,可以实现可见光的探测,也可以实现在不可见光的响应,在国防民生都有着广泛的用途。Ⅲ-Ⅴ族半导体材料是当前主流的制备红外光探测器的材料,然而其制备工艺复杂,成本高,且与目前成熟的Si基CMOS工艺难以兼容,难以满足光电集成的需求。随着Si基Ge外延技术的发展,以及在近红外波段优越的光电特性,Ge材料及Ge基材料成为了光电探测器技术领域的重点研究方向。
传统的正入射型探测器存在响应度和带宽的制约问题,而波导探测器将光子吸收路径和光生载流子传输路径分开,一方面可以通过增加吸收层长度提高吸收率,另一方面通过降低本征吸收层的厚度提高带宽,因此可以同时满足高带宽和高响应的要求。但长波导器件结构会带来器件电容和暗电流的增加。因此,减小波导长度,同时增加Ge在光通讯波段的光吸收率,扩展光探测范围,满足探测器高响应、高带宽的需求是当前需要解决的一个关键问题。
2016年,比利时Ghent University的H.Chen等人提出了一种提高光从SOI单模Si波导通过倏逝耦合到Ge吸收区的光吸收率,同时满足高带宽的需求的方法,其通过在完全刻蚀的硅锥上添加一个多晶硅锥,优化了从SOI波导到锗波导的光耦合,器件结构包括衬底SOI,对SOI顶Si层刻蚀并掺杂形成PN区,以及顶Si层上作为有源本征吸收层的薄Ge层,整体结构为一个横向的PIN。然而,上述方法虽然在一定程度上提高了器件的性能,但光吸收机制单一,在光通讯波段吸收系数较小,难以有效扩展光探测范围。
2019年,意大利国家研究委员会光子学与纳米技术研究所的M.Lodari等人发表文章,利用一维金属光栅对特定频率的波长的局域作用增强光吸收,其结构包括Si衬底,Si衬底上有一层Ge,在Ge上方为具有一定周期排布的金属光栅结构。调整光栅的间距宽度和厚度可实现对不同波长的等离共振和吸收增强。然而,该方法仅侧重于自由空间光照下的分立器件的探测器性能,不利于单片集成,无法满足探测器高速高响应的需求;同时,该结构也仅有Ge材料本征吸收一种吸收机制,吸收范围较小,探测效率比较低。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种波导耦合等离增强型Ge基红外光电探测器及其制备方法。本发明要解决的技术问题通过以下技术方案实现:
一种波导耦合等离增强型Ge基红外光电探测器,包括SOI衬底,所述SOI衬底自下而上依次包括Si衬底层、SiO2层和顶部Si层;其中,所述顶部Si层上表面一侧设有Ge吸收层,所述Ge吸收层与所述顶部Si层相接触的一面设有若干金属光栅结构;所述顶部Si层和所述Ge吸收层上均设有金属电极,以与所述Ge吸收层、所述SOI衬底形成Ge基探测器主体;所述顶部Si层的另一侧还形成有波导结构,所述波导结构与所述探测器主体通过一锥形模斑转换结构连接。
在本发明的一个实施例中,所述金属光栅结构呈周期排布,并嵌入所述Ge吸收层中。
在本发明的一个实施例中,所述金属光栅结构的材料为Au。
在本发明的一个实施例中,所述金属光栅结构的高度为20-200nm。
在本发明的一个实施例中,所述金属光栅结构的宽度为320nm,周期为640nm。
在本发明的一个实施例中,所述波导结构为矩形单模硅波导结构。
本发明的另一个实施例提供了一种波导耦合等离增强型Ge基红外光电探测器的制备方法,包括:
步骤1:在Si衬底上生长Ge吸收层并制作金属光栅结构;
步骤2:在SOI衬底的顶部Si层上形成波导结构和锥形模斑转换结构;
步骤3:采用晶圆键合工艺将步骤1和步骤2得到的样品进行键合,并在所述顶部Si层和所述Ge吸收层淀积金属电极,以完成器件的制备。
在本发明的一个实施例中,步骤1包括:
1a)在Si衬底上采用减压化学气相沉积的方法生成厚度为1μm的Ge吸收层;
1b)在所述Ge吸收层上旋涂PMMA,并进行曝光显影,形成图形化光刻胶掩模;
1c)在蚀刻机中进行氯基等离子体反应离子蚀刻以形成具有周期排布的Ge凹槽;
1d)将步骤1c)得到的样品立即转移到电子束蒸发系统中沉积一定厚度的Au,并在60℃的丙酮中去除多余的Au和光刻胶,以形成金属光栅结构。
在本发明的一个实施例中,步骤2包括:
2a)在二氧化硅层厚度为2μm,顶部Si层厚度为220nm的SOI晶圆上旋涂光刻胶做掩模,并进行图形化曝光、显影处理;
2b)刻蚀形成无源Si波导结构和Si锥形模斑转换结构;
2c)在所述顶部Si层的特定区域进行硼离子注入以形成PIN探测器的P型区。
在本发明的一个实施例中,步骤3包括:
3a)将步骤1和步骤2得到的样品在去离子水中漂洗,并在压缩N2中进行干燥处理;
3b)在室温下对两者直接进行晶圆对准键合,并在300℃氮气环境下进行后退火处理以增加键合强度;
3c)在四甲基氢氧化铵溶液中,通过机械研磨和湿法腐蚀相结合的方法去除步骤1中的Si衬底,并将所述Ge吸收层的厚度减薄至所需厚度;
3d)在所述Ge吸收层上进行磷离子注入以形成PIN探测器的N型区;
3e)光刻所述Ge吸收层以形成具有一定宽度和长度的器件结构,并淀积Au形成电极。
本发明的有益效果:
1、本发明采用波导结构将光信号通过倏逝耦合的方式耦合进Ge吸收层中,进而与Ge吸收层中的金属光栅发生等离共振,以增强光吸收,实现了Ge吸收层的本征吸收以及金属光栅中的热电子吸收的双吸收机制,扩大了吸收范围,提高了探测效率;同时利用金属光栅的热电子吸收,可以扩展探测器的探测范围;
2、本发明通过将金属光栅嵌入Ge吸收层中,形成了腔体结构,增大了金属光栅与Ge的接触面积,进一步增强了光吸收能;相比传统的Ge波导探测器,具有更高的光吸收率和响应度;
3、本发明可通过调整金属光栅的宽度和周期,实现不同等离共振波长的光电探测器;
4、本发明采用Ge材料作为主要制备材料,使得其在工艺上可以Si基CMOS工艺兼容,且具有安全性高,成本低等特点。此外,Ge材料在近红外波段有较高的吸收系数,适合作为近红外波段的探测器材料,且作为准直接带隙的材料,通过应变Ge技术或掺锡形成GeSn合金,可变为直接带隙材料,适合作为发光器件,有利于Si基光电集成。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种波导耦合等离增强型Ge基红外光电探测器三维结构示意图;
图2是图1的俯视图;
图3是图2中a-a方向的剖视图;
图4是图2中b-b方向的剖视图;
图5是本发明实施例提供的一种波导耦合等离增强型Ge基红外光电探测器的制备方法流程图;
图6是通过步骤1形成的样品结构示意图;
图7是通过步骤2形成的样品结构示意图;
图8是采用本发明的方法制备得到的光电探测器的结构示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例一
请参见图1和图2,图1是本发明实施例提供的一种波导耦合等离增强型Ge基红外光电探测器三维结构示意图,图2是图1的俯视图,该光电探测器包括:SOI衬底1,SOI衬底1自下而上依次包括Si衬底层11、SiO2层12和顶部Si层13;其中,顶部Si层13上表面一侧设有Ge吸收层2,Ge吸收层2与顶部Si层13相接触的一面设有若干金属光栅结构4;顶部Si层13和Ge吸收层2上均设有金属电极5,以与Ge吸收层2、SOI衬底1形成Ge基探测器主体;顶部Si层13的另一侧还形成有波导结构6,波导结构6与探测器主体通过一锥形模斑转换结构7连接。
本实施例采用波导结构将光信号通过倏逝耦合的方式耦合进Ge吸收层中,进而与Ge吸收层中的金属光栅发生等离共振,实现了金属光栅中的热电子吸收。具体地,在金属光栅热电子吸收机制中,光信号通过金属等离将光局域在金属和Ge材料界面处,然后金属内部电子获得能量进行热电子发射跃过金属和Ge界面处的肖特基势垒到Ge吸收层中。
此外,本实施例采用Ge材料作为主要制备材料,Ge材料与Si同为第Ⅳ主族,具有相似的晶格结构,且两者晶格常数差仅为4.2%。随着现代硅基外延Ge技术的进步,在制备工艺上可以Si基CMOS工艺兼容,且具有安全性高,成本低等特点。另外,Ge材料在近红外波段有较高的吸收系数,适合作为近红外波段的探测器材料,且作为准直接带隙的材料,通过应变Ge技术或掺锡(Sn)形成GeSn合金,可变为直接带隙材料,适合作为发光器件,选择Ge材料有利于Si基光电集成。
进一步地,本实施例中的金属光栅结构4呈周期排布,并嵌入Ge吸收层2中。优选的,金属光栅结构4的材料选为Au。请参见图3和图4,图3是图2中a-a方向的剖视图,图4是图2中b-b方向的剖视图;其中,金属光栅结构的高度为H,一般设置为20-200nm,优选的,本实施例设置其高度为100nm。
本实施例通过将金属光栅嵌入Ge吸收层中,一方面,金属与半导体之间会形成二维肖特基势垒,热电子会从多维注入到半导体导带中,与金属光栅在器件表面所形成的一维势垒相比,增加了热电子收集效率。另一方面,Au会与周围的Ge形成腔体结构,增大了金属光栅与Ge的接触面积,肖特基势垒与腔体共振结合进一步增强了光吸收;相比传统的Ge波导探测器,具有更高的光吸收率和响应度。
更进一步地,金属光栅结构的宽度和周期分别为W和P,其取值可根据具体所需的等离共振波长设置。例如,当选择等离共振波长为1.55μm时,周期P为640nm,线宽W为320nm。
本实施例可通过调整金属光栅的宽度和周期,实现不同等离共振波长的光电探测器。
在本实施例中,波导结构6为矩形单模硅波导结构,其宽度为500nm,并位于SOI衬底1的轴线上。同时,在单模硅波导结构与Ge基探测器主体之间形成Si锥形模斑转换结构,本实施例通过波导耦合结构,实现了光信号从波导到探测器的高耦合效率。
进一步地,金属电极5也采用Au材料形成。
本实施例采用波导结构将光信号通过倏逝耦合的方式耦合进Ge吸收层中,进而与Ge吸收层中的金属光栅发生等离共振,以增强光吸收,实现了Ge吸收层的本征吸收以及金属光栅中的热电子吸收的双吸收机制,扩大了吸收范围,提高了探测效率;同时利用金属光栅的热电子吸收,可以扩展探测器的探测范围。
实施例二
本实施例提供了一种波导耦合等离增强型Ge基红外光电探测器的制备方法,用以制备上述实施例一提供的波导耦合等离增强型Ge基红外光电探测器。下面以制备等离共振波长为1.55μm的光电探测器为例,进行详细说明。
请参见图5,图5是本发明实施例提供的一种波导耦合等离增强型Ge基红外光电探测器的制备方法流程图,具体包括以下步骤:
步骤1:在Si衬底上生长Ge吸收层并制作金属光栅结构;具体包括:
1a)在Si衬底上采用减压化学气相沉积的方法外延生成厚度为1μm的Ge吸收层2;
1b)在Ge吸收层2上旋涂PMMA,并进行曝光显影,形成图形化光刻胶掩模;
1c)在蚀刻机中进行氯基等离子体反应离子蚀刻以形成具有周期排布的Ge凹槽;其中,凹槽的宽度为320nm,周期为640nm。
1d)将步骤1c)得到的样品立即转移到电子束蒸发系统中沉积一定厚度的Au,具体可选择淀积100nm的Au;并在60℃的丙酮中去除多余的Au和光刻胶,以形成金属光栅结构4。
请参见图6,图6是通过步骤1形成的样品结构示意图。
步骤2:在SOI衬底的顶部Si层上形成波导结构和锥形模斑转换结构。
2a)在二氧化硅层12厚度为2μm,顶部Si层13厚度为220nm的SOI晶圆上旋涂光刻胶做掩模,并进行图形化曝光、显影处理;
2b)刻蚀形成无源Si波导结构6和Si锥形模斑转换结构7;
2c)在顶部Si层的特定区域进行硼离子(B)注入以形成PIN探测器的P型区。
请参见图7,图7是通过步骤2形成的样品结构示意图。
步骤3:采用晶圆键合工艺将步骤1和步骤2得到的样品进行键合,并在顶部Si层和Ge吸收层淀积金属电极,以完成探测器的制备。
3a)将将步骤1和步骤2得到的样品在去离子水中漂洗,并在压缩N2中进行干燥处理;
3b)在室温下对两者直接进行晶圆对准键合,并在300℃氮气环境下进行后退火处理以增加键合强度;
3c)在四甲基氢氧化铵(TMAH)溶液中,通过机械研磨和湿法腐蚀相结合的方法去除步骤1中的Si衬底,并将Ge吸收层的厚度减薄至所需厚度;
3d)在Ge吸收层上进行磷离子注入以形成PIN探测器的N型区;
3e)光刻Ge吸收层以形成具有一定宽度和长度的器件结构,并淀积Au形成电极。
至此,完成波导耦合等离增强型Ge基红外光电探测器的制备,请参见图8,图8是采用本发明的方法制备得到的光电探测器的结构示意图。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

1.一种波导耦合等离增强型Ge基红外光电探测器,其特征在于,包括SOI衬底(1),所述SOI衬底(1)自下而上依次包括Si衬底层(11)、SiO2层(12)和顶部Si层(13);其中,所述顶部Si层(13)上表面一侧设有Ge吸收层(2),所述Ge吸收层(2)与所述顶部Si层(13)相接触的一面设有若干金属光栅结构(4),所述金属光栅结构(4)呈周期排布,并嵌入所述Ge吸收层(2)中;所述顶部Si层(13)和所述Ge吸收层(2)上均设有金属电极(5),以与所述Ge吸收层(2)、所述SOI衬底(1)形成Ge基探测器主体;所述顶部Si层(13)的另一侧还形成有波导结构(6),所述波导结构(6)与所述探测器主体通过一锥形模斑转换结构(7)连接。
2.根据权利要求1所述的波导耦合等离增强型Ge基红外光电探测器,其特征在于,所述金属光栅结构(4)的材料为Au。
3.根据权利要求1所述的波导耦合等离增强型Ge基红外光电探测器,其特征在于,所述金属光栅结构(4)的高度为20-200nm。
4.根据权利要求1所述的波导耦合等离增强型Ge基红外光电探测器,其特征在于,所述金属光栅结构(4)的宽度为320nm,周期为640nm。
5.根据权利要求1所述的波导耦合等离增强型Ge基红外光电探测器,其特征在于,所述波导结构(6)为矩形单模硅波导结构。
6.一种波导耦合等离增强型Ge基红外光电探测器的制备方法,其特征在于,包括:
步骤1:在Si衬底上生长Ge吸收层并制作金属光栅结构;所述金属光栅结构呈周期排布,并嵌入所述Ge吸收层中;
步骤2:在SOI衬底的顶部Si层上形成波导结构和锥形模斑转换结构;
步骤3:采用晶圆键合工艺将步骤1和步骤2得到的样品进行键合,并在所述顶部Si层和所述Ge吸收层淀积金属电极,以完成器件的制备。
7.根据权利要求6所述的波导耦合等离增强型Ge基红外光电探测器的制备方法,其特征在于,步骤1包括:
1a)在Si衬底上采用减压化学气相沉积的方法生成厚度为1μm的Ge吸收层;
1b)在所述Ge吸收层上旋涂PMMA,并进行曝光显影,形成图形化光刻胶掩模;
1c)在蚀刻机中进行氯基等离子体反应离子蚀刻以形成具有周期排布的Ge凹槽;
1d)将步骤1c)得到的样品立即转移到电子束蒸发系统中沉积一定厚度的Au,并在60℃的丙酮中去除多余的Au和光刻胶,以形成金属光栅结构。
8.根据权利要求6所述的波导耦合等离增强型Ge基红外光电探测器的制备方法,其特征在于,步骤2包括:
2a)在二氧化硅层厚度为2μm,顶部Si层厚度为220nm的SOI晶圆上旋涂光刻胶做掩模,并进行图形化曝光、显影处理;
2b)刻蚀形成无源Si波导结构和Si锥形模斑转换结构;
2c)在所述顶部Si层的特定区域进行硼离子注入以形成PIN探测器的P型区。
9.根据权利要求6所述的波导耦合等离增强型Ge基红外光电探测器的制备方法,其特征在于,步骤3包括:
3a)将步骤1和步骤2得到的样品在去离子水中漂洗,并在压缩N2中进行干燥处理;
3b)在室温下对两者直接进行晶圆对准键合,并在300℃氮气环境下进行后退火处理以增加键合强度;
3c)在四甲基氢氧化铵溶液中,通过机械研磨和湿法腐蚀相结合的方法去除步骤1中的Si衬底,并将所述Ge吸收层的厚度减薄至所需厚度;
3d)在所述Ge吸收层上进行磷离子注入以形成PIN探测器的N型区;
3e)光刻所述Ge吸收层以形成具有一定宽度和长度的器件结构,并淀积Au形成电极。
CN202110241681.0A 2021-03-04 2021-03-04 波导耦合等离增强型Ge基红外光电探测器及其制备方法 Active CN113097335B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110241681.0A CN113097335B (zh) 2021-03-04 2021-03-04 波导耦合等离增强型Ge基红外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110241681.0A CN113097335B (zh) 2021-03-04 2021-03-04 波导耦合等离增强型Ge基红外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113097335A CN113097335A (zh) 2021-07-09
CN113097335B true CN113097335B (zh) 2023-02-10

Family

ID=76666792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110241681.0A Active CN113097335B (zh) 2021-03-04 2021-03-04 波导耦合等离增强型Ge基红外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113097335B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793879B (zh) * 2021-08-19 2023-11-07 苏州希卓科技有限公司 一种吸收增强型硅基光电探测器及其制备方法
CN114815057A (zh) * 2022-05-05 2022-07-29 武汉大学 一种聚焦型垂直光栅耦合器及其制备方法
CN115036377B (zh) * 2022-07-25 2024-02-09 赛丽科技(苏州)有限公司 一种光电探测器、阵列及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321242A (zh) * 2018-01-08 2018-07-24 南京邮电大学 基于石墨烯和耦合光栅的光探测器及其制作方法
CN110729373A (zh) * 2018-07-16 2020-01-24 上海新微技术研发中心有限公司 基于Ge波导的GeSn红外光电探测器及其制造方法
WO2020103395A1 (zh) * 2018-11-19 2020-05-28 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN111952386A (zh) * 2020-07-10 2020-11-17 西安电子科技大学 双机制等离增强的Ge基红外通信波段光电探测器及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007105593A1 (ja) * 2006-03-13 2009-07-30 日本電気株式会社 フォトダイオード、およびその製造方法、ならびに光通信デバイスおよび光インタコネクションモジュール
CN106158998B (zh) * 2016-06-30 2017-08-04 浙江大学 一种可见光及近红外波段硅基光波导集成光电探测器
CN111668324A (zh) * 2019-03-07 2020-09-15 苏州旭创科技有限公司 一种集成光栅反射结构的光探测器
CN111834486B (zh) * 2019-03-28 2022-06-10 上海新微技术研发中心有限公司 波导型GePb红外光电探测器及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321242A (zh) * 2018-01-08 2018-07-24 南京邮电大学 基于石墨烯和耦合光栅的光探测器及其制作方法
CN110729373A (zh) * 2018-07-16 2020-01-24 上海新微技术研发中心有限公司 基于Ge波导的GeSn红外光电探测器及其制造方法
WO2020103395A1 (zh) * 2018-11-19 2020-05-28 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN111952386A (zh) * 2020-07-10 2020-11-17 西安电子科技大学 双机制等离增强的Ge基红外通信波段光电探测器及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High-performance infrared Ge-based;Wang, LM 等;《APL PHOTONICS》;20200914;第5卷(第9期);ABSTRACT、EXPERIMENTAL、RESULTS AND DISCUSSION、附图2 *

Also Published As

Publication number Publication date
CN113097335A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN113097335B (zh) 波导耦合等离增强型Ge基红外光电探测器及其制备方法
CN110212053B (zh) 一种硅基叉指型光电探测器
CN110896112B (zh) 波导集成的GeSn光电探测器及其制造方法
WO2020103395A1 (zh) 一种波导型光电探测器及其制造方法
JPWO2007105593A1 (ja) フォトダイオード、およびその製造方法、ならびに光通信デバイスおよび光インタコネクションモジュール
CN110752268B (zh) 一种集成周期陷光结构的msm光电探测器的制备方法
CN111628036B (zh) 一种具有谐振波导结构的光电探测器
Yang et al. A high-speed, high-sensitivity silicon lateral trench photodetector
WO2020103396A1 (zh) 一种波导型光电探测器及其制造方法
US20190019903A1 (en) SILICON WAVEGUIDE INTEGRATED WITH SILICON-GERMANIUM (Si-Ge) AVALANCHE PHOTODIODE DETECTOR
WO2022041550A1 (zh) 一种雪崩光电探测器及其制备方法
CN109273561A (zh) 一种msm光电探测器的制备方法
CN111640813A (zh) 一种宽光谱高吸收太阳能电池
CN108847416B (zh) 吸收增强的光栅耦合型硅基光电探测器及其制备方法
CN110890436B (zh) 波导型GeSn光电晶体管及其制造方法
CN115440834A (zh) 波导型硅基短波红外波段雪崩光电探测器及其制作方法
EP3680941B1 (en) Avalanche photodiode and method for manufacturing same
WO2019149022A1 (zh) 背照式图像传感器及其制备
CN112614943B (zh) 一种微米级的核壳异质结自驱动紫外探测器及其制备方法
CN104617181B (zh) 基于ITO电流扩展层的InGaAs雪崩红外探测器及其制备方法
CN114400267B (zh) 集成有双吸收区的光电探测器及其制备方法
CN114497265B (zh) 一种雪崩光电探测器
CN220829969U (zh) 一种可见光及近红外片上传感结构
CN111755553B (zh) 铅掺杂型锗红外光电探测器及其形成方法
CN116666500B (zh) 锗光电探测器及通过热失配应力提高其长波响应的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant