CN111834230B - 一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用 - Google Patents

一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用 Download PDF

Info

Publication number
CN111834230B
CN111834230B CN202010571464.3A CN202010571464A CN111834230B CN 111834230 B CN111834230 B CN 111834230B CN 202010571464 A CN202010571464 A CN 202010571464A CN 111834230 B CN111834230 B CN 111834230B
Authority
CN
China
Prior art keywords
cerium
zirconium
doped
precursor solution
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010571464.3A
Other languages
English (en)
Other versions
CN111834230A (zh
Inventor
陆旭兵
李长灏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202010571464.3A priority Critical patent/CN111834230B/zh
Publication of CN111834230A publication Critical patent/CN111834230A/zh
Application granted granted Critical
Publication of CN111834230B publication Critical patent/CN111834230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78609Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于薄膜晶体管制备技术领域,具体涉及一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用,为研制高介电常数、低漏电流的介电层薄膜,本发明提供了一种铈掺杂的氧化锆薄膜的制备方法,即将锆源和铈源溶于有机溶剂中,预先制备锆铈氧化物前驱体溶液,最后涂覆在衬底上进行热处理制得,所制备的铈掺杂的氧化锆薄膜表面平整、致密,电学性能好,应用于制备薄膜晶体管领域,具备较好的击穿特性,更低的漏电流密度。同时,本发明的铈掺杂的氧化锆薄膜晶体管结构简单,制备工艺简便,易于推广。

Description

一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的 应用
技术领域
本发明涉及薄膜晶体管制备技术领域,特别涉及一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用。
背景技术
薄膜晶体管(TFT)是微电子特别是显示工程领域的核心技术之一。不论在目前先进显示市场中占绝对主导优势的有源矩阵液晶显示器(AMLCD),还是代表未来柔性显示趋势的AMOLED(有源矩阵有机发光二极管显示器),TFT器件均在其中的像素驱动单元中占据关键位置。此外,TFT器件还在生物传感、紫外探照等方面得到广泛研究与应用。因此,研制和发展TFT器件具有重要的意义,而介电层作为TFT的重要部分,对晶体管性能如开启电压、半导体生长形貌等有重要影响。目前晶体管普遍以SiO2为介电层,但SiO2的介电常数(K=3.9)较低,使晶体管的工作电压较大。同时,为满足社会对器件小型化的需求,TFT中的SiO2介电层物理厚度越来越薄,出现了器件漏电迅速增大、器件功耗增加的问题。若TFT采用高K介电材料作为介电层,则可在相同的物理厚度下提供更大的电容,可降低漏电流以及工作电压,使器件在低压下工作,降低器件的总体功耗。而稀土元素由于可以控制氧空位、改善界面质量、提高结晶温度以及介电常数和对能带进行调控等原因,常被用于对高K材料的掺杂以提高其性能。
目前大部分的高K介电材料是通过脉冲激光沉积、磁控溅射、原子层沉积等方法进行制备,这些制备方法需要在真空环境或者惰性气体保护下进行,操作复杂、成本高。而利用化学液相法可以实现在空气环境中低成本、大面积制备高K介电薄膜,为进一步的TFT的制备提供了高介电常数、低漏电流的介电层薄膜,使其可以表现出良好的电学性能。氧化锆是一种具有较高介电常数的材料,将其应用在晶体管作为介电层可有效降低器件所需的工作电压。尽管如此,氧化物锆单独作为介电层依然存在与Si衬底生成低介电常数SiO2,介电常数不足以及溶液法低温制备的氧化锆薄膜漏电大等问题。
发明内容
为了克服上述现有技术的不足,本发明的首要目的是提供一种铈掺杂的氧化锆薄膜的制备方法。
本发明的第二个目的是提供采用上述制备方法得到的铈掺杂的氧化锆薄膜在制备晶体管中的应用。
本发明的第三个目的是提供一种铈掺杂的氧化锆薄膜晶体管。
本发明的第四个目的是提供一种铈掺杂的氧化锆薄膜晶体管的制备方法。
为实现上述目的,本发明所采用的技术方案为:
将锆源和铈源溶于有机溶剂中,制备锆铈氧化物前驱体溶液,最后涂覆在衬底上后进行热处理制得。
优选的,所述锆源为乙酰丙酮锆,所述铈源为乙酰丙酮铈。
高K介电薄膜的制备方法对于薄膜晶体管的质量和电学性能起到了关键影响,因此,寻找合适的制备方法以及选择高K材料的掺杂材料,使其可以有效降低器件所需的工作电压和漏电流,是本发明研究的主要内容。为制备一种铈掺杂的氧化锆薄膜,本发明以锆源和铈源为前驱体,制备铈掺杂的氧化锆薄膜作为介电层,由于铈的电负性比锆小,对氧离子的吸附能力比较强,所以能有效的抑制氧扩散,减少氧空位密度,降低边界陷阱电荷,并且铈元素可以抑制界面低介电常数物质SiO2的生长,从而拥有更好的击穿特性以及更低的漏电流密度。
优选的,所述锆铈氧化物前驱体溶液中锆铈摩尔比为(100-X):X,其中0<X≤7.5。更有选的,所述锆铈摩尔比为97.5:2.5,该铈摩尔比下制备的铈掺杂的氧化锆薄膜具有更优异的电学性能。
所述锆铈氧化物前驱体溶液中锆铈摩尔比为(100-X):X,其中0<X≤7.5。
优选的,所述热处理包括以下步骤:先进行退火,在衬底上制备一层铈掺杂的氧化锆薄膜;依次旋涂和再退火多次,在衬底上制得多层铈掺杂的氧化锆薄膜;最后进行高温致密化处理。
优选的,所述退火包括40-80℃退火4-6min,再100-120℃退火8-12min。
优选的,所述高温致密化处理具体包括升温阶段、保温阶段和降温阶段,升温阶段为在100-140s内升温至350-450℃,保温3000-4200s;而后是降温阶段,每隔100-140s下降60-80℃,并在达到该温度时保温100-140s,直至温度降至室温为止。
本发明同时保护所述的制备方法得到的铈掺杂的氧化锆薄膜。
利用以上铈掺杂的氧化锆薄膜组装而成的氧化锆薄膜晶体管也在本发明的保护范围内。
本发明提供一种铈掺杂的氧化锆薄膜晶体管,由下至上依次包括衬底、介电层(本发明所述铈掺杂的氧化锆薄膜)、有源层(氧化铟薄膜)和源漏电极。
本发明还提供一种铈掺杂的氧化锆薄膜晶体管的制备方法,包括以下步骤:
S1、将硝酸铟溶于有机溶剂中,将依次进行密封、水浴搅拌加热处理得到的氧化铟前驱体溶液;
S2、将S1制得的氧化铟前驱体溶液涂覆在铈掺杂的氧化锆薄膜上后进行热处理,制得氧化铟薄膜;
S3、采用热蒸发法在氧化铟薄膜上沉积金属电极后制得。
优选的,S2所述热处理为在80-120℃下退火8-12min。
优选的,S3所述沉积金属电极的条件为:在真空下进行,气压为7.5×10-4Pa-8.5×10-4Pa,沉积速率控制为0.015-0.025nm/s,厚度为10-50nm。
本发明还提供了采用上述制备方法得到的铈掺杂的氧化锆薄膜在制备晶体管中的应用。
与现有技术相比,本发明的有益效果是:
本发明提供了一种铈掺杂的氧化锆薄膜的制备方法,即将锆源和铈源溶于有机溶剂中,依次进行通氧、密封、水浴搅拌加热处理得到的锆铈氧化物前驱体溶液,最后涂覆在衬底上后进行热处理制得,所制备的铈掺杂的氧化锆薄膜表面平整,致密,电学性能好,应用于制备薄膜晶体管领域,所制备的铈掺杂的氧化锆薄膜晶体管拥有更好的击穿特性(≥7MV/cm),更低的漏电流密度;同时,本发明的铈掺杂的氧化锆薄膜晶体管结构简单,生产的工艺流程也比较容易实现。
附图说明
图1为铈掺杂的氧化锆薄膜晶体管的结构示意图;
图2为铈掺杂的氧化锆薄膜晶体管的制备流程图;
图3为铈掺杂的氧化锆薄膜的掺杂原理示意图;
图4为不同铈掺杂浓度的氧化锆薄膜的JE特性曲线图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
一种铈掺杂的氧化锆薄膜晶体管的制备方法,具体包括以下步骤:
S1、制备锆铈氧化物前驱体溶液:以乙酰丙酮锆、乙酰丙酮铈为溶质,N,N二甲基酰胺为溶剂在手套箱内按比例制备出混合溶液;
在本实施例中,控制混合溶液中Zr4:Ce4++摩尔比为97.5:2.5,将制备出的混合溶液依次进行通氧、密封、水浴搅拌加热处理得到Ce掺杂的ZrO2前驱体溶液;
S2、制备氧化铟前驱体溶液:以硝酸铟为溶质,2-ME为溶剂在手套箱内制备出溶液,依次进行密封、水浴搅拌加热处理得到氧化铟前驱体溶液;
S3、锆铈氧化物前驱体溶液预处理:将S1制备得到锆铈氧化物前驱体溶液冷却到室温,然后取出分别装入1.5ml的离心管中,放入离心机以1000r/min的速率离心10min,取上清液留作备用;
S4、处理衬底:选取P型重掺硅,制作为尺寸为15mm×15mm的正方形薄片作为衬底,对该衬底进行超声清洗,再将其依次放入丙酮、异丙醇、去离子水、乙无水醇中清洗,以去除表面有机物等杂质,然后用质量浓度1%的氢氟酸浸泡以除去表面的二氧化硅,再冲洗干净,接着用浓硫酸浸泡除去有机残余物并使其表面亲水化,然后用氮气吹干,接着在0℃下用紫外光对旋涂后的衬底照射处理5分钟备用;
S5、制备铈掺杂的氧化锆薄膜(介电层):采用尺寸为0.22μm的滤嘴,对S3预处理后的锆铈氧化物前驱体溶液进行过滤后,使用spin-coating(旋转镀膜)技术,先以500rpm的转速在洗净的衬底上旋涂5秒,再以2000rpm的转速在衬底上旋涂20秒,接着在40℃热板上退火5min,再在120℃热板上退火10min,得到制备在衬底上的一层铈掺杂的氧化锆薄膜,依次重复旋涂和热板退火处理两次,则在衬底上制得三层铈掺杂的氧化锆薄膜;
S6、高温致密化处理:将旋涂好的铈掺杂的氧化锆薄膜放入高温快速退火炉(RTP)中,设定好RTP运行的程序,让样品在RTP退火炉中依次进行升温、保温、降温的退火处理。其中升温过程为120s升温至400℃,当温度上升到400℃时保温3600s,充分挥发掉混合前驱体溶液中残留的有机溶剂,并且生成致密的铈掺杂的氧化锆薄膜;降温时,通过程序设定每隔120s下降60-80℃,并在达到该温度时保温120s,直至温度降至室温为止。
S7、制备氧化铟薄膜(有源层):采用尺寸为0.22μm的滤嘴对S2制备得到的氧化铟前驱体溶液过滤后,使用spin-coating的技术,先以500rpm的转速在洗净的衬底上旋涂5秒,再以3000rpm的转速在衬底上旋涂40秒,接着在100℃热板上退火10min,得到制备在铈掺杂的氧化锆薄膜上的一层氧化铟薄膜。
S8、制备源漏电极:利用真空热蒸发蒸镀技术,在制得的氧化铟薄膜上沉积20nm铜顶电极,沉积速率控制为0.02nm/s,在高真空下的条件进行,气压为8×10-4Pa。
通过实施例1的制备方法制备得到如图1所示的铈掺杂的氧化锆薄膜晶体管,可以看出由下至上依次包括衬底、介电层(铈掺杂的氧化锆薄膜)、有源层(氧化铟薄膜)和源漏电极。
图2为铈掺杂的氧化锆薄膜晶体管的制备流程图,可以看出首先通过旋涂锆铈氧化物前驱体溶液在重掺硅衬底上成膜,然后进行热板退火和快速退火工艺,形成铈掺杂氧化锆薄膜介电层,然后通过旋涂氧化铟前驱体溶液在介电层上成膜,再进行热板退火形成氧化铟薄膜有源层,最后使用具有一定图案的掩模版进行热蒸镀,制备出源漏电极。
图3铈掺杂的氧化锆薄膜的掺杂原理示意图,将混合后锆铈氧化物前驱体溶液在衬底上旋涂成膜然后进行热处理,有机溶剂随之挥发,薄膜逐渐致密化。由于铈与锆离子半径相当,铈离子半径略大,在成膜过程中铈离子随机取代锆的位置,从而均匀分布在薄膜中实现掺杂。
实施例2
一种铈掺杂的氧化锆薄膜晶体管的制备方法,与实施例1一致,不同的是,
在步骤S1中,控制混合溶液中Zr4:Ce4++摩尔比为95:5;
在步骤S3中,将离心管放入离心机以1500r/min的速率离心10min;
在步骤S4中,用氮气吹干后,在20℃下用紫外光对旋涂后的衬底照射处理5分钟备用;
在步骤S5中,先以500rpm的转速在洗净的衬底上旋涂5秒,再以3000rpm的转速在衬底上旋涂30秒,接着在60℃热板上退火5min,再在120℃热板上退火10min,得到制备在衬底上的铈掺杂的氧化锆薄膜。
实施例3
一种铈掺杂的氧化锆薄膜晶体管的制备方法,基本与实施例1一致,不同的是,
在步骤S1中,控制混合溶液中Zr4:Ce4++摩尔比为92.5:7.5;
在步骤S3中,将离心管放入离心机以2000r/min的速率离心10min;
在步骤S4中,用氮气吹干后,在40℃下用紫外光对旋涂后的衬底照射处理5分钟备用;
在步骤S5中,先以500rpm的转速在洗净的衬底上旋涂5秒,再以4000rpm的转速在衬底上旋涂40秒,接着在80℃热板上退火5min,再在120℃热板上退火10min,得到制备在衬底上的铈掺杂的氧化锆薄膜。
通过将实施例1~3制备的铈掺杂的氧化锆薄膜进行JE特性测试,得到如图4所示不同铈掺杂浓度的氧化锆薄膜的JE特性曲线图,可以看到随着铈掺杂浓度的升高击穿场强先升高后减小,其原因可能是由于铈的电负性比锆小,对氧离子的吸附能力比较强,所以能有效的抑制氧扩散,减少氧空位密度,降低边界陷阱电荷,从而改善了击穿特性。随着Ce掺杂浓度进一步增加,由于Ce元素的掺入形成的Ce-O成分増多,而CeO2的介电常数小于ZrO2,导致击穿场强减小。Ce元素一定比例的掺杂比能有效改善氧空位或降低界面缺陷,在尽量保持较高M-O-M的比例情况下,介电常数做出小幅度的的妥协以便获得综合性能较高的介电薄膜。但随着掺杂比例的增大,也易导致介电常数降低,以及介电薄膜缺间的晶界缺陷等问题,从而导致漏电流变大,击穿场强减小。

Claims (4)

1.一种铈掺杂的氧化锆薄膜,其特征在于,采用如下方法制备得到:
将锆源和铈源溶于有机溶剂中,制备锆铈氧化物前驱体溶液,最后涂覆在衬底上后进行热处理制得;所述锆铈氧化物前驱体溶液中锆铈摩尔比为(100-X):X,其中0<X≤7.5;所述热处理包括以下步骤:先进行退火,在衬底上制备一层铈掺杂的氧化锆薄膜;依次旋涂和再退火多次,在衬底上制得多层铈掺杂的氧化锆薄膜;最后进行致密化处理;所述退火包括40-80℃退火4-6min,再100-120℃退火8-12min;所述致密化处理具体包括升温阶段、保温阶段和降温阶段,升温阶段为在100-140s内升温至350-450℃,保温3000-4200s;而后是降温阶段,每隔100-140s下降60-80℃,并在达到每次下降的温度时保温100-140s,直至温度降至室温为止。
2.一种包含权利要求1所述的铈掺杂的氧化锆薄膜的晶体管的制备方法,其特征在于,包括以下步骤:
S1、将硝酸铟溶于有机溶剂中,将依次进行密封、水浴搅拌加热处理得到的氧化铟前驱体溶液;
S2、将S1制得的氧化铟前驱体溶液涂覆在铈掺杂的氧化锆薄膜上后进行热处理,制得氧化铟薄膜;
S3、采用热蒸发法在氧化铟薄膜上沉积金属电极后制得。
3.根据权利要求2所述的晶体管的制备方法,其特征在于,S2所述热处理为在80-120℃下退火8-12min。
4.根据权利要求2所述的晶体管的制备方法,其特征在于,S3所述沉积金属电极的条件为:在真空下进行,气压为7.5×10-4Pa - 8.5×10-4Pa,沉积速率控制为0.015-0.025nm/s,厚度为10-50nm。
CN202010571464.3A 2020-06-22 2020-06-22 一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用 Active CN111834230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010571464.3A CN111834230B (zh) 2020-06-22 2020-06-22 一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010571464.3A CN111834230B (zh) 2020-06-22 2020-06-22 一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用

Publications (2)

Publication Number Publication Date
CN111834230A CN111834230A (zh) 2020-10-27
CN111834230B true CN111834230B (zh) 2023-01-13

Family

ID=72899358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010571464.3A Active CN111834230B (zh) 2020-06-22 2020-06-22 一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用

Country Status (1)

Country Link
CN (1) CN111834230B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082448A1 (en) * 2006-11-01 2008-07-10 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Solution processed thin films and laminates, devices comprising such thin films and laminates, and method for their use and manufacture
WO2009143452A1 (en) * 2008-05-23 2009-11-26 Sigma-Aldrich Co. High-k dielectric films and methods of producing using cerium-based precursors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995451B1 (ko) * 2003-07-03 2010-11-18 삼성전자주식회사 다층 구조의 게이트 절연막을 포함하는 유기 박막 트랜지스터
DE102008029385B4 (de) * 2008-06-23 2014-11-27 Carl Von Ossietzky Universität Oldenburg Verfahren zur Herstellung von Seltenerdmetalloxidschichten und Übergangsmetalloxidschichten, Verwendung einer Vorrichtung zur Herstellung von Seltenerdmetalloxidschichten und Übergangsmetalloxidschichten sowie Verwendung eines Metallnitrats
JP5240532B2 (ja) * 2010-06-08 2013-07-17 住友金属鉱山株式会社 金属酸化物膜の製造方法
CN106653858A (zh) * 2016-09-14 2017-05-10 齐鲁工业大学 一种低温制备高迁移率铟锆氧薄膜晶体管的溶液方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082448A1 (en) * 2006-11-01 2008-07-10 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Solution processed thin films and laminates, devices comprising such thin films and laminates, and method for their use and manufacture
WO2009143452A1 (en) * 2008-05-23 2009-11-26 Sigma-Aldrich Co. High-k dielectric films and methods of producing using cerium-based precursors

Also Published As

Publication number Publication date
CN111834230A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN107146759B (zh) 一种基于离子注入掺杂的氧化铪铁电栅制备方法
KR101226958B1 (ko) 액상 공정 산화물 박막의 제조 방법, 이를 이용한 전자 소자 및 박막 트랜지스터
US8859331B2 (en) Compositions used in formation of oxide material layers, methods of forming an oxide material layer using the same, and methods of fabricating a thin film transistor using same
KR101460489B1 (ko) 산소 플라즈마 처리 공정이 포함된 졸겔(sol-gel)법을 이용한 산화물 반도체층 방법 및 이에 의해 제조된 산화물 반도체층
CN112176315A (zh) 一种稀土掺杂二氧化铪基铁电薄膜及其制备方法
Wang et al. Solution-driven HfLaO x-based gate dielectrics for thin film transistors and unipolar inverters
TW201518561A (zh) 一種平坦化多晶矽薄膜的製造方法
CN113363387B (zh) 一种钙钛矿太阳能电池电子传输层及其制备方法
CN111834230B (zh) 一种铈掺杂的氧化锆薄膜的制备方法及其在制备晶体管中的应用
CN113540254B (zh) 一种钕掺杂的氧化锆薄膜晶体管及其制备方法和应用
CN109950322B (zh) 一种顶栅型薄膜晶体管及其制作方法
WO2020108140A1 (zh) 一种溶液法制备锆铝氧化物绝缘层薄膜及叠层结构的方法
KR20140128735A (ko) 이온 주입법에 의한 그래핀의 두께 조절 방법 및 그래핀의 제조방법
CN109888023B (zh) 一种顶栅型薄膜晶体管及其制作方法
KR20180138500A (ko) 금속산화물 박막을 포함하는 트랜지스터 제조 방법
CN109192653B (zh) 一种高介电氧化镧薄膜及其制备方法和应用
CN109103263B (zh) 薄膜晶体管及其制作方法、显示面板的制作方法
CN111933697A (zh) 一种二维全无机钙钛矿晶体管及其制备方法
CN113782565B (zh) 一种体异质结有机场效应晶体管存储器及其制备方法
KR101451926B1 (ko) 전자 소자 및 그 제조 방법, 그리고 박막 트랜지스터 제조 방법
WO2021068672A1 (zh) Igzo薄膜晶体管及其制造方法
CN115241071B (zh) 一种金属氧化物薄膜及其制备方法、薄膜晶体管
CN113539812B (zh) 一种同质种子层调控氧化铪基铁电薄膜电学性能的方法
KR102245154B1 (ko) 다적층 구조 izo 박막 트랜지스터 및 그 제조 방법
CN117219513A (zh) 一种用于金属氧化物薄膜晶体管的低温溶液制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant