CN111830014B - 一种基于聚苯胺吸附双链dna的传感器检测dna的方法 - Google Patents

一种基于聚苯胺吸附双链dna的传感器检测dna的方法 Download PDF

Info

Publication number
CN111830014B
CN111830014B CN202010770228.4A CN202010770228A CN111830014B CN 111830014 B CN111830014 B CN 111830014B CN 202010770228 A CN202010770228 A CN 202010770228A CN 111830014 B CN111830014 B CN 111830014B
Authority
CN
China
Prior art keywords
dna
polyaniline
complementary strand
graphene oxide
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010770228.4A
Other languages
English (en)
Other versions
CN111830014A (zh
Inventor
罗川南
孙元玲
王雪莹
高丹丹
韩蕊
代玉雪
王鹏飞
张少华
王喜梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202010770228.4A priority Critical patent/CN111830014B/zh
Publication of CN111830014A publication Critical patent/CN111830014A/zh
Application granted granted Critical
Publication of CN111830014B publication Critical patent/CN111830014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及的是一种基于聚苯胺吸附双链DNA的化学发光传感器的制备方法及应用技术,属于化学发光传感领域。主要技术特征是:制备聚苯胺共价修饰的磁性氧化石墨烯、互补链DNA修饰的钴卟啉;并将其应用于化学发光传感器的制备,检测DNA的含量;以互补链DNA作为识别元件,双链DNA间的碱基互补配对作用提高了该传感器的选择性;以钴卟啉为化学发光催化剂,提高了该传感器的灵敏度;通过改变目标DNA和互补链DNA的序列,可以实现不同序列的目标DNA检测。

Description

一种基于聚苯胺吸附双链DNA的传感器检测DNA的方法
技术领域
本发明涉及的是一种基于聚苯胺吸附双链DNA的化学发光传感器的制备方法及应用技术,属于化学发光传感领域,具体涉及聚苯胺共价修饰的磁性氧化石墨烯、互补链DNA修饰的钴卟啉的制备及在化学发光检测DNA中的应用。
背景技术
聚苯胺(PANI)是一种p型半导体,其特征在于通过含氮基团的芳香环连接而成,具有特殊的电学、光学性质,经掺杂后可具有导电性及电化学性能。经一定处理后,可制得各种具有特殊功能的设备和材料,如可作为生物或化学传感器的尿素酶传感器、电子场发射源、较传统锂电极材料在充放电过程中具有更优异的可逆性的电极材料、选择性膜材料、防静电和电磁屏蔽材料、导电纤维、防腐材料,等等。聚苯胺因其具有的原料易得、合成工艺简单、化学及环境稳定性好等特点而得到了广泛的研究和应用。据报道,在有过氧化氢和过氧化物酶的情况下,可以使得PANI轻松沉积到双链DNA上,而单链DNA则没有却不能,也就是说在一定条件下,可以利用聚苯胺对双链DNA进行选择性的吸附。
金属卟啉即卟吩及其衍生物(卟啉)与金属离子形成的配位化合物,是含四个吡咯分子的大环化合物,与生命科学关系密切,卟啉化合物广泛存在于自然界生命体中,具有特殊生理活性,对生命活动起着重要作用,如叶绿素、血红素、细胞色素P-450、维生素B12等都是生命体新陈代谢过程中至关重要的组成部分,被誉为生命色素。卟啉环的所有的原子都处在同一个平面上,具有11个双键的共轭体系,该特征使得卟啉具有特殊的化学性质,例如特 殊的紫外吸收峰以及刚性平面的分子识别能力,同时受共轭体系的影响,卟啉的化学性质比较稳定,卟啉衍生物一般具有较深的颜色。卟啉环的另一个结构特征是其空腔中心到四个氮原子的距离均为204 pm,该数值与第一过渡系的金属原子和氮原子的共价半径之和恰好匹配,故卟啉极易与过渡金属离子(M= 锰、铁、钴、镍、铜、锌等离子)形成稳定的金属配合物,即金属卟啉。卟啉化合物因其特殊的结构和生物活性被广泛应用于生物化学、分析化学、医学、合成化学、太阳能利用、特种材料、催化应用等领域。尤其金属卟啉类化合物因其高效的催化化学发光活性和独特的结构而吸引了科研工作者的兴趣。
本发明旨在制备一种基于聚苯胺吸附双链DNA的化学发光传感器,并将其应用于检测DNA的含量。首先制备聚苯胺共价修饰的磁性氧化石墨烯、互补链DNA修饰的钴卟啉;当不存在待检测的目标DNA时,备聚苯胺共价修饰的磁性氧化石墨烯不会固定单链的互补链DNA,经过磁铁磁性分离后,上清液中互补链DNA修饰的钴卟啉的含量不变,化学发光反应的催化性能不发生变化;当待检测的目标DNA存在时,与互补链DNA进行碱基互补配对,形成双链DNA,形成的双链DNA-卟啉钴会被固定在聚苯胺共价修饰的磁性氧化石墨烯表面,经过磁铁磁性分离后,上清液中互补链DNA修饰的钴卟啉的含量会减少,使得化学发光反应的催化性能降低,以此实现目标DNA的高灵敏、高选择性检测,发明了一种检测DNA含量的新方法。
发明内容
本发明的目的之一是提供一种聚苯胺共价修饰的磁性氧化石墨烯、互补链DNA修饰的钴卟啉的制备方法。
本发明的目的通过以下技术方案实现:
(1)聚苯胺共价修饰的磁性氧化石墨烯的制备:向100 mL 三口烧瓶中加入30 ~50 mL 1.0 ~ 2.5 mol/L的盐酸溶液,随后加入纯化后的苯胺1.0 ~ 2.5 g,再加入0.1 ~0.25 g磁性氧化石墨烯,在冰浴环境下磁力搅拌0.5 ~ 2 h,使其充分分散;缓慢滴加10 ~30 mL 1.0 ~ 2.5 mol/L的过硫酸铵溶液,滴加速度控制在0.08 ~ 0.12 mL/min,滴完之后继续在冰浴环境中反应1 ~ 2 h;用超纯水洗涤产物3 ~ 5 次,直至滤液为无色;产物用外磁场收集;放入50 ~ 80 ºC真空干燥箱进行干燥8 ~ 12 h;干燥后,研磨;
(2)互补链DNA修饰的钴卟啉的制备:移取1.0 ~ 2.5 mL 0.1 ~ 0.5 mmol/L的钴卟啉溶液放入5 mL离心管中,加入0.1 ~ 0.5 mL 50 ~ 80 umol/L的互补链DNA,室温下振荡孵化2 ~ 5 h;在8000 ~ 10000 rad/min的转速下离心分离3 ~ 5 min,倒掉上清液,以除去未反应的互补链DNA;将产物转移到25 mL的容量瓶中定容,储存于4 ºC的条件下备用。
本发明的另一个目的是将聚苯胺共价修饰的磁性氧化石墨烯、互补链DNA修饰的钴卟啉应用于化学发光传感器的制备,检测DNA的含量;当不存在待检测的目标DNA时,聚苯胺共价修饰的磁性氧化石墨烯不会固定单链的互补链DNA,经过磁铁磁性分离后,上清液中互补链DNA修饰的钴卟啉的含量不变,化学发光反应的催化性能不发生变化;当待检测的目标DNA存在时,与互补链DNA进行碱基互补配对,形成双链DNA,形成的双链DNA-卟啉钴会被固定在聚苯胺共价修饰的磁性氧化石墨烯表面,经过磁铁磁性分离后,上清液中互补链DNA修饰的钴卟啉的含量会减少,使得化学发光反应的催化性能降低,以此实现目标DNA含量的检测。
本发明的优点及效果是:
(1)本发明制备的一种基于聚苯胺吸附双链DNA的化学发光传感器,聚苯胺共价修饰的磁性氧化石墨烯的合成条件简单、形貌可控性强;
(2)本发明制备的一种基于聚苯胺吸附双链DNA的化学发光传感器,以互补链DNA作为识别元件,双链DNA间的碱基互补配对作用提高了该传感器的选择性;
(3)本发明制备的一种基于聚苯胺吸附双链DNA的化学发光传感器,以钴卟啉为化学发光催化剂,提高了该传感器的灵敏度;
(4)本发明制备的一种基于聚苯胺吸附双链DNA的化学发光传感器,通过改变目标DNA和互补链DNA的序列,可以实现不同序列的目标DNA检测。
附图说明
图1是聚苯胺共价修饰的磁性氧化石墨烯的扫描电镜表征图。
具体实施方式
实施例1
(1)聚苯胺共价修饰的磁性氧化石墨烯的制备:向100 mL 三口烧瓶中加入30mL1.0 mol/L的盐酸溶液,随后加入纯化后的苯胺1.0 g,再加入0.1 g磁性氧化石墨烯,在冰浴环境下磁力搅拌1 h,使其充分分散;缓慢滴加10 mL 1.0 mol/L的过硫酸铵溶液,滴加速度控制在0.08 mL/min,滴完之后继续在冰浴环境中反应1 h;用超纯水洗涤产物3次,滤液变为无色;产物用外磁场收集;放入50 ºC真空干燥箱进行干燥10 h;干燥后,研磨;
(2)互补链DNA修饰的钴卟啉的制备:移取1.0 mL 0.2 mmol/L的钴卟啉溶液放入5mL离心管中,加入0.1 mL 80 umol/L的互补链DNA,室温下振荡孵化2 h;在8000 rad/min的转速下离心分离5 min,倒掉上清液,以除去未反应的互补链DNA;将产物转移到25 mL的容量瓶中定容,储存于4 ºC的条件下备用。
实施例2
(1)聚苯胺共价修饰的磁性氧化石墨烯的制备:向100 mL 三口烧瓶中加入40mL1.5 mol/L的盐酸溶液,随后加入纯化后的苯胺1.5 g,再加入0.15 g磁性氧化石墨烯,在冰浴环境下磁力搅拌2 h,使其充分分散;缓慢滴加10 mL 2.5 mol/L的过硫酸铵溶液,滴加速度控制在0.1 mL/min,滴完之后继续在冰浴环境中反应1.5 h;用超纯水洗涤产物4 次,滤液为无色;产物用外磁场收集;放入60 ºC真空干燥箱进行干燥10 h;干燥后,研磨;
(2)互补链DNA修饰的钴卟啉的制备:移取2.5 mL 0.25 mmol/L的钴卟啉溶液放入5 mL离心管中,加入0.25 mL50 umol/L的互补链DNA,室温下振荡孵化4 h;在8000 rad/min的转速下离心分离5 min,倒掉上清液,以除去未反应的互补链DNA;将产物转移到25 mL的容量瓶中定容,储存于4 ºC的条件下备用。
实施例3
(1)聚苯胺共价修饰的磁性氧化石墨烯的制备:向100 mL 三口烧瓶中加入50mL2.5 mol/L的盐酸溶液,随后加入纯化后的苯胺2.5 g,再加入0.25 g磁性氧化石墨烯,在冰浴环境下磁力搅拌2 h,使其充分分散;缓慢滴加30 mL 2.5 mol/L的过硫酸铵溶液,滴加速度控制在0.12 mL/min,滴完之后继续在冰浴环境中反应2 h;用超纯水洗涤产物5 次,滤液为无色;产物用外磁场收集;放入80 ºC真空干燥箱进行干燥8 h;干燥后,研磨;
(2)互补链DNA修饰的钴卟啉的制备:移取2.5 mL 0.1 mmol/L的钴卟啉溶液放入5mL离心管中,加入0.2 mL80 umol/L的互补链DNA,室温下振荡孵化5 h;在10000 rad/min的转速下离心分离3 min,倒掉上清液,以除去未反应的互补链DNA;将产物转移到25 mL的容量瓶中定容,储存于4 ºC的条件下备用。
实施例4
将聚苯胺共价修饰的磁性氧化石墨烯、互补链DNA修饰的钴卟啉应用于化学发光传感器的制备,检测DNA的含量;当不存在待检测的目标DNA时,聚苯胺共价修饰的磁性氧化石墨烯不会固定单链的互补链DNA,经过磁铁磁性分离后,上清液中互补链DNA修饰的钴卟啉的含量不变,化学发光反应的催化性能不发生变化;当待检测的目标DNA存在时,与互补链DNA进行碱基互补配对,形成双链DNA,形成的双链DNA-卟啉钴会被固定在聚苯胺共价修饰的磁性氧化石墨烯表面,经过磁铁磁性分离后,上清液中互补链DNA修饰的钴卟啉的含量会减少,使得化学发光反应的催化性能降低,以此实现目标DNA含量的检测。

Claims (6)

1.一种基于聚苯胺吸附双链DNA的化学发光传感器检测DNA的方法,其特征在于,该方法具有以下检测原理:
当不存在待检测的目标DNA时,聚苯胺共价修饰的磁性氧化石墨烯不会固定单链的互补链DNA,经过磁铁磁性分离后,上清液中互补链DNA修饰的钴卟啉的含量不变,化学发光反应的催化性能不发生变化;当待检测的目标DNA存在时,与互补链DNA进行碱基互补配对,形成双链DNA,形成的双链DNA-卟啉钴会被固定在聚苯胺共价修饰的磁性氧化石墨烯表面,经过磁铁磁性分离后,上清液中互补链DNA修饰的钴卟啉的含量会减少,使得化学发光反应的催化性能降低,以此实现目标DNA含量的检测;
其中所述的聚苯胺共价修饰的磁性氧化石墨烯和互补链DNA修饰的钴卟啉的制备具有以下工艺步骤:
(1)聚苯胺共价修饰的磁性氧化石墨烯的制备:向100mL三口烧瓶中加入30~50mL 1.0~2.5mol/L的盐酸溶液,随后加入纯化后的苯胺1.0~2.5g,再加入0.1~0.25g磁性氧化石墨烯,在冰浴环境下磁力搅拌0.5~2h,使其充分分散;缓慢滴加10~30mL 1.0~2.5mol/L的过硫酸铵溶液,滴加速度控制在0.08~0.12mL/min,滴完之后继续在冰浴环境中反应1~2h;用超纯水洗涤产物3~5次,直至滤液为无色;产物用外磁场收集;放入50~80℃真空干燥箱进行干燥8~12h;干燥后,研磨;
(2)互补链DNA修饰的钴卟啉的制备:移取1.0~2.5mL 0.1~0.5mmol/L的钴卟啉溶液放入5mL离心管中,加入0.1~0.5mL 50~80umol/L的互补链DNA,室温下振荡孵化2~5h;在8000~10000rad/min的转速下离心分离3~5min,倒掉上清液,以除去未反应的互补链DNA;将产物转移到25mL的容量瓶中定容,储存于4℃的条件下备用。
2.根据权利要求1所述的一种基于聚苯胺吸附双链DNA的化学发光传感器检测DNA的方法,其特征是:以互补链DNA作为识别元件,双链DNA间的碱基互补配对作用提高了该传感器的选择性。
3.根据权利要求1所述的一种基于聚苯胺吸附双链DNA的化学发光传感器检测DNA的方法,其特征是:以钴卟啉为化学发光催化剂,提高了该传感器的灵敏度。
4.根据权利要求1所述的一种基于聚苯胺吸附双链DNA的化学发光传感器检测DNA的方法,其特征是:通过改变目标DNA和互补链DNA的序列,可以实现不同序列的目标DNA检测。
5.根据权利要求1所述的一种基于聚苯胺吸附双链DNA的化学发光传感器检测DNA的方法,其特征是:聚苯胺共价修饰的磁性氧化石墨烯的工艺步骤(1)中所述的纯化后的苯胺由质量分数75%~80%的苯胺经二次减压蒸馏提纯获得。
6.根据权利要求1所述的一种基于聚苯胺吸附双链DNA的化学发光传感器检测DNA的方法,其特征是:聚苯胺共价修饰的磁性氧化石墨烯的工艺步骤(1)中所述的聚苯胺共价修饰的磁性氧化石墨烯的合成条件简单、形貌可控性强,粒径范围为80nm~100nm。
CN202010770228.4A 2020-08-04 2020-08-04 一种基于聚苯胺吸附双链dna的传感器检测dna的方法 Active CN111830014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010770228.4A CN111830014B (zh) 2020-08-04 2020-08-04 一种基于聚苯胺吸附双链dna的传感器检测dna的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010770228.4A CN111830014B (zh) 2020-08-04 2020-08-04 一种基于聚苯胺吸附双链dna的传感器检测dna的方法

Publications (2)

Publication Number Publication Date
CN111830014A CN111830014A (zh) 2020-10-27
CN111830014B true CN111830014B (zh) 2023-06-30

Family

ID=72920850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010770228.4A Active CN111830014B (zh) 2020-08-04 2020-08-04 一种基于聚苯胺吸附双链dna的传感器检测dna的方法

Country Status (1)

Country Link
CN (1) CN111830014B (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846648A (zh) * 2010-04-20 2010-09-29 上海大学 石墨烯量子点修饰的电化学生物传感器及其制备方法
US9121053B2 (en) * 2010-07-08 2015-09-01 University Of Central Florida Research Foundation, Inc. Method of detecting single nucleotide polymorphisms
JP6475718B2 (ja) * 2013-07-30 2019-02-27 プレジデント アンド フェローズ オブ ハーバード カレッジ 定量的なdnaベースのイメージング及び超解像イメージング
CN104569101A (zh) * 2014-12-26 2015-04-29 北京科技大学 一种dna电化学生物传感器及其制备方法
CN105259349B (zh) * 2015-11-03 2017-11-14 青岛农业大学 一种免固定生物传感电极的制备及其在免标记均相光致电化学农残检测与癌症诊断中的应用
CN108273479B (zh) * 2016-01-07 2019-08-13 南京医科大学 一种磁性纳米复合材料
CN105771890B (zh) * 2016-03-24 2018-07-10 济南大学 一种石墨烯基复合材料的制备及其在化学发光检测dna含量中的应用
CN106442690A (zh) * 2016-09-30 2017-02-22 南京理工大学 基于卟啉与dna双螺旋的沟槽镶嵌作用的无标记dna的ecl检测方法
CN106248758B (zh) * 2016-09-30 2019-04-16 南京理工大学 一种dna探针与电极表面相互作用的分析方法
CN107677651B (zh) * 2017-08-03 2019-10-08 商丘师范学院 一种单波长激发双信号增强的Hg2+荧光比率法
CN108508068B (zh) * 2018-03-27 2020-07-24 长沙理工大学 阴离子卟啉-碳纳米管修饰电极测her2基因特定序列
CN109001164B (zh) * 2018-08-29 2021-06-29 青岛科技大学 一种基于锰卟啉淬灭CdSe量子点的光电生物传感器及其制法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Novel Chemiluminescence Sensor for Thrombin Detection Based on Dual-Aptamer Biorecognition and Mesoporous Silica Encapsulated with Iron Porphyrin;Yuanling Sun等;ACS Appl. Mater. Interfaces;第12卷(第5期);全文 *
石墨烯基磁性复合材料在化学发光适配体传感器中的应用;孙元玲;中国优秀硕士学位论文全文数据库工程科技Ⅰ辑(第02期);全文 *

Also Published As

Publication number Publication date
CN111830014A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
Zhang et al. Rationale of 3, 3′, 5, 5′-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis
Zeng et al. Photocurrent-polarity-switching photoelectrochemical biosensor for switching spatial distance electroactive tags
Cui et al. Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal–organic framework
Liu et al. The applications of metal− organic frameworks in electrochemical sensors
Liu et al. Engineering of heterojunction-mediated biointerface for photoelectrochemical aptasensing: case of direct Z-scheme CdTe-Bi2S3 heterojunction with improved visible-light-driven photoelectrical conversion efficiency
Tan et al. A target-driven self-feedback paper-based photoelectrochemical sensing platform for ultrasensitive detection of ochratoxin A with an In2S3/WO3 heterojunction structure
Ma et al. Ultrasensitive controlled release aptasensor using thymine–Hg2+–thymine mismatch as a molecular switch for Hg2+ detection
Sun et al. Long-lasting and intense chemiluminescence of luminol triggered by oxidized g-C3N4 nanosheets
Liu et al. Versatile luminol/dissolved oxygen/Fe@ Fe2O3 nanowire ternary electrochemiluminescence system combined with highly efficient strand displacement amplification for ultrasensitive microRNA detection
Yu et al. A nano-sized Cu-MOF with high peroxidase-like activity and its potential application in colorimetric detection of H 2 O 2 and glucose
CN102020308B (zh) 纳米氧化铜模拟酶及其作为过氧化物模拟酶测定过氧化氢的方法
Zhao et al. Colorimetric detection of blood glucose based on GOx@ ZIF-8@ Fe-polydopamine cascade reaction
Zhu et al. Highly sensitive luminescent probe of aniline and trace water in organic solvents based on covalently modified lanthanide metal–organic frameworks
Jin et al. Enzyme immobilization in porphyrinic covalent organic frameworks for photoenzymatic asymmetric catalysis
Xiao et al. Electrochemiluminescence resonance energy transfer system based on silver metal–organic frameworks as a double-amplified emitter for sensitive detection of miRNA-107
Zhu et al. Enhanced peroxidase-like activity of boron nitride quantum dots anchored porous CeO2 nanorods by aptamer for highly sensitive colorimetric detection of kanamycin
Chen et al. Direct growth of poly-glutamic acid film on peroxidase mimicking PCN-222 (Mn) for constructing a novel sensitive nonenzymatic electrochemical hydrogen peroxide biosensor
Yue et al. Oxygen free radical scavenger PtPd@ PDA as a dual-mode quencher of electrochemiluminescence immunosensor for the detection of AFB1
CN114479111B (zh) 一种用于固定化辣根过氧化物酶的新型载体
Chen et al. Pt–DNA complexes as peroxidase mimetics and their applications in colorimetric detection of H 2 O 2 and glucose
Khoshbin et al. Metal organic frameworks as advanced functional materials for aptasensor design
Cui et al. Recent advances in luminescence and aptamer sensors based analytical determination, adsorptive removal, degradation of the tetracycline antibiotics, an overview and outlook
Zarei Sensitive visible light-driven photoelectrochemical aptasensor for detection of tetracycline using ZrO2/g-C3N4 nanocomposite
Jiang et al. Photoactive conjugated microporous polymer@ C60 with quencher on tailed Y-triangular DNA structure for high-performance signal-off photoelectrochemical biosensing
Chen et al. NiS2/NiFe LDH/g-C3N4 ternary heterostructure-based label-free photoelectrochemical aptasensing for highly sensitive determination of enrofloxacin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant