CN111825447A - 一种高储能密度的钛酸钡基介质薄膜及其制备方法 - Google Patents

一种高储能密度的钛酸钡基介质薄膜及其制备方法 Download PDF

Info

Publication number
CN111825447A
CN111825447A CN202010641240.5A CN202010641240A CN111825447A CN 111825447 A CN111825447 A CN 111825447A CN 202010641240 A CN202010641240 A CN 202010641240A CN 111825447 A CN111825447 A CN 111825447A
Authority
CN
China
Prior art keywords
energy storage
storage density
film
barium titanate
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010641240.5A
Other languages
English (en)
Other versions
CN111825447B (zh
Inventor
郝华
吕佳浩
蒋雪雯
刘振
曹明贺
尧中华
刘韩星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010641240.5A priority Critical patent/CN111825447B/zh
Publication of CN111825447A publication Critical patent/CN111825447A/zh
Application granted granted Critical
Publication of CN111825447B publication Critical patent/CN111825447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明提供一种高储能密度钛酸钡基介质薄膜及其制备方法。该介质薄膜的化学式为xBi(Zn1/2Zr1/2)O3‑(1‑x)BaTiO3‑yMnO,其中x=0.02~0.08,y=0~0.05;其制备方法包括以下步骤:(1)以C12H28O4Zr,Mn(CH3COO)2·4H2O,(CH3COO)2Ba,(CH3COO)2Zn·2H2O,C16H36O4Ti,Bi(NO3)3·5H2O,为原料,在混合溶剂中溶解,得到澄清透明且稳定存在的前驱体溶液;(2)将制备的稳定前驱体溶液静置陈化得到充分水解聚合的可以用于旋涂的溶胶;(3)采用旋涂的方法将溶胶涂覆于基板上,得到湿凝胶膜;(4)将所得湿凝胶膜在加热台进行热解,在快速退火炉对薄膜进行快速退火处理,除掉有机物,得到结晶或非晶结构中存在少量结晶微区的无机铁电薄膜。该方法制备工艺简单,成本低,无重金属,所制备的储能介质薄膜具有高放电储能密度10~84.4 J/cm3和较高的耐电压强度1000~5000 kV/cm。

Description

一种高储能密度的钛酸钡基介质薄膜及其制备方法
技术领域
本发明涉及应用于电子元器件的薄膜材料技术领域,具体涉及一种高储能密度的钛酸钡基介质薄膜及其制备方法。
背景技术
电容器作为能够快速充放电、通交流、阻直流的无源器件,在电子电路领域得到广泛的应用。由于块体陶瓷材料的击穿强度较低,而各类电子元器件向着小型化、低成本化方向发展的趋势逐渐明显,对电容器的工作性能要求越来越严格,电介质材料的尺寸也逐渐向纳米尺度发展。电介质薄膜材料因尺寸较小,内部缺陷少,相比于块状陶瓷,薄膜材料的击穿路径大大减少,所以薄膜材料的击穿场强相对于块体电介质材料有明显提高,从而储存更多的电荷,获得更高的能量储存密度。
钛酸钡(BaTiO3)具有良好的介电性能与铁电压电性能,被广泛应用于薄膜电容器领域。受制于BaTiO3薄膜的击穿强度仅为500~800kV/cm,其储能密度性能较低(约6J/cm3),且BaTiO3薄膜储能性能与介电性能对温度十分敏感,实际应用范围受到限制。因此,提高储能性能及其温度稳定性是十分必要的。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种高储能密度的钛酸钡基介质薄膜及其制备方法,所得储能介质薄膜具有耐压强度高,高储能密度的特点。
本发明为解决上述提出的问题所采用的技术方案为:
一种高储能密度的钛酸钡基介质薄膜,其化学组成表达式为xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3-yMnO,其中x=0.02~0.08,y=0~0.05。
上述高储能密度的钛酸钡基介质薄膜的放电储能密度在10~84.4J/cm3范围内,击穿强度(即最大电场强度)在1000~5000kV/cm范围内。
优选地,上述高储能密度的钛酸钡基介质薄膜,其化学组成表达式为xBi(Zn1/ 2Zr1/2)O3-(1-x)BaTiO3-yMnO,x=0.06,y=0~0.05,放电储能密度在50~84.4J/cm3范围内,击穿强度在3500~5000kV/cm范围内。
上述高储能密度的钛酸钡基介质薄膜的制备方法,主要步骤如下:
(1)以Bi(NO3)3·5H2O、C16H36O4Ti、C12H28O4Zr、MnC4H6O4·4H2O、(CH3COO)2Ba和(CH3COO)2Zn·2H2O作为原料,根据化学组成表达式xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3-yMnO中金属元素的化学计量比配料(称量质量误差控制在万分之五以内),其中x=0.02~0.08,y=0~0.05;
(2)将配好的原料溶于乙酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,充分搅拌均匀,得到澄清透明且稳定存在的前驱体溶液;
(3)将步骤(2)所得前驱体溶液在室温下进行静置陈化,充分水解聚合后得到澄清透明的溶胶;
(4)将步骤(3)得到的溶胶采用旋涂法涂覆于Pt/Ti/SiO2/Si基片上,然后在加热台对旋涂得到的湿膜进行热解,得到凝胶薄膜;
(5)将步骤(4)得到的凝胶薄膜在退火炉进行快速退火处理,使有机物充分燃烧,得到高储能密度的钛酸钡基介质薄膜。
按上述方案,可按照设计的厚度重复步骤(4)和步骤(5)若干次(一般旋涂5-7次,退火次数2-6次),得到130-180nm厚的高储能密度的钛酸钡基介质薄膜。而且,步骤(4)和步骤(5)分别进行的重复次数由退火方式(层层退火或分步退火)与薄膜结晶情况决定。其中,层层退火为每旋涂热解一次,退火一次;分步退火为每旋涂热解若干次,退火一次。
按上述方案,步骤(1)中原料的纯度均不低于98%。
按上述方案,步骤(2)中,混合溶剂由乙二醇甲醚、乙酸和乙酰丙酮按体积比为(75±5):(15±2):(2±1)组成;搅拌条件为室温搅拌12小时~24小时,搅拌速度为60-80rmp。
按上述方案,步骤(3)中,前驱体溶液的静置陈化时间为24小时以上,确保前驱体溶液能够在较长时间内(不少于15天)保持澄清稳定的状态。
按上述方案,步骤(4)中,所述的旋涂条件为:预先进行600~1000转/分钟的低速旋涂(即一级匀胶),再进行3500~4500转/分钟的高速甩胶(即二级匀胶)。
按上述方案,步骤(4)中,热解的工艺为150~250℃烘干热解5~15分钟,再于400~450℃热解5~15分钟。
按上述方案,步骤(5)中,快速退火的温度为500~700℃,退火时间为60~240s。
与现有技术相比,本发明的有益效果是:
第一,本发明所述介质薄膜具有很好的储能特性,放电储能密度在10~84.4J/cm3范围内,击穿强度(即最大电场强度)在1000~5000kV/cm范围内。其中,通过层层退火-旋涂法制备的xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3薄膜,其中x=0.02~0.08,y=0,该体系的击穿强度(在1000~5000kV/cm范围内)、放电储能密度(在10~32.9J/cm3范围内)和储能效率(55~90%)都得到显著提高;其中,在x=0.06时击穿强度增加到2000kV/cm,放电储能密度为28.3J/cm3,在x=0.02时击穿强度为5000kV/cm,放电储能密度为32.9J/cm3。通过分步退火-旋涂法制备的准非晶态的xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3薄膜,其中x=0.02~0.08,y=0,该体系击穿强度(在3500~5000kV/cm范围内)和放电储能密度(在32.5~51.7J/cm3的范围内)有较明显提升,效率为55~80%;通过分步退火-旋涂法制备的准非晶态的0.06Bi(Zn1/ 2Zr1/2)O3-0.94BaTiO3-yMnO薄膜,其中y=0~0.05,该体系击穿电场(在3500~5000kV/cm范围内)、放电储能密度(在51.7~84.4J/cm3的范围内)和效率(75~90%)有较明显提升。
第二,本发明所述xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3-yMnO准非晶薄膜(其中x=0.02~0.08,y=0~0.05)均表现出良好的电容温度稳定性,在较宽的温度范围内容温变化率小于±15%,例如xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3准非晶薄膜(x=0.02~0.08,y=0),容温变化率小于±15%的温度范围为25~200℃;0.06Bi(Zn1/2Zr1/2)O3-0.94BaTiO3-yMnO准非晶薄膜(y=0~0.05)在25~200℃温度范围内容温变化率小于±15%。
第三,本发明通过控制热处理方式对薄膜是否结晶与结晶度的差异大小进行控制,从而实现对储能性能的调控。本发明采用溶胶凝胶法制备的薄膜材料分为完全结晶与准非晶两种状态,当结晶度较低时,薄膜为准非晶状态,在XRD中体现为无明显的衍射峰,但薄膜具有高的储能密度;当薄膜结晶度较高时,薄膜为结晶状态,在XRD中体现为具有明显的衍射峰,但薄膜储能密度相对准非晶状态低一些。但是,本发明通过采用分步退火或者层层退火的热处理方式,成功控制了薄膜的结晶度为完全结晶与准非晶两种状态,均能获得高储能密度的薄膜材料。
第四,本发明所述介质薄膜的制备过程中采用溶胶凝胶法制备,且热处理温度较低(500~700℃),且热处理时间较短(60~240s),而且,本发明所用原料中不含稀土元素和贵金属元素,成本较低;且原料中不含铅,绿色环保。
附图说明
图1为本发明实施例1~6所制备的高储能密度的钛酸钡基介质薄膜的XRD图谱;
图2为实施例1~6所制备的高储能密度的钛酸钡基介质薄膜的P-E电滞回线图;
图3为实施例1~6所制备的高储能密度的钛酸钡基介质薄膜在1kHz频率下介电常数随温度的变化图(25~200℃);
图4为实施例1~6所制备的高储能密度的钛酸钡基介质薄膜在1kHz频率下的容温变化率。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
本发明实施例提供一系列高储能密度的钛酸钡基介质薄膜,其化学组成表达式为xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3-yMnO,其中x=0.02~0.08,y=0~0.05。
实施例1
一种高储能密度的钛酸钡基介质薄膜,其化学组成表达式为0.04Bi(Zn1/2Zr1/2)O3-0.96BaTiO3,其制备方法具体包括以下步骤:
(1)根据摩尔比为2:1:1:48:48称取Bi(NO3)3·5H2O、(CH3COO)2Zn·2H2O、C12H28O4Zr、(CH3COO)2Ba和C16H36O4Ti作为原料,将配好的原料溶于体积比为17:2:80的乙酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,在室温搅拌12小时得到稳定的前驱体溶液;
(2)将步骤(1)得到的前驱体溶液在室温下静置24小时,得到溶胶;
(3)采用旋涂法将步骤(2)得到的溶胶滴加于基板上,先在600转/分钟低速旋涂,再于4000转/分钟转速下进行高速甩胶;然后在170℃烘干10分钟,再于450℃热解10分钟得到凝胶膜;
(4)将步骤(3)得到的凝胶膜置于快速退火炉中进行快速退火,条件为650℃,退火120s;
(5)循环重复步骤(3)和步骤(4)(即层层退火),共重复6次,获得约150nm厚的高储能密度的钛酸钡基介质薄膜。
将实施例1所制备的高储能密度的钛酸钡基介质薄膜进行X射线衍射(XRD)测试,XRD图谱如图1所示,可以看出该介质薄膜呈现出纯钙钛矿立方相结构,无第二相。
将实施例1所制备的高储能密度的钛酸钡基介质薄膜利用磁控溅射制备顶电极,测试储能性能和介电性能。如图2所示,该介质薄膜在1kHz频率下的最大电场强度为1160kV/cm,最大极化强度为24.8μC/cm2,计算出该介质薄膜的充电储能密度为10J/cm3,储能效率为74%。
如图3和图4所示,该介质薄膜在室温到200℃时具备平坦的介电常数,在室温到200℃范围内容温变化率不超过15%(以25℃为基准)。
实施例2
一种高储能密度的钛酸钡基介质薄膜,其化学组成表达式为0.08Bi(Zn1/2Zr1/2)O3-0.92BaTiO3,其制备方法包括以下步骤:
(1)根据摩尔比为2:1:1:23:23称取Bi(NO3)3·5H2O、(CH3COO)2Zn·2H2O、C12H28O4Zr、(CH3COO)2Ba和C16H36O4Ti作为原料,将配好的原料溶于体积比为18:2:80的乙酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,在室温搅拌12小时得到稳定的前驱体溶液;
(2)将步骤(1)得到的前驱体溶液在室温下静置24小时,得到溶胶;
(3)采用旋涂法将步骤(2)得到的溶胶滴加于基板上,先在600转/分钟低速旋涂,再于4000转/分钟转速下进行高速甩胶;在170℃烘干10分钟,再于450℃热解10分钟得到凝胶膜;
(4)将步骤(3)得到的凝胶膜置于快速退火炉中进行快速退火,条件为660℃,退火120s;
(5)循环重复步骤(3)和步骤(4)(即层层退火),共重复6次,获得130nm厚的高储能密度的钛酸钡基介质薄膜。
将实施例2所制备的高储能密度的钛酸钡基介质薄膜进行X射线衍射(XRD)测试,XRD图谱如图1所示,可以看出该介质薄膜呈现出纯钙钛矿立方结构,无第二相。
将实施例2所制备的高储能密度的钛酸钡基介质薄膜利用磁控溅射制备顶电极,测试储能性能和介电性能。如图2所示,该介质薄膜在1kHz频率下的最大电场强度为1836kV/cm,最大极化强度为36μC/cm2,计算出该介质薄膜的充电储能密度为23J/cm3,储能效率为57%。
如图3和图4所示,该介质薄膜在室温到200℃时具备平坦的介电常数,在室温到200℃温度范围内容温变化率不超过15%(以25℃为基准)。
实施例3
一种高储能密度的钛酸钡基介质薄膜,其化学组成表达式为0.02Bi(Zn1/2Zr1/2)O3-0.98BaTiO3,其制备方法包括以下步骤:
(1)根据摩尔比为2:1:1:98:98称取Bi(NO3)3·5H2O、(CH3COO)2Zn·2H2O、C12H28O4Zr、(CH3COO)2Ba和C16H36O4Ti作为原料,将配好的原料溶于体积比为18:2:80的乙酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,在室温搅拌12小时得到稳定的前驱体溶液;
(2)将步骤(1)得到的前驱体溶液在室温下静置24小时,得到溶胶;
(3)采用旋涂法将步骤(2)得到的溶胶滴加于基板上,先在600转/分钟低速旋涂,再于4000转/分钟转速下进行高速甩胶;在170℃烘干10分钟,再于450℃热解10分钟得到凝胶膜;
(4)将步骤(3)得到的凝胶膜置于快速退火炉中进行快速退火,条件为600℃,退火120s;
(5)每重复三次步骤(3),进行一次步骤(4),循环两次(即总共经过6次旋涂,退火2次),获得170nm厚的高储能密度的钛酸钡基介质薄膜。
将实施例3所制备的高储能密度的钛酸钡基介质薄膜进行X射线衍射(XRD)测试,XRD图谱如图1所示,可以看出该介质薄膜呈现出无定形结构的特征,表明其为准非晶薄膜。
将实施例2所制备的高储能密度的钛酸钡基介质薄膜利用磁控溅射制备顶电极,测试储能性能和介电性能。如图2所示,该介质薄膜在1kHz频率下的最大电场强度为3714kV/cm,最大极化强度为21μC/cm2,计算出该介质薄膜的充电储能密度为28.7J/cm3,储能效率为56%。
如图3和图4所示,该介质薄膜在室温到200℃具备平坦的介电常数,在室温到200℃范围内容温变化率不超过15%(以25℃为基准)。
实施例4
一种高储能密度的钛酸钡基介质薄膜,其化学组成表达式为0.06Bi(Zn1/2Zr1/2)O3-0.94BaTiO3,其制备方法包括以下步骤:
(1)根据摩尔比为6:3:3:94:94称取Bi(NO3)3·5H2O、(CH3COO)2Zn·2H2O、C12H28O4Zr、(CH3COO)2Ba和C16H36O4Ti作为原料,将配好的原料溶于体积比为17:2:80的乙酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,室温搅拌12小时得到稳定的前驱体溶液;
(2)将步骤(1)得到的前驱体溶液在室温下静置24小时,得到溶胶;
(3)采用旋涂法将步骤(2)得到的溶胶滴加于基板上,先在600转/分钟低速旋涂,再于4000转/分钟转速下进行高速甩胶;在170℃烘干10分钟,再于450℃热解10分钟得到凝胶膜;
(4)将步骤(3)得到的凝胶膜置于快速退火炉中进行快速退火,条件为580℃,退火120s;
(5)每重复三次步骤(3),进行一次步骤(4),循环两次,获得170nm厚的高储能密度的钛酸钡基介质薄膜。
将实施例3所制备的高储能密度的钛酸钡基介质薄膜进行X射线衍射(XRD)测试,XRD图谱如图1所示,可以看出该介质薄膜呈现出无定形结构与结晶微区物相特征并存的特点,表明其为准非晶薄膜。
将实施例2所制备的高储能密度的钛酸钡基介质薄膜利用磁控溅射制备顶电极,测试储能性能和介电性能。如图2所示,该介质薄膜在1kHz频率下的最大电场强度为4523kV/cm,最大极化强度为30μC/cm2,计算出该介质薄膜的充电储能密度为51.7J/cm3,储能效率为62%。
如图3和图4所示,该介质薄膜在室温到200℃具备平坦的介电常数,在室温到200℃范围内容温变化率不超过15%(以25℃为基准)。
实施例5
一种高储能密度的钛酸钡基介质薄膜,其化学组成表达式为0.06Bi(Zn1/2Zr1/2)O3-0.94BaTiO3-3MnO,其制备方法包括以下步骤:
(1)根据摩尔比为6:3:3:94:94:3称取Bi(NO3)3·5H2O、(CH3COO)2Zn·2H2O、C12H28O4Zr、(CH3COO)2Ba、C16H36O4Ti和MnC4H6O4·4H2O作为原料,将配好的原料溶于体积比为18:2:80的乙酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,在室温搅拌12小时得到稳定的前驱体溶液;
(2)将步骤(1)得到的前驱体溶液在室温下静置24小时,得到溶胶;
(3)采用旋涂法将步骤(2)得到的溶胶滴加于基板上,先在600转/分钟低速旋涂,再于4000转/分钟转速下进行高速甩胶;在170℃烘干10分钟,再于450℃热解10分钟得到凝胶膜;
(4)将步骤(3)得到的凝胶膜置于快速退火炉中进行快速退火,条件为620℃,退火120s;
(5)每重复三次步骤(3),进行一次步骤(4),循环两次,获得175nm厚的高储能密度的钛酸钡基介质薄膜。
将实施例3所制备的高储能密度的钛酸钡基介质薄膜进行X射线衍射(XRD)测试,XRD图谱如图1所示,可以看出该介质薄膜呈现出无定形结构的特征,表明其为准非晶薄膜。
将实施例2所制备的高储能密度的钛酸钡基介质薄膜利用磁控溅射制备顶电极,测试储能性能和介电性能。如图2所示,该介质薄膜在1kHz频率下的最大电场强度为4689V/cm,最大极化强度为45μC/cm2,计算出该介质薄膜的充电储能密度为84.4J/cm3,储能效率为84.4%。
如图3和图4所示,该介质薄膜在室温到200℃时具备平坦的介电常数,在室温到200℃温度范围内容温变化率不超过15%(以25℃为基准)。
实施例6
一种高储能密度的钛酸钡基介质薄膜,其化学组成表达式为0.06Bi(Zn1/2Zr1/2)O3-0.94BaTiO3-4MnO,其制备方法包括以下步骤:
(1)根据摩尔比为6:3:3:94:94:4称取Bi(NO3)3·5H2O、(CH3COO)2Zn·2H2O、C12H28O4Zr、(CH3COO)2Ba、C16H36O4Ti和MnC4H6O4·4H2O作为原料,将配好的原料溶于体积比为17:2:80的乙酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,在室温搅拌12小时得到稳定的前驱体溶液;
(2)将步骤(1)得到的前驱体溶液在室温下静置24小时,得到溶胶;
(3)采用旋涂法将步骤(2)得到的溶胶滴加于基板上,先在600转/分钟低速旋涂,再于4000转/分钟转速下进行高速甩胶;在170℃烘干10分钟,再于450℃热解10分钟得到凝胶膜;
(4)将步骤(3)得到的凝胶膜置于快速退火炉中进行快速退火,条件为600℃,退火120s;
(5)每重复三次步骤(3),进行一次步骤(4),循环两次,获得175nm厚的高储能密度的钛酸钡基介质薄膜。
将实施例3所制备的高储能密度的钛酸钡基介质薄膜进行X射线衍射(XRD)测试,XRD图谱如图1所示,可以看出该介质薄膜呈现出无定形结构的特征,表明其为准非晶薄膜。
将实施例2所制备的高储能密度的钛酸钡基介质薄膜利用磁控溅射制备顶电极,测试储能性能和介电性能。如图2所示,该介质薄膜在1kHz频率下的最大电场强度为4327kV/cm,最大极化强度为30μC/cm2,计算出该介质薄膜的充电储能密度为45.8J/cm3,储能效率为74%。
如图3和图4所示,该介质薄膜在室温到200℃时具备平坦的介电常数,在室温到200℃温度范围内容温变化率不超过15%(以25℃为基准)。
综上所述,结合以上对本发明实施例的详细描述,本发明所提供的高储能密度的钛酸钡基介质薄膜及其制备方法,解决了纯BaTiO3薄膜击穿强度低、放电储能密度低的问题,所制备出的xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3-yMnO(其中x=0.02~0.08,y=0~0.05)介质薄膜击穿场强增大,电滞回线变细,使得放电储能密度得到提高,达10~84.4J/cm3
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (9)

1.一种高储能密度的钛酸钡基介质薄膜,其特征在于它的化学组成表达式为xBi(Zn1/ 2Zr1/2)O3-(1-x)BaTiO3-yMnO,其中x=0.02~0.08, y=0~0.05。
2.根据权利要求1所述的高储能密度的钛酸钡基介质薄膜,其特征在于它的放电储能密度在10~84.4 J/cm3范围内,击穿强度在10000~50000 kV/cm范围内。
3.一种高储能密度的钛酸钡基介质薄膜的制备方法,其特征在于主要步骤如下:
(1)以异丙醇锆、醋酸锌、醋酸锰、硝酸铋、 醋酸钡和钛酸丁酯为原料,根据化学式xBi(Zn1/2Zr1/2)O3-(1-x)BaTiO3-yMnO中金属元素的化学计量比进行配料,x=0.02~0.08, y=0~0.05;将配置好的原料溶解于乙二醇甲醚、乙酸和乙酰丙酮的混合溶剂当中,搅拌均匀,得到澄清透明的前驱体溶液;
(2)将步骤(1)所得前驱体溶液通过静置陈化进行水解聚合,得到溶胶;
(3)将步骤(2)所得溶胶涂覆于基板上,然后通过加热进行热解,得到凝胶膜;
(4)将步骤(3)得到的凝胶膜进行退火,得到高储能密度的钛酸钡基介质薄膜。
4.根据权利要求3所述的一种高储能密度的钛酸钡基介质薄膜的制备方法,其特征在于按照设计的厚度分别重复步骤(3)和步骤(4)若干次,得到130-180nm厚的高储能密度的钛酸钡基介质薄膜。
5.根据权利要求3所述的一种高储能密度的钛酸钡基介质薄膜的制备方法,其特征在于步骤(1)中,所述混合溶剂由乙二醇甲醚、乙酸和乙酰丙酮按体积比为(75±5):(15±2):(2±1)组成。
6.根据权利要求4所述的一种高储能密度的钛酸钡基介质薄膜的制备方法,其特征在于步骤(1)中搅拌条件为在室温下60-80rmp的转速下搅拌12-24小时;步骤(2)中静置陈化时间为24小时以上,确保前驱体溶液能够在不少于15天内保持澄清透明的稳定状态。
7.根据权利要求4所述的一种高储能密度的钛酸钡基介质薄膜的制备方法,其特征在于步骤(3)中溶胶涂覆采用旋涂,旋涂条件为:在转速为500-800rmp下进行一级匀胶,之后在转速为3500-4500rmp下进行二级匀胶。
8.根据权利要求4所述的一种高储能密度的钛酸钡基介质薄膜的制备方法,其特征在于步骤(3)中加热热解的条件为:120-200℃烘干5-15分钟,400-500℃热解5-20分钟。
9.根据权利要求4所述的一种高储能密度的钛酸钡基介质薄膜的制备方法,其特征在于步骤(4)中退火温度为500-700℃,时间为60s-300s;退火次数分为层层退火和分步退火。
CN202010641240.5A 2020-07-06 2020-07-06 一种高储能密度的钛酸钡基介质薄膜及其制备方法 Active CN111825447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010641240.5A CN111825447B (zh) 2020-07-06 2020-07-06 一种高储能密度的钛酸钡基介质薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010641240.5A CN111825447B (zh) 2020-07-06 2020-07-06 一种高储能密度的钛酸钡基介质薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111825447A true CN111825447A (zh) 2020-10-27
CN111825447B CN111825447B (zh) 2022-08-26

Family

ID=72901403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010641240.5A Active CN111825447B (zh) 2020-07-06 2020-07-06 一种高储能密度的钛酸钡基介质薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111825447B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373630A (zh) * 2022-01-21 2022-04-19 武汉理工大学 一种多层结构的高稳定性无机电介质非晶薄膜电容器及其制备方法
CN115974548A (zh) * 2022-12-16 2023-04-18 佛山仙湖实验室 一种无铅高熵铁电薄膜及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198269A (en) * 1989-04-24 1993-03-30 Battelle Memorial Institute Process for making sol-gel deposited ferroelectric thin films insensitive to their substrates
US5516363A (en) * 1991-12-13 1996-05-14 Symetrix Corporation Specially doped precursor solutions for use in methods of producing doped ABO3 -type average perovskite thin-film capacitors
US5990029A (en) * 1997-02-25 1999-11-23 Tdk Corporation High dielectric-constant dielectric ceramic composition, and its fabrication process
WO1999067189A1 (en) * 1998-06-23 1999-12-29 Cabot Corporation Barium titanate dispersions
US20060121258A1 (en) * 2004-12-07 2006-06-08 Samsung Electro-Mechanics Co., Ltd. Sol composition for dielectric ceramic, and dielectric ceramic and multilayered ceramic capacitor using the same
CN101182203A (zh) * 2007-11-27 2008-05-21 山东大学 钛酸钡基压电陶瓷材料及其制备方法与应用
US20100135937A1 (en) * 2007-03-26 2010-06-03 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
CN103130503A (zh) * 2012-12-07 2013-06-05 北京科技大学 一种具有高居里温度大剩余极化及疲劳特性好的Bi(Zn1/2Zr1/2)O3-PbTiO3基铁电薄膜及其制备方法
CN103273704A (zh) * 2013-04-27 2013-09-04 湘潭大学 一种具有高储能密度的复合薄膜及其制备方法
CN108929111A (zh) * 2018-09-10 2018-12-04 武汉理工大学 一种超高放电储能密度的介质薄膜及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198269A (en) * 1989-04-24 1993-03-30 Battelle Memorial Institute Process for making sol-gel deposited ferroelectric thin films insensitive to their substrates
US5516363A (en) * 1991-12-13 1996-05-14 Symetrix Corporation Specially doped precursor solutions for use in methods of producing doped ABO3 -type average perovskite thin-film capacitors
US5990029A (en) * 1997-02-25 1999-11-23 Tdk Corporation High dielectric-constant dielectric ceramic composition, and its fabrication process
WO1999067189A1 (en) * 1998-06-23 1999-12-29 Cabot Corporation Barium titanate dispersions
US20060121258A1 (en) * 2004-12-07 2006-06-08 Samsung Electro-Mechanics Co., Ltd. Sol composition for dielectric ceramic, and dielectric ceramic and multilayered ceramic capacitor using the same
US20100135937A1 (en) * 2007-03-26 2010-06-03 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
CN101182203A (zh) * 2007-11-27 2008-05-21 山东大学 钛酸钡基压电陶瓷材料及其制备方法与应用
CN103130503A (zh) * 2012-12-07 2013-06-05 北京科技大学 一种具有高居里温度大剩余极化及疲劳特性好的Bi(Zn1/2Zr1/2)O3-PbTiO3基铁电薄膜及其制备方法
CN103273704A (zh) * 2013-04-27 2013-09-04 湘潭大学 一种具有高储能密度的复合薄膜及其制备方法
CN108929111A (zh) * 2018-09-10 2018-12-04 武汉理工大学 一种超高放电储能密度的介质薄膜及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN XIULI等: "Effects of Bi(Zn0.5Zr0.5)O3 addition on the structure and electric properties of BaTiO3 lead-free piezoelectric ceramics", 《CERAMICS INTERNATIONAL》 *
FENG SI等: "Structural and dielectric relaxor properties of (1−x)BaTiO3–xBi(Zn1/2Zr1/2)O3 ceramics for energy storage applications", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *
JIANG XUEWEN等: "Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
JIANG XUEWEN等: "Superior energy storage BaTiO3-based amorphous dielectric film with polymorphic hexagonal and cubic nanostructures", 《CHEMICAL ENGINEERING JOURNAL》 *
吕佳浩: "xBi(Zn0.5Zr0.5)O3-(1-x)BaTiO3(x≤0.08)薄膜的制备与储能性能研究", 《中国优秀硕士学位论文全文数据库 (基础科学辑)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373630A (zh) * 2022-01-21 2022-04-19 武汉理工大学 一种多层结构的高稳定性无机电介质非晶薄膜电容器及其制备方法
CN115974548A (zh) * 2022-12-16 2023-04-18 佛山仙湖实验室 一种无铅高熵铁电薄膜及其制备方法和应用
CN115974548B (zh) * 2022-12-16 2023-11-21 佛山仙湖实验室 一种无铅高熵铁电薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN111825447B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN111825447B (zh) 一种高储能密度的钛酸钡基介质薄膜及其制备方法
CN114907117B (zh) 钛酸铋基陶瓷材料及其制备方法和应用
WO2015172138A1 (en) Single phase lead-free cubic pyrochlore bismuth zinc niobate-based dielectric materials and processes for manufacture
CN108929111B (zh) 一种超高放电储能密度的介质薄膜及其制备方法
CN101717272A (zh) 具有(100)晶粒择优取向的锆钛酸铅厚膜的制备方法
KR101980382B1 (ko) 유전체 박막 형성용 조성물, 유전체 박막의 형성 방법 및 그 방법에 의해 형성된 유전체 박막
CN103664169B (zh) 铁电薄膜形成用组合物、铁电薄膜及其形成法和复合电子组件
CN100376506C (zh) 一种具有成份梯度分布的非铅系铁电薄膜及其制备方法
CN115295311B (zh) 一种高储能密度叠层薄膜及其制备方法
CN114914087B (zh) 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用
CN112397643B (zh) 一种在室温附近具有高电卡效应的薄膜材料及其制备方法
Borderon et al. Mn-Doped Ba 0.8 Sr 0.2 TiO 3 Thin Films for Energy Storage Capacitors
CN111704162B (zh) 具有超高储能性能的焦绿石纳米晶电介质薄膜及其制备
Paik et al. Ba titanate and barium/strontium titanate thin films from hydroxide precursors: Preparation and ferroelectric behavior
CN113774485A (zh) 铌铟酸铅-铌镁酸铅-钛酸铅铁电薄膜材料及制备与应用
CN115368131B (zh) 钛酸锶铋基无铅弛豫铁电薄膜、制备方法及应用
JP3146961B2 (ja) (Ba,Sr)TiO3誘電体薄膜形成用組成物及び(Ba,Sr)TiO3薄膜の形成方法
JP2003002650A (ja) Sbt強誘電体薄膜、その形成用組成物及び形成方法
JP3152135B2 (ja) Ba1−xSrxTiyO3薄膜形成用組成物及びBa1−xSrxTiyO3薄膜の形成方法
TW201442309A (zh) Pzt系強介電體薄膜及其形成方法
CN117049868A (zh) 一种高熵陶瓷薄膜材料及其制备方法和应用
Yue et al. SrTiO 3-Bi 3.25 La 0.75 Ti 3 O 12 energy storage film capacitors fabricated on silicon-based substrates
JP2003002649A (ja) Blt強誘電体薄膜、その形成用組成物及び形成方法
CN117373827A (zh) 一种高储能密度的铁电薄膜及其制备方法与应用
CN117912846A (zh) 一种铁电储能薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant