CN115295311B - 一种高储能密度叠层薄膜及其制备方法 - Google Patents

一种高储能密度叠层薄膜及其制备方法 Download PDF

Info

Publication number
CN115295311B
CN115295311B CN202210874462.0A CN202210874462A CN115295311B CN 115295311 B CN115295311 B CN 115295311B CN 202210874462 A CN202210874462 A CN 202210874462A CN 115295311 B CN115295311 B CN 115295311B
Authority
CN
China
Prior art keywords
bzt
bmz
energy storage
laminated film
storage density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210874462.0A
Other languages
English (en)
Other versions
CN115295311A (zh
Inventor
刘韩星
许辉煌
郝华
尧中华
曹明贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202210874462.0A priority Critical patent/CN115295311B/zh
Publication of CN115295311A publication Critical patent/CN115295311A/zh
Application granted granted Critical
Publication of CN115295311B publication Critical patent/CN115295311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种高储能密度叠层薄膜,由BMZ层和BZT层构成,总厚度在150‑250nm之间;BMZ层和BZT层的总层数为6层,BMZ层为2‑4层,BZT层为2‑4层,其中BMZ代表Bi(Mg0.5Zr0.5)O3;BZT代表Ba(Zr0.25Ti0.75)O3。该叠层薄膜的结构多样化,且储能密度可以达到80J/cm3以上,且制备原料无毒、价格低廉、制备工艺简单。

Description

一种高储能密度叠层薄膜及其制备方法
技术领域
本发明涉及储能电介质薄膜材料及其制备技术领域,涉及一种高储能密度叠层薄膜及其制备方法。
背景技术
储能电介质薄膜材料是指在电容器中作为一种介质材料并完成储存电荷和散热功能的薄膜材料。储能电介质薄膜作为一种新型介质材料,具有更高的储能密度,可以使许多需要轻量化、小型化、和易于集成的应用受益。
近几十年来,双向取向聚丙烯(BOPP)电容器已被广泛用作大功率电容器,但在一些应用领域,如深井钻井和航空航天行业,它们正遭受到了许多替代产品的挑战,这是因为聚合物材料的温度稳定性不好,其击穿强度会随着温度的升高而急剧下降,使得其制成的电子设备需要在低温环境(<150℃)下工作。相反,陶瓷与聚合物相比拥有更高的极化和更好的热稳定性,但其击穿强度通常较低。部分原因是因为介电常数与击穿强度呈负相关的关系,介电常数越高,击穿强度越低。在近来的研究中,陶瓷材料又引申出了陶瓷薄膜(薄膜)材料,因为相比于陶瓷,薄膜的尺寸更小,其致密度更高,从结构上而言更有助于提升材料的耐击穿强度和储能性能。
目前,研究得最多的铁电薄膜材料主要是钛酸钡(BaTiO3)材料,但常规钛酸钡薄膜的电滞回线非常肿胖,不仅剩余极化大,且介电损耗大,储能密度和储能效率都非常低,这不利于它在能量存储器件中进行应用。而叠层技术可以作为一种有效的方法结合其他材料从而提升钛酸钡薄膜的储能密度。目前报道的叠层薄膜多为交替或三明治结构,例如3(BT/ST)、BT/ST/BT等等,但其储能密度不算高,在40J/cm3左右,叠层结构也比较单一。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种高储能密度叠层薄膜及其制备方法,该叠层薄膜的结构多样化,且储能密度可达80J/cm3以上,且制备原料无毒、价格低廉、制备工艺简单。
本发明为解决上述提出的问题所采用的技术方案为:
一种高储能密度叠层薄膜,由BMZ层和BZT层构成,总厚度在150-250nm之间;BMZ层和BZT层的总层数为6层,BMZ层为2-4层,BZT层为2-4层;其中BMZ代表Bi(Mg0.5Zr0.5)O3;BZT代表Ba(Zr0.25Ti0.75)O3
优选地,上述叠层储能薄膜为BMZ3/BZT3、BMZ/BZT/BMZ/BZT/BMZ/BZT、BZT2/BMZ2/BZT2、BMZ1/BZT4/BMZ1叠层薄膜,其中数字代表层数。具体地,BMZ3/BZT3代表所述叠层储能薄膜的结构上依次由三层BMZ和三层BZT复合而成;BMZ/BZT/BMZ/BZT/BMZ/BZT代表所述叠层储能薄膜由三层BMZ和三层BZT交替复合而成;BZT2/BMZ2/BZT2代表所述叠层储能薄膜依次由两层BZT和两层BMZ、两层BZT复合而成;BMZ1/BZT4/BMZ1所述叠层储能薄膜依次由一层BMZ和四层BZT、一层BMZ复合而成。
上述高储能密度叠层薄膜的制备方法,首先将Bi(NO3)3·5H2O、Mg(C2H3O2)2·4H2O、ZrO4C16H36混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得BMZ前驱体溶液;然后将Ba(CH3COO)2、C16H36O4Ti、ZrO4C16H36混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得BZT前驱体溶液;而后按照叠层薄膜的结构(即各层的排列顺序和总厚度)将BMZ前驱体溶液和BZT前驱体溶液旋涂在基片上,每旋涂一层后都需要置于热板进行热解并采用快速退火炉进行退火,如此操作数次后制得所述高储能密度叠层薄膜。
按上述方案,醋酸、乙酰丙酮和乙二醇甲醚之间的体积比为(10-20):1:(30-40)。
按上述方案,制备BMZ前驱体溶液的方法为:按照组成表达式Bi(Mg0.5Zr0.5)O3中Bi、Mg和Zr的摩尔比将Bi(NO3)3·5H2O、Mg(C2H3O2)2·4H2O和ZrO4C16H36进行称量配料,混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得总浓度为0.1-0.3mol/L的BMZ前驱体溶液。
按上述方案,制备BZT前驱体溶液的方法为:按照组成表达式Ba(Zr0.25Ti0.75)O3中Ba、Zr和Ti的摩尔比将Ba(CH3COO)2、C16H36O4Ti、ZrO4C16H36进行称量配料,混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得总浓度为0.1-0.3mol/L的BZT前驱体溶液。
按上述方案,旋涂过程具体为:先以400-800rpm的速度旋转5-15s后转为3500-5000rpm旋转20-40s。
按上述方案,热解过程是将基片在200-300℃、325-375℃、375-425℃这三个温度区间下分别热解4-6min。
按上述方案,退火过程为层层退火,退火温度为600-750℃,退火时间为90-150s,在空气气氛下进行。
与现有技术相比,本发明具有以下有益效果:
本发明在采用BZT和BMZ来制备叠层薄膜,两者在680℃附近(即大致在600-750℃温度区间内)的退火温度下会展现出不同的结晶行为,BZT层结晶不良可以提供高的耐压强度,BMZ层结晶良好可以提供高的极化强度,二者结合可以优势互补优化薄膜的储能性能。该叠层薄膜材料的储能密度可达80J/cm3以上,储能效率较高,结构多样化,具有广泛的应用前景,且制备原料无毒、价格低廉、制备工艺简单。
附图说明
图1是BMZ3/BZT3的断面和表面微观形貌图;
图2是BMZ/BZT/BMZ/BZT/BMZ/BZT的断面和表面微观形貌图;
图3是BZT2/BMZ2/BZT2的断面和表面微观形貌图;
图4是BMZ1/BZT4/BMZ1的断面和表面微观形貌图;
具体实施方式
下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
以下的实施例将对本发明做进一步的说明,但并不因此限制本发明。
实施例1
一种高储能密度叠层薄膜,结构排列上依次为三层BMZ和三层BZT,可表示为BMZ3/BZT3,其中,BMZ代表Bi(Mg0.5Zr0.5)O3,BZT代表Ba(Zr0.25Ti0.75)O3;薄膜的总厚度为215nm左右。
上述高储能密度叠层薄膜的制备方法,具体步骤如下:
(1)制备BMZ前驱体溶液:
按照组成表达式Bi(Mg0.5Zr0.5)O3中Bi、Mg和Zr的摩尔比分别将Bi(NO3)3·5H2O、Mg(C2H3O2)2·4H2O和ZrO4C16H36进行称量配料,然后混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得总浓度为0.2mol/L的BMZ前驱体溶液,即Bi(NO3)3·5H2O、Mg(C2H3O2)2·4H2O和ZrO4C16H36各自在前驱体溶液中的浓度分别为0.1mol/L、0.05mol/L、0.05mol/L;其中,混合溶剂由醋酸、乙酰丙酮和乙二醇甲醚按体积比15:1:34混合所得;
(2)制备BZT前驱体溶液:
按照组成表达式Ba(Zr0.25Ti0.75)O3中Ba、Zr和Ti的摩尔比分别将Ba(CH3COO)2、C16H36O4Ti、ZrO4C16H36进行称量配料,混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得总浓度为0.2mol/L的BZT前驱体溶液,即Ba(CH3COO)2、C16H36O4Ti、ZrO4C16H36各自在前驱体溶液中的浓度分别为0.1mol/L、0.075mol/L、0.025mol/L;其中,混合溶剂由醋酸、乙酰丙酮和乙二醇甲醚按体积比15:1:34混合所得;
(3)制备BMZ3/BZT3叠层薄膜:
将BZT前驱体溶液按600rpm的速度旋转10s后转为4200rpm旋转30s的过程旋涂在清洗后的基片上;再将基片置于250℃、350℃、400℃下分别热解5min;之后在快速退火炉中680℃下加热120s;重复3次后将BMZ前驱体溶液也按上述操作重复3次,制得BMZ3/BZT3叠层薄膜。
将该实施例1得到的叠层薄膜利用铁电测试仪对其铁电性能进行测试,性能测试结果如表一所示。
实施例2
一种高储能密度叠层薄膜,结构排列上依次为BMZ/BZT/BMZ/BZT/BMZ/BZT,其中,BMZ代表Bi(Mg0.5Zr0.5)O3,BZT代表Ba(Zr0.25Ti0.75)O3;薄膜的总厚度为200nm左右。
上述高储能密度叠层薄膜的制备方法,具体步骤如下:
(1)制备BMZ、BZT前驱体溶液:同实施例1。
(2)制备BMZ/BZT/BMZ/BZT/BMZ/BZT叠层薄膜:
在该实施例中,将BZT前驱体溶液按600rpm的速度旋转10s后转为4200rpm旋转30s的过程旋涂在清洗后的基片上;再将基片置于250℃、350℃、400℃下分别热解5min;之后在快速退火炉中680℃下加热120s;之后将BMZ前驱体溶液也按上述操作重复。依次重复前述操作两次后,制得BMZ/BZT/BMZ/BZT/BMZ/BZT叠层薄膜。
将该实施例2得到的叠层薄膜利用铁电测试仪对其铁电性能进行测试,性能测试结果如表一所示。
实施例3
一种高储能密度叠层薄膜,结构排列上依次为BZT2/BMZ2/BZT2,其中,BMZ代表Bi(Mg0.5Zr0.5)O3,BZT代表Ba(Zr0.25Ti0.75)O3,数字为层数;薄膜的总厚度为170nm左右。
上述高储能密度叠层薄膜的制备方法,具体步骤如下:
(1)制备BMZ、BZT前驱体溶液:同实施例1。
(2)制备BZT2/BMZ2/BZT2叠层薄膜:
在该实施例中,将BZT前驱体溶液按600rpm的速度旋转10s后转为4200rpm旋转30s的过程旋涂在清洗后的基片上;再将基片置于250℃、350℃、400℃下分别热解5min;之后在快速退火炉中680℃下加热120s。该过程操作2次。然后将BMZ前驱体溶液也按上述操作重复2次,紧接着再将BZT前驱体溶液重复2次,制得BZT2/BMZ2/BZT2叠层薄膜。
将该实施例3得到的叠层薄膜利用铁电测试仪对其铁电性能进行测试,性能测试结果如表一所示。
实施例4
一种高储能密度叠层薄膜,结构排列上依次为BMZ1/BZT4/BMZ1,其中,BMZ代表Bi(Mg0.5Zr0.5)O3,BZT代表Ba(Zr0.25Ti0.75)O3,数字为层数;薄膜的总厚度为175nm左右。
上述高储能密度叠层薄膜的制备方法,具体步骤如下:
(1)制备BMZ、BZT前驱体溶液:同实施例1。
(2)制备BMZ1/BZT4/BMZ1叠层薄膜:
在该实施例中,将BMZ前驱体溶液按600rpm的速度旋转10s后转为4200rpm旋转30s的过程旋涂在清洗后的基片上;再将基片置于250℃、350℃、400℃下分别热解5min;之后在快速退火炉中680℃下加热120s;之后将BZT前驱体溶液也按上述操作重复重复4次,紧接着再将BMZ前驱体溶液重复1次,制得BMZ1/BZT4/BMZ1叠层薄膜;将该实施例4得到的叠层薄膜利用铁电测试仪对其铁电性能进行测试,性能测试结果如表一所示。
表一实施例1至实施例4所得的叠层薄膜的性能测试结果
由表1中实施例1至4的结果比较可知,优选实施例1和2,储能密度达到80J/cm3以上,储能效率也达到80%以上,最优选实施例1。从实施例1所得的叠层薄膜的性能测试结果可知,该薄膜材料的储能密度在80J/cm3以上,储能效率80.5%,而且介电常数可达470,击穿强度为2378KV/cm,其优越的性能不仅与其适中的厚度和BZT、BMZ层两者优势互补优化薄膜的储能性能相关,而且跟结构设计有关。BMZ3/BZT3的介电常数显著高于BMZ/BZT/BMZ/BZT/BMZ/BZT,原因可能是BZT和BMZ两层之间由于材料差异较大,由费米能级的不同会产生一个内置电场即退极化场,不管施加的电场方向如何,其中的界面层总能反向偏置到施加的电场方向,从而起到削弱极化的作用,而BMZ3/BZT3有着更少的界面,意味着有着更少的退极化场,因此其介电常数显著高于BMZ/BZT/BMZ/BZT/BMZ/BZT,同时也高于BZT2/BMZ2/BZT2和BMZ1/BZT4/BMZ1。而BMZ3/BZT3的击穿强度显著小于BMZ/BZT/BMZ/BZT/BMZ/BZT,原因可归因于BZT和BMZ两层之间由于极化差异很大,导致界面会产生大量的空间电荷,这些电荷会成为金属电极上移动电子的有效电荷陷阱,从而提高电阻率和击穿场强,而BMZ/BZT/BMZ/BZT/BMZ/BZT有着更多的界面,界面处的势垒较高,可以阻碍击穿通道的扩展,提高了其击穿电场,因此其击穿强度显著高于BMZ3/BZT3,同时也高于BZT2/BMZ2/BZT2和BMZ1/BZT4/BMZ1。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程替换,或直接或间接运用在其他相关领域,均同理包括在本发明的专利保护范围内。

Claims (6)

1.一种高储能密度叠层薄膜,其特征在于所述高储能密度叠层薄膜由BMZ层和BZT层构成,总厚度在150-250 nm之间;结构排列上为BMZ3/BZT3、BMZ/BZT/BMZ/BZT/BMZ/BZT叠层薄膜,其中BMZ3/BZT3代表所述高储能密度叠层薄膜的结构上依次由三层BMZ和三层BZT复合而成;BMZ/BZT/BMZ/BZT/BMZ/BZT代表所述高储能密度叠层薄膜由三层BMZ和三层BZT交替复合而成;BMZ代表Bi(Mg0.5Zr0.5)O3;BZT代表Ba(Zr0.25Ti0.75)O3
所述高储能密度叠层薄膜的制备方法,首先将Bi(NO3)3•5H2O、Mg(C2H3O2)2•4H2O、ZrO4C16H36混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得BMZ前驱体溶液;然后将Ba(CH3COO)2、C16H36O4Ti、ZrO4C16H36混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得BZT前驱体溶液;而后,按照叠层薄膜的结构,将BMZ前驱体溶液和BZT前驱体溶液按顺序旋涂在基片上,每旋涂一层后都需要置于热板进行热解并采用快速退火炉在空气气氛下进行退火,退火温度为600-750 ℃,退火时间为90-150 s,最终制得所述高储能密度叠层薄膜。
2.根据权利要求1所述的高储能密度叠层薄膜,其特征在于醋酸、乙酰丙酮和乙二醇甲醚之间的体积比为(10-20):1:(30-40)。
3.根据权利要求1所述的高储能密度叠层薄膜,其特征在于制备BMZ前驱体溶液的方法为:按照组成表达式Bi(Mg0.5Zr0.5)O3中Bi、Mg和Zr的摩尔比将Bi(NO3)3•5H2O、Mg(C2H3O2)2•4H2O和ZrO4C16H36进行称量配料,婚后溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得总浓度为0.1-0.3mol/L的BMZ前驱体溶液。
4.根据权利要求1所述的高储能密度叠层薄膜,其特征在于制备BZT前驱体溶液的方法为:按照组成表达式Ba(Zr0.25Ti0.75)O3中Ba、Zr和Ti的摩尔比将Ba(CH3COO)2、C16H36O4Ti、ZrO4C16H36进行称量配料,混合溶于包含有醋酸、乙酰丙酮和乙二醇甲醚的混合溶剂中,制得总浓度为0.1-0.3mol/L的BZT前驱体溶液。
5.根据权利要求1所述的高储能密度叠层薄膜,其特征在于旋涂过程具体为:先以400-800 rpm的速度旋转5-15 s后转为3500-5000 rpm旋转20-40 s。
6.根据权利要求1所述的高储能密度叠层薄膜,其特征在于热解过程是将基片在200-300 ℃、325-375 ℃、375-425℃这三个温度区间下分别热解4-6 min。
CN202210874462.0A 2022-07-25 2022-07-25 一种高储能密度叠层薄膜及其制备方法 Active CN115295311B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210874462.0A CN115295311B (zh) 2022-07-25 2022-07-25 一种高储能密度叠层薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210874462.0A CN115295311B (zh) 2022-07-25 2022-07-25 一种高储能密度叠层薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN115295311A CN115295311A (zh) 2022-11-04
CN115295311B true CN115295311B (zh) 2024-01-30

Family

ID=83823479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210874462.0A Active CN115295311B (zh) 2022-07-25 2022-07-25 一种高储能密度叠层薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN115295311B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974548B (zh) * 2022-12-16 2023-11-21 佛山仙湖实验室 一种无铅高熵铁电薄膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045762A (zh) * 1988-12-09 1990-10-03 巴特尔纪念研究院 采用控制化学计量和颗粒度生产钙钛矿复合物的亚微型陶瓷粉末的方法
CN1350071A (zh) * 2001-09-14 2002-05-22 中国科学院上海硅酸盐研究所 无铅锆钛酸钡功能陶瓷薄膜的湿化学法制备技术
JP2008115042A (ja) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末およびそれを用いた積層セラミックコンデンサ
JP2010206153A (ja) * 2008-05-28 2010-09-16 Mitsubishi Materials Corp 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
CN102992757A (zh) * 2012-11-20 2013-03-27 清华大学 一种高储能密度的铁电膜材料及其制备方法
CN108929111A (zh) * 2018-09-10 2018-12-04 武汉理工大学 一种超高放电储能密度的介质薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045762A (zh) * 1988-12-09 1990-10-03 巴特尔纪念研究院 采用控制化学计量和颗粒度生产钙钛矿复合物的亚微型陶瓷粉末的方法
CN1350071A (zh) * 2001-09-14 2002-05-22 中国科学院上海硅酸盐研究所 无铅锆钛酸钡功能陶瓷薄膜的湿化学法制备技术
JP2008115042A (ja) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末およびそれを用いた積層セラミックコンデンサ
JP2010206153A (ja) * 2008-05-28 2010-09-16 Mitsubishi Materials Corp 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
CN102992757A (zh) * 2012-11-20 2013-03-27 清华大学 一种高储能密度的铁电膜材料及其制备方法
CN108929111A (zh) * 2018-09-10 2018-12-04 武汉理工大学 一种超高放电储能密度的介质薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Microcrystalline structure modulation and energy storage properties of BaZr0.25Ti0.75O3 thin films》;Huihuang Xu;《Journal of Alloys and Compounds》;第907卷;第1-6页 *

Also Published As

Publication number Publication date
CN115295311A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
Chi et al. Significantly enhanced energy storage density for poly (vinylidene fluoride) composites by induced PDA-coated 0.5 Ba (Zr 0.2 Ti 0.8) O 3–0.5 (Ba 0.7 Ca 0.3) TiO 3 nanofibers
Yang et al. Lead-free A2Bi4Ti5O18 thin film capacitors (A= Ba and Sr) with large energy storage density, high efficiency, and excellent thermal stability
Chen et al. High recoverable energy storage density in (1-x) Bi0. 5 (Na0. 8K0. 2) 0.5 TiO3-xSrZrO3 thin films prepared by a sol-gel method
CN115295311B (zh) 一种高储能密度叠层薄膜及其制备方法
CN108395245B (zh) 高储能密度的钛酸铋钠基电介质薄膜及其制备方法和应用
WO2019206321A1 (en) Multilayer and flexible capacitors with metal-ion doped tio2 colossal permittivity material/polymer composites
Siddiqui et al. Interface modulation in multi-layered BaTiO 3 nanofibers/PVDF using the PVP linker layer as an adhesive for high energy density capacitor applications
Baumert et al. A study of barium strontium titanate thin films for use in bypass capacitors
CN108929111B (zh) 一种超高放电储能密度的介质薄膜及其制备方法
CN111825447B (zh) 一种高储能密度的钛酸钡基介质薄膜及其制备方法
CN114914087B (zh) 一种高储能特性的钛酸铋钠-锆钛酸钡电介质薄膜及其制备方法与应用
CN112201478B (zh) 钛酸锶铋/铁酸铋异质电介质薄膜及其制备方法和应用
CN114671680B (zh) 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法
Ryu et al. Layer‐Controlled Perovskite 2D Nanosheet Interlayer for the Energy Storage Performance of Nanocomposites
CN101333684B (zh) 铈钇共掺钛酸锶钡纳米材料及其制备方法
CN100386289C (zh) 微波介电可调钛酸锶钡/铋锌铌复合薄膜及其制备方法
KR101554943B1 (ko) 이트륨 산화물로 표면 처리된 폴리이미드 유기절연체 및 이를 이용한 박막 트랜지스터
CN104072131B (zh) 铁电薄膜形成用组合物的制造方法及其用途
CN102992757A (zh) 一种高储能密度的铁电膜材料及其制备方法
Diao et al. Structure, dielectric properties and energy storage performance of barium strontium titanate thin films prepared by spin-coating technique
CN109677076A (zh) 一种具有高储能密度的耐高温P(VDF-TrFE)复合双层膜的制备方法
Liu et al. Improving energy density of crystalline–amorphous multilayer films deposited on Ti foils by structural modulation
Liu et al. An Sr doping 0.65 (Bi 0.5 Na 0.5) TiO 3-0.35 (Sr 0.7+ x+ Bi 0.2) TiO 3 ceramic with tunable crystal structures and energy storage performances
CN117373827A (zh) 一种高储能密度的铁电薄膜及其制备方法与应用
Yue et al. SrTiO 3-Bi 3.25 La 0.75 Ti 3 O 12 energy storage film capacitors fabricated on silicon-based substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant