CN111812174A - 一种检测lgg的电化学免疫传感器及其制备和使用方法 - Google Patents

一种检测lgg的电化学免疫传感器及其制备和使用方法 Download PDF

Info

Publication number
CN111812174A
CN111812174A CN202010517838.3A CN202010517838A CN111812174A CN 111812174 A CN111812174 A CN 111812174A CN 202010517838 A CN202010517838 A CN 202010517838A CN 111812174 A CN111812174 A CN 111812174A
Authority
CN
China
Prior art keywords
lgg
electrode
detecting
bndc
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010517838.3A
Other languages
English (en)
Other versions
CN111812174B (zh
Inventor
高亚军
独倚天
杨飞宇
王嘉敏
杨占军
杨振泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010517838.3A priority Critical patent/CN111812174B/zh
Publication of CN111812174A publication Critical patent/CN111812174A/zh
Application granted granted Critical
Publication of CN111812174B publication Critical patent/CN111812174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/335Assays involving biological materials from specific organisms or of a specific nature from bacteria from Lactobacillus (G)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种检测LGG的电化学免疫传感器及其制备和使用方法,该传感器,包括电极和包覆在电极上的Cu@Cu2O‑BNDC‑壳聚糖复合材料,其制备方法包括:(S1)电极预处理;(S2)制备Cu@Cu2O‑BNDC;(S3)制备Cu@Cu2O‑BNDC‑壳聚糖溶液;(S4)制备Cu@Cu2O‑BNDC‑壳聚糖复合电极;(S5)将LGG抗体滴加到Cu@Cu2O‑BNDC‑壳聚糖复合电极上,并用血清白蛋白溶液阻断其非特异性结合位点,用缓冲溶液洗涤后,得到检测LGG的电化学免疫传感器;其使用方法包括:(1)检测LGG的电化学免疫传感器电化学行为测试;(2)实际样品的测量。该免疫传感器体积小,便于使用,在检测LGG时灵敏度高、抗干扰性强、检测时间短;其制备步骤简单、成本低廉。

Description

一种检测LGG的电化学免疫传感器及其制备和使用方法
技术领域
本发明涉及一种电化学免疫传感器及其制备和使用方法,更具体地,涉及一种检测LGG的电化学免疫传感器及其制备和使用方法。
背景技术
鼠李糖乳杆菌(Lactobacillus rhamnosus)是一种重要的益生菌,上世纪80年代由美国科学家Gorbach和Goldin首次从健康人群的肠道中分离而得,具有保持肠道微生态平衡,抑制有害细菌生长,消除过敏等生理功能。电流型无标记免疫分析方法基于抗原抗体的特异性结合,在电极表面形成的免疫复合物阻碍电化学活性探针与电极之间的电子传输,从而引起电活性物质峰电流下降,利用这种电流的变化可实现LGG的定量检测。但是,现有传统的电化学探针应用于无标记电化学传感,传感器的检测灵敏度不高,未能在LGG检测上充分发挥电流型无标记免疫分析方法高灵敏度检测的优势。
发明内容
发明目的:本发明的目的是提供一种操作简单、成本低、灵敏度高的检测LGG的电化学免疫传感器,本发明的另一目的是提供该免疫传感器的制备方法,本发明的又一目的是提供该免疫传感器的使用方。
技术方案:本发明所述一种检测LGG的电化学免疫传感器,包括电极和包覆在电极上的Cu@Cu2O-BNDC-壳聚糖复合材料。
其中,电极为玻碳电极。
本发明所述的检测LGG的电化学免疫传感器的制备方法,包括以下步骤:
(S1)电极预处理;
(S2)将Cu(NO3)2溶液与苯胺溶液、过硫酸铵溶液混合,然后进行干燥、碳化,制得Cu@Cu2O-BNDC;
(S3)将Cu@Cu2O-BNDC分散在壳聚糖溶液中制得Cu@Cu2O-BNDC-壳聚糖溶液;
(S4)将Cu@Cu2O-BNDC-壳聚糖溶液滴加在预处理的电极上得到Cu@Cu2O-BNDC-壳聚糖复合电极;
(S5)将LGG抗体滴加到Cu@Cu2O-BNDC-壳聚糖复合电极上,并用血清白蛋白溶液阻断其非特异性结合位点,用缓冲溶液洗涤后,得到检测LGG的电化学免疫传感器。
其中,步骤2中苯胺溶液、Cu(NO3)2溶液与过硫酸铵溶液的摩尔比为3~7:5:4~6;并且先将苯胺和过硫酸铵分别溶于硼酸;碳化过程在惰性气体中,温度为800~1000℃,时间为2~3h;步骤4中LGG抗体浓度为80~120μgmL-1L。
本发明所述的检测LGG的电化学免疫传感器的使用方法,包括以下步骤:
(1)检测LGG的电化学免疫传感器电化学行为测试:将LGG抗原滴加到检测LGG的电化学免疫传感器上作为工作电极,与参比电极和辅助电极构成三电极体系,在含有[Fe(CN)6]3-/4-的PBS缓冲溶液中采用差分脉冲伏安法进行电化学测量,得出该电化学免疫传感器对LGG的拟合线性回归方程及检出限;
(2)实际样品的测量:将处理好的待测样品滴加到检测LGG的电化学免疫传感器上作为工作电极,与参比电极和辅助电极构成三电极体系,进行电化学测量,并利用步骤1中的拟合线性回归方程即可计算出待检测样品中LGG的浓度。
其中,步骤1中LGG抗原浓度为102-108CFU/mL,参比电极和辅助电极分别为甘汞电极和铂丝电极。
有益效果:本发明与现有技术相比,其显著优点是:1、该免疫传感器体积小,便于使用;2、该免疫传感器在检测LGG时灵敏度高、抗干扰性强、检测时间短,检出限为55CFU/mL;3、该免疫传感器的制备步骤简单、成本低廉。
附图说明
图1是实施例1中Cu@Cu2O-BNDC的扫描电镜图;
图2是实施例1中三电极体系的LGG抗原溶液浓度与其对应峰电流的线性关系图。
具体实施方式
实施例1
S1:将玻碳电极分别在1.0μm、0.3μm的Al2O3在麂皮上抛光至镜面,每次抛光后先洗去表面污物,然后转移到乙醇和去离子水中超声10min;
S2:将50mM苯胺溶于1M硼酸定容至100mL,然后将50mM过硫酸铵溶于1M硼酸定容至100mL,再将上述溶液在0℃下混合并保持20min,向其中滴加新配制的50mM Cu(NO3)2溶液在N2下连续搅拌12h,然后在60℃下真空蒸发,用蒸馏水洗涤所获得的固体,并在80℃的真空烘箱中干燥,最后将所得样品在900℃N2下碳化2h,得到Cu@Cu2O-BNDC粉末,其扫描电镜图如图1所示;
S3:将2.0mg Cu@Cu2O-BNDC粉末分散在1.0wt%壳聚糖溶液中并超声10min,得到Cu@Cu2O-BNDC-壳聚糖溶液;
S4:将5.0μL Cu@Cu2O-BNDC-壳聚糖溶液滴加到预处理的玻碳电极上,并使其在4℃下干燥12h,干燥后得到Cu@Cu2O-BNDC-壳聚糖复合电极;
S5:将10μL的100μgmL-1LGG抗体在室温下,Cu@Cu2O-BNDC-壳聚糖复合电极,静置1小时,然后用pH=7.4的PBS缓冲溶液洗涤以除去物理吸附,最后,将得到的电极与1%牛血清蛋白溶液在室温下封闭1小时,阻断非特异性结合位点,用PBS缓冲溶液再次洗涤后,得到检测LGG的电化学免疫传感器。
使用时,先将5μL浓度为102-108CFU/mL的LGG溶液滴加到检测LGG的电化学免疫传感器上,并以其为工作电极,铂丝电极为对电极,甘汞电极为参比电极构成经典三电极结构,在含有5.0mM[Fe(CN)6]3-/4-的10mL pH=7.4的PBS溶液中进行电化学测量,采用差分脉冲伏安法(DPV),参数设定如下:振幅为50mV;脉冲宽度为0.05s;脉冲周期为0.5s。以不同浓度的LGG为横坐标,峰电流值为纵坐标,可得散点分布图如图2所示,做直线拟合后分析可知,复合电极所检测到的峰电流值在102-108CFU/mL区间处具有良好的线性关系,线性回归方程为y=-11.854x+251.6,R2=0.9924,检出限为55CFU/mL。
对实际样品进行检测,选取添加了鼠李糖乳杆菌的牛奶作为检测样品,取1mL无菌12%的脱脂牛奶,添加pH=7.4的PBS缓冲溶液稀释至10mL制成待测样品,将待测样品分别添加不同浓度的鼠李糖乳杆菌,用该传感器检测上述样品,重复5次,结果如表1所示,免疫传感器的相对标准偏差(RSD)在2.71%-5.13%之间,回收率在90.98%-103.76%之间,说明本发明提出的免疫传感器能够很好地应用于鼠李糖乳杆菌的测定。
表1实际样品检测
Figure BDA0002530836700000031
实施例2
本实施例与实施例1的区别是步骤S2中:将30mM苯胺溶于1M硼酸定容至100mL,然后将40mM过硫酸铵溶于1M硼酸定容至100mL,再将上述溶液在0℃下混合并保持20min,向其中滴加新配制的50mM Cu(NO3)2溶液在N2下连续搅拌12h,然后在60℃下真空蒸发,用蒸馏水洗涤所获得的固体,并在80℃的真空烘箱中干燥,最后将所得样品在750℃N2下碳化4h,得到Cu@Cu2O-BNDC粉末;最终得到的检测LGG的电化学免疫传感器检出限为10000CFU/mL。
实施例3
本实施例与实施例1的区别是步骤S2中:将70mM苯胺溶于1M硼酸定容至100mL,然后将60mM过硫酸铵溶于1M硼酸定容至100mL,再将上述溶液在0℃下混合并保持20min,向其中滴加新配制的50mM Cu(NO3)2溶液在N2下连续搅拌24h,然后在60℃下真空蒸发,用蒸馏水洗涤所获得的固体,并在80℃的真空烘箱中干燥,最后将所得样品在1000℃N2下碳化3h,得到Cu@Cu2O-BNDC粉末;最终得到的检测LGG的电化学免疫传感器检出限为3000CFU/mL。

Claims (10)

1.一种检测LGG的电化学免疫传感器,其特征在于,包括电极和包覆在电极上的Cu@Cu2O-BNDC-壳聚糖复合材料。
2.根据权利要求1所述的检测LGG的电化学免疫传感器,其特征在于,所述电极为玻碳电极。
3.一种权利要求1所述的检测LGG的电化学免疫传感器的制备方法,其特征在于,包括以下步骤:
(S1)电极预处理;
(S2)将Cu(NO3)2溶液与苯胺溶液、过硫酸铵溶液混合,然后进行干燥、碳化,制得Cu@Cu2O-BNDC;
(S3)将Cu@Cu2O-BNDC分散在壳聚糖溶液中制得Cu@Cu2O-BNDC-壳聚糖溶液;
(S4)将Cu@Cu2O-BNDC-壳聚糖溶液滴加在预处理的电极上得到Cu@Cu2O-BNDC-壳聚糖复合电极;
(S5)将LGG抗体滴加到Cu@Cu2O-BNDC-壳聚糖复合电极上,并用血清白蛋白溶液阻断其非特异性结合位点,用缓冲溶液洗涤后,得到检测LGG的电化学免疫传感器。
4.根据权利要求3所述的检测LGG的电化学免疫传感器的制备方法,其特征在于,所述步骤2中苯胺溶液、Cu(NO3)2溶液与过硫酸铵溶液的摩尔比为3~7:5:4~6。
5.根据权利要求3或4所述的检测LGG的电化学免疫传感器的制备方法,其特征在于,所述步骤2中先将苯胺和过硫酸铵分别溶于硼酸。
6.根据权利要求3所述的检测LGG的电化学免疫传感器的制备方法,其特征在于,所述步骤2中碳化过程在惰性气体中,温度为750~1000℃,时间为2~4h。
7.根据权利要求3所述的检测LGG的电化学免疫传感器的制备方法,其特征在于,所述步骤4中LGG抗体浓度为90~110μgmL-1
8.一种权利要求1所述的检测LGG的电化学免疫传感器的使用方法,其特征在于,包括以下步骤:
(1)检测LGG的电化学免疫传感器电化学行为测试:将LGG抗原滴加到检测LGG的电化学免疫传感器上作为工作电极,与参比电极和辅助电极构成三电极体系,在含有[Fe(CN)6]3-/4-的PBS缓冲溶液中采用差分脉冲伏安法进行电化学测量,得出该电化学免疫传感器对LGG的拟合线性回归方程及检出限;
(2)实际样品的测量:将处理好的待测样品滴加到检测LGG的电化学免疫传感器上作为工作电极,与参比电极和辅助电极构成三电极体系,进行电化学测量,并利用步骤1中的拟合线性回归方程即可计算出待检测样品中LGG的浓度。
9.根据权利要求9中的所述的检测LGG的电化学免疫传感器的使用方法,其特征在于,所述步骤1中LGG抗原浓度为102-108CFU/mL。
10.根据权利要求9中的所述的检测LGG的电化学免疫传感器的使用方法,其特征在于,所述参比电极和辅助电极分别为甘汞电极和铂丝电极。
CN202010517838.3A 2020-06-09 2020-06-09 一种检测lgg的电化学免疫传感器及其制备和使用方法 Active CN111812174B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010517838.3A CN111812174B (zh) 2020-06-09 2020-06-09 一种检测lgg的电化学免疫传感器及其制备和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010517838.3A CN111812174B (zh) 2020-06-09 2020-06-09 一种检测lgg的电化学免疫传感器及其制备和使用方法

Publications (2)

Publication Number Publication Date
CN111812174A true CN111812174A (zh) 2020-10-23
CN111812174B CN111812174B (zh) 2022-09-23

Family

ID=72844978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010517838.3A Active CN111812174B (zh) 2020-06-09 2020-06-09 一种检测lgg的电化学免疫传感器及其制备和使用方法

Country Status (1)

Country Link
CN (1) CN111812174B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935589A (zh) * 2022-03-29 2022-08-23 扬州大学 一种基于模拟酶的电化学免疫传感器及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746876A (zh) * 2017-11-09 2018-03-02 扬州大学 一种鼠李糖乳杆菌免疫磁珠电化学传感器检测方法
CN109239343A (zh) * 2018-10-23 2019-01-18 扬州大学 一种鼠李糖乳杆菌噬菌体的快速定量检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746876A (zh) * 2017-11-09 2018-03-02 扬州大学 一种鼠李糖乳杆菌免疫磁珠电化学传感器检测方法
CN109239343A (zh) * 2018-10-23 2019-01-18 扬州大学 一种鼠李糖乳杆菌噬菌体的快速定量检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARAMASIVAM BALASUBRAMANIAN ET AL.: "Rational Design of Cu@Cu2O Nanospheres Anchored B, N Co-doped Mesoporous Carbon: A Sustainable Electrocatalyst To Assay Eminent Neurotransmitters Acetylcholine and Dopamine", 《ACS SUSTAINABLE CHEM. ENG.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935589A (zh) * 2022-03-29 2022-08-23 扬州大学 一种基于模拟酶的电化学免疫传感器及其制备方法和应用

Also Published As

Publication number Publication date
CN111812174B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Fu et al. Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques
Bagheri et al. Gold nanoparticles deposited on fluorine-doped tin oxide surface as an effective platform for fabricating a highly sensitive and specific digoxin aptasensor
CN101655473B (zh) 纳米金免疫电极的制备方法
CN109100408B (zh) 基于FePc/N,B-rGO修饰电极用于检测人体血清中谷胱甘肽的方法
CN110161100B (zh) 心肌肌钙蛋白I的免标记电化学传感器制备方法及对cTnI的检测方法
CN110794017B (zh) 一种检测降钙素原的电化学免疫传感器的制备方法
Norouzi et al. Hydrogen peroxide biosensor based on hemoglobin immobilization on gold nanoparticle in FFT continuous cyclic voltammetry flow injection system
Simão et al. Nanostructured electrochemical immunosensor for detection of serological alkaline phosphatase
Wang et al. Graphene-Prussian blue/gold nanoparticles based electrochemical immunoassay of carcinoembryonic antigen
CN110441528B (zh) 一种基于核壳结构Mo2C@C纳米球的心肌钙蛋白I免疫传感器的构建
Xie et al. An electrochemical aptasensor for Mycobacterium tuberculosis ESAT-6 antigen detection using bimetallic organic framework
CN110441535B (zh) 一种基于Pd NCs功能化CuInOS检测降钙素原的电化学免疫传感器的制备方法
Nirbhaya et al. 3D-phosphorus doped mesoporous graphitic carbon nitride based immunosensor for swine flu detection
CN105067694A (zh) 用于快速检测阪崎肠杆菌的纳米免疫传感器的制备方法及其检测方法
CN109187687B (zh) 共轭有机微孔材料修饰电极的制备及作为过氧亚硝基阴离子电化学传感器的应用
CN111812174B (zh) 一种检测lgg的电化学免疫传感器及其制备和使用方法
Wang et al. Co 3 O 4/PAn MAGNETIC NANOPARTICLE-MODIFIED ELECTROCHEMICAL IMMUNOSENSOR FOR CHLORPYRIFOS.
Zhang et al. Sandwich-format electrochemiluminescence assay for PDGF-BB using quantum dots–dendrimer nanocomposites as probe
CN105866221B (zh) 可催化还原血红蛋白的电化学传感器
Wang et al. A dual-emitting immunosensor based on manganese dioxide nanoflowers and zinc sulfide quantum dots with enhanced electrochemiluminescence performance for the ultrasensitive detection of procalcitonin
CN114324514A (zh) 一种基于pet的柔性电极及其制备方法和应用
CN102901822A (zh) 聚合物自组装超微孔膜免疫组合传感器的制备方法
CN110687178B (zh) 一种结核分枝杆菌cfp-10抗原免疫传感器及其制备方法和应用
CN110672688B (zh) 一种用于检测四溴双酚a双(2-羟基乙基)醚的电化学生物传感器及其制备方法和应用
Wen-Jie et al. Electrochemical immunosensor for detection of E. coli in urban sludge based on dendrimer-encapsulated Au and enhanced gold nanoparticle labels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant