CN111812137A - 建立同基材宽范围scr脱硝催化剂的xrf法标准曲线的方法 - Google Patents
建立同基材宽范围scr脱硝催化剂的xrf法标准曲线的方法 Download PDFInfo
- Publication number
- CN111812137A CN111812137A CN202010668803.XA CN202010668803A CN111812137A CN 111812137 A CN111812137 A CN 111812137A CN 202010668803 A CN202010668803 A CN 202010668803A CN 111812137 A CN111812137 A CN 111812137A
- Authority
- CN
- China
- Prior art keywords
- source
- standard curve
- establishing
- ammonium
- denitration catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/223—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2202—Preparing specimens therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/076—X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/10—Different kinds of radiation or particles
- G01N2223/101—Different kinds of radiation or particles electromagnetic radiation
- G01N2223/1016—X-ray
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/312—Accessories, mechanical or electrical features powder preparation
Landscapes
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明公开了一种建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法,包括以下步骤(1)确定各成分的检测范围、(2)计算并称取各物质的添加量、(3)混料、(4)制作样片、(5)建立各成分的标准曲线。通过本发明的方法建立的6种成分的标准曲线,都呈现了较好的线性关系,能够满足实验室对SCR脱硝催化剂化学成分的检测要求。
Description
技术领域
本发明具体涉及一种建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法。
背景技术
SCR脱硝催化剂的化学成分是新鲜催化剂验收以及运行中催化剂性能分析的重要指标,并且直接影响催化脱硝效果。
利用X射线荧光光谱仪对SCR脱硝催化剂的化学成分进行元素定性和定量分析的原理是:元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发出具有一定特征波长的X射线,根据测得谱线的波长和强度进行元素定性和定量分析,可检测元素范围为9号元素(F)到92号元素(U)。
目前,只有GB/T 31590-2015《烟气脱硝催化剂化学成分分析方法》中详细介绍了钒钛系SCR脱硝催化剂利用X射线荧光光谱仪(XRF)分析的标准曲线(压片法)绘制方法。GB/T 31590-2015《烟气脱硝催化剂化学成分分析方法》中标准曲线(压片法)绘制方法是通过将高纯氧化钛、二氧化硅、三氧化钼、三氧化钨、五氧化二钒、三氧化铝、氧化钡以及氧化钙等试剂干燥后按照一定的比例称量混合后,利用压片机压制样品制得各成分呈一定梯度的标准样片。然后在仪器的工作条件下,用X射线荧光光谱仪(XRF)测量标准样片,根据实际情况选择合适的校准方程,以标准样片中该元素质量分数和测量的荧光强度平均值计算出标准曲线参数和系数,得到标准曲线。
但是上述方法在实际操作过程中存在几个问题,第一:称量过程中,高纯氧化物试剂很容易吸潮,造成称量不准确的现象;第二:此方法称量后的混合样品很难混合均匀;第三:因试剂易吸潮制得的样片表面不光滑,容易有裂缝表面松散;第四:制得标准样品与SCR脱硝催化剂产品基材不一致,测量会有较大误差。
发明内容
为了解决上述问题,提高检测方法的可应用性和检测准确度,本发明提供了一种建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法,通过本发明的方法建立的6种成分的标准曲线,都呈现了较好的线性关系,能够满足实验室对SCR脱硝催化剂化学成分的检测要求。
本发明的技术方案为:
建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法,包括以下步骤:
(1)确定各成分的检测范围:确定TiO2的检测范围为96.65%-77.00%、WO3的检测范围为0.50%-8.00%、V2O5的检测范围为0.15%-4.00%、SiO2的检测范围为0.50%-4.00%、P2O5的检测范围为0.20%-2.00%、MoO3的检测范围为2.00%-5.00%;
(2)计算并称取各物质的添加量:根据上述各成分的比例以及钛白粉、钨源、钒源、钼源、磷源、硅源试剂的纯度和氧化物质量占比,计算得小混练各物质的添加量,并根据计算的添加量称取各物质;
(3)混料:将称取的钛白粉、钨源、钒源、钼源、磷源、硅源试剂与去离子水和有机粘结剂加入到小混炼机中混成均匀的泥料;
(4)制作样片:取多份混合均匀的泥料放入马弗炉中煅烧,冷却后放置到粉碎机中粉碎,得到磨制均匀的粉末样品,对粉末样品压片即得标准样片;这样可以得到与被测SCR脱硝催化剂样品相同基材的样品,样品压片可以制得表面光滑的标准样片,且通过小混炼机和粉碎机可以使各物料混合均匀;
(5)建立各成分的标准曲线:利用以上标准样片在X射线荧光光谱仪中,按照设备软件建立定量检测方法,最终得到各成分的标准曲线。
优选地,所述步骤(2)中,钨源为偏钨酸铵、仲钨酸铵、偏钨酸或白钨酸,钒源为偏钒酸铵、偏钒酸、正钒酸或焦钒酸,钼源为七钼酸铵、钼酸铵、二钼酸铵或四钼酸铵,磷源为磷酸氢二铵、磷酸二氢铵或偏磷酸,硅源为硅粉、硅酸或硅溶胶。
优选地,所述步骤(3)中,有机粘结剂为羧甲基纤维素铵、甲基纤维素或聚氧化乙烯。
优选地,所述步骤(4)中,煅烧温度为300-500℃,煅烧时间为1-3h。
本发明与现有技术相比,具有以下有益效果:本发明的方法解决了现有方法中存在的高纯氧化物试剂很容易吸潮造成称量不准确的问题,以及因试剂易吸潮制得的样片表面不光滑,容易有裂缝表面松散的问题。通过本发明的方法建立的6种成分的标准曲线,都呈现了较好的线性关系,能够满足实验室对SCR脱硝催化剂化学成分的检测要求。
附图说明
图1是通过本发明的方法建立的V2O5标准曲线。
图2是通过本发明的方法建立的WO3标准曲线。
图3是通过本发明的方法建立的SiO2标准曲线。
图4是通过本发明的方法建立的P2O5标准曲线。
图5是通过本发明的方法建立的MoO3标准曲线。
图6是通过本发明的方法建立的TiO2标准曲线。
具体实施方式
本发明提供了一种建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法,包括以下步骤:
(1)确定各成分的检测范围:根据目前各生产工艺配方,尽可能地建立宽测试范围的标准曲线以满足各类型SCR脱硝催化剂的定量检测需求。其中,TiO2的检测范围为96.65%-77.00%、WO3的检测范围为0.50%-8.00%、V2O5的检测范围为0.15%-4.00%、SiO2的检测范围为0.50%-4.00%、P2O5的检测范围为0.20%-2.00%、MoO3的检测范围为2.00%-5.00%,如表1所示:
表1 SCR脱硝催化剂标准样品各物质的质量分数
(2)计算并称取各物质的添加量:根据上述各成分的比例以及钛白粉、偏钨酸铵、偏钒酸铵、七钼酸铵、磷酸氢二铵、硅粉试剂的纯度和氧化物质量占比,计算得小混练各物质的添加量,如表2所示,并根据计算的添加量称取各物质:
(3)混料:将称取的钛白粉、偏钨酸铵、偏钒酸铵、七钼酸铵、磷酸氢二铵、硅粉试剂与去离子水和有机粘结剂羧甲基纤维素铵、甲基纤维素或聚氧化乙烯加入到小混炼机中混成均匀的泥料;
(4)制作样片:取9份500g混合均匀的泥料放入马弗炉中300-500℃下煅烧1-3h,冷却后放置到粉碎机中粉碎,得到磨制均匀的粉末样品,对粉末样品压片即得标准样片;
(5)建立各成分的标准曲线:利用以上标准样片在X射线荧光光谱仪中,按照设备软件建立定量检测方法,最终得到各成分的标准曲线(见图1-图6)。V2O5、WO3、SiO2、P2O5、MoO3、TiO2标准曲线的准确度分别为0.068mass%、0.026mass%、0.071mass%、0.044mass%、0.12mass%、0.77mass%。
Claims (4)
1.建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法,其特征在于,包括以下步骤:
(1)确定各成分的检测范围:确定TiO2的检测范围为96.65%-77.00%、WO3的检测范围为0.50%-8.00%、V2O5的检测范围为0.15%-4.00%、SiO2的检测范围为0.50%-4.00%、P2O5的检测范围为0.20%-2.00%、MoO3的检测范围为2.00%-5.00%;
(2)计算并称取各物质的添加量:根据上述各成分的比例以及钛白粉、钨源、钒源、钼源、磷源、硅源试剂的纯度和氧化物质量占比,计算得小混练各物质的添加量,并根据计算的添加量称取各物质;
(3)混料:将称取的钛白粉、钨源、钒源、钼源、磷源、硅源试剂与去离子水和有机粘结剂加入到小混炼机中混成均匀的泥料;
(4)制作样片:取多份混合均匀的泥料放入马弗炉中煅烧,冷却后放置到粉碎机中粉碎,得到磨制均匀的粉末样品,对粉末样品压片即得标准样片;
(5)建立各成分的标准曲线:利用以上标准样片在X射线荧光光谱仪中,按照设备软件建立定量检测方法,最终得到各成分的标准曲线。
2.如权利要求1所述的建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法,其特征在于:所述步骤(2)中,钨源为偏钨酸铵、仲钨酸铵、偏钨酸或白钨酸,钒源为偏钒酸铵、偏钒酸、正钒酸或焦钒酸,钼源为七钼酸铵、钼酸铵、二钼酸铵或四钼酸铵,磷源为磷酸氢二铵、磷酸二氢铵或偏磷酸,硅源为硅粉、硅酸或硅溶胶。
3.如权利要求1所述的建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法,其特征在于:所述步骤(3)中,有机粘结剂为羧甲基纤维素铵、甲基纤维素或聚氧化乙烯。
4.如权利要求1所述的建立同基材宽范围SCR脱硝催化剂的XRF法标准曲线的方法,其特征在于:所述步骤(4)中,煅烧温度为300-500℃,煅烧时间为1-3h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010668803.XA CN111812137A (zh) | 2020-07-13 | 2020-07-13 | 建立同基材宽范围scr脱硝催化剂的xrf法标准曲线的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010668803.XA CN111812137A (zh) | 2020-07-13 | 2020-07-13 | 建立同基材宽范围scr脱硝催化剂的xrf法标准曲线的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111812137A true CN111812137A (zh) | 2020-10-23 |
Family
ID=72842834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010668803.XA Withdrawn CN111812137A (zh) | 2020-07-13 | 2020-07-13 | 建立同基材宽范围scr脱硝催化剂的xrf法标准曲线的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111812137A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113607763A (zh) * | 2021-07-30 | 2021-11-05 | 苏州西热节能环保技术有限公司 | 一种平板式催化剂的成分分析制样方法及装置 |
-
2020
- 2020-07-13 CN CN202010668803.XA patent/CN111812137A/zh not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113607763A (zh) * | 2021-07-30 | 2021-11-05 | 苏州西热节能环保技术有限公司 | 一种平板式催化剂的成分分析制样方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101799437B (zh) | X射线荧光法测定助催化剂中磷、铁含量的方法 | |
CN101526488A (zh) | 一种x射线荧光光谱分析铁矿石成分的方法 | |
CN104502169B (zh) | 测定铁合金中元素含量的方法及其样品的预处理方法 | |
CN101135617B (zh) | 一种钒氮合金消解方法 | |
CN100498309C (zh) | 利用x-射线荧光法分析催化裂化催化剂中金属含量的方法 | |
CN105004711A (zh) | 一种β-SiC中杂质元素的定量分析方法 | |
Borgese et al. | Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW) | |
CN103278488B (zh) | 一种快速半定量gh4169合金痕量元素的方法 | |
CN111812137A (zh) | 建立同基材宽范围scr脱硝催化剂的xrf法标准曲线的方法 | |
CN108802084A (zh) | X射线荧光光谱法分析氢氧化铝中成分含量的方法、氢氧化铝及其应用 | |
Xu et al. | Ultra small-mass graphitization by sealed tube zinc reduction method for AMS 14C measurements | |
Campbell et al. | Quantitative analysis of niobium and tantalum in ores by fluorescent X-ray spectroscopy | |
Maung et al. | Development of a method for the direct determination of fluorine in solid samples using electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry | |
CN106290180A (zh) | 一种食品中铅、铬、镉和铜含量的检测方法 | |
Pancras et al. | Multi-element electrothermal AAS determination of 11 marker elements in fine ambient aerosol slurry samples collected with SEAS-II | |
Marina et al. | Determination of phosphorus in raw materials for ceramics: comparison between X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry | |
Maria das Gracas et al. | Comparison of decomposition procedures for analysis of titanium dioxide using inductively coupled plasma optical emission spectrometry | |
Birks et al. | Applications of Curved-Crystal X-ray spectrometers | |
Pouzar et al. | Quantitative LIBS analysis of vanadium in samples of hexagonal mesoporous silica catalysts | |
Hoenig | Critical discussion of trace element analysis of plant matrices | |
CN106404752A (zh) | 一种肥料中单质硫的测定方法 | |
Rodrigues et al. | Determination of cadmium, copper and lead in alumina based catalysts by direct solid sampling graphite furnace atomic absorption spectrometry | |
CN108414556A (zh) | 一种xrf钴内标分析用包衣熔剂片的制备方法 | |
CN115219445A (zh) | 一种采用分光光度法测定氧化铁粉中二氧化硅含量的方法 | |
Šerá et al. | Determination of key elements in plant samples by inductively coupled plasma optical emission spectrometry with electrothermal vaporization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20201023 |