CN111801423A - 调节植物中的氨基酸含量 - Google Patents

调节植物中的氨基酸含量 Download PDF

Info

Publication number
CN111801423A
CN111801423A CN201980016695.3A CN201980016695A CN111801423A CN 111801423 A CN111801423 A CN 111801423A CN 201980016695 A CN201980016695 A CN 201980016695A CN 111801423 A CN111801423 A CN 111801423A
Authority
CN
China
Prior art keywords
plant
seq
polynucleotide
sequence
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980016695.3A
Other languages
English (en)
Inventor
A·荷福克
L·博维特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philip Morris Products SA
Original Assignee
Philip Morris Products SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philip Morris Products SA filed Critical Philip Morris Products SA
Publication of CN111801423A publication Critical patent/CN111801423A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/823Nicotiana, e.g. tobacco
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/12Chemical features of tobacco products or tobacco substitutes of reconstituted tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/302Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by natural substances obtained from animals or plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01001Aspartate transaminase (2.6.1.1), i.e. aspartate-aminotransferase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Physiology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

描述了一种植物细胞,所述植物细胞包含:(i)多核苷酸,所述多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15具有至少80%的序列同一性的序列,由其组成或基本上由其组成;(ii)多肽,所述多肽由(i)中所示的所述多核苷酸编码;(iii)多肽,所述多肽包含与SEQ ID NO:6或SEQ ID NO:8具有至少95%的序列同一性、与SEQ ID NO:2或SEQ ID NO:10或SEQ ID NO:12具有至少93%的序列同一性或与SEQ ID NO:4或SEQ ID NO:14或SEQ ID NO:16具有至少94%的序列同一性的序列,由其组成或基本上由其组成;或(iv)构建体、载体或表达载体,其包含(i)中所示的经分离的多核苷酸,其中与所述多核苷酸或多肽的表达或活性未被修饰的对照植物细胞相比,所述植物细胞包含至少一种修饰,所述至少一种修饰调节所述多核苷酸或所述多肽的表达或活性。

Description

调节植物中的氨基酸含量
技术领域
本发明公开了编码来自烟草(Nicotiana tabacum)的天冬氨酸转氨酶(AAT)的基因的多核苷酸序列及其变体、同源物和片段。还公开了由其编码的多肽序列以及其变体、同源物和片段。还公开了调节一个或多个NtAAT基因的表达或由其编码的NtAAT多肽的功能或活性,以调节植物或其部分中一种或多种游离氨基酸(诸如天冬氨酸)和由其衍生的代谢物或副产物(诸如氨)的水平。
背景技术
丙烯酰胺是式C3H5NO(lUPAC名称为丙-2-烯酰胺)的化合物,并且人们增加了关于其潜在毒性的关注。在包含烟草的吸烟制品的气溶胶中的丙烯酰胺的来源可以至少部分地来自存在于用于生产吸烟制品的烟草材料中的氨基酸。栽培烟草类型在干制期间表现出总游离氨基酸的增加,特别是晾干(air-cured)烟草类型和晒干(sun-cured)烟草类型。与允许酶反应在收获后10-15天仍然有活性的烟道干制(其为快速干燥过程)相比,干制烟草材料中氨基酸含量的变化与在环境温度下干制(晾干)的时间有关。另外,晾干的烟草材料表现出比其他干制的烟草更高的水含量,从而减慢了环境温度下的干燥过程,因此被认为是使一些酶反应在干制阶段的后期仍然有活性的第二因素。期望降低植物中(尤其是干制植物材料和由其衍生的烟和气溶胶中)的氨基酸和由其衍生的代谢物和副产物的水平。由于氨可能是在干制过程中产生的氨基酸的副产物,因此干制的叶子、烟和气溶胶中的氨的水平也可能降低。还期望在加热或燃烧烟草时减少气溶胶或烟中不期望的气味的形成。
本发明力图解决所属领域中的这一需要。
发明内容
本文描述了编码来自烟草的AAT的许多多核苷酸序列,其参与早期干制期间的氨基酸生物合成。在干制期间未过度表达的NtATT基因的变化将不会有助于调节氨基酸水平和来源于所述氨基酸的代谢物的水平。然而,这些基因可能参与其他代谢途径,并且它们表达的变化可能导致农艺学上有害的表型(例如,缓慢生长)。知道哪些NtAAT基因在干制期间过度表达有利地允许选择仅在相关基因中有变化的植物,并减少对其他代谢过程的潜在负面影响。
AAT催化天冬氨酸与谷氨酸之间的α-氨基的可逆转移,因此是氨基酸代谢中通过从谷氨酸和天冬氨酸引导氮的关键酶。天冬氨酸的合成对于其他氨基酸如天冬酰胺、苏氨酸、异亮氨酸、半胱氨酸和甲硫氨酸的合成至关重要。在干制过程中,天冬氨酸通过天冬酰胺合成酶转化为天冬酰胺。天冬酰胺和谷氨酰胺是衰老叶子中N-再活化的关键化合物,天冬酰胺是白肋烟干制叶子中产生的主要氨基酸。已知天冬酰胺在加热烟草叶子时产生丙烯酰胺。天冬氨酸也是其他氨基酸生物诸如苏氨酸、甲硫氨酸和半胱氨酸合成的关键,一些氨基酸在加热时产生硫磺味。通过调节所公开的AAT的表达和/或活性,现在可以改变植物部分(诸如叶子)和来源于所述植物部分的烟或气溶胶的化学性质。有趣的是,如本文所述,一些AAT烟草基因在从晾干过程开始至少8天后仍可表达。例如,可以调节在干制期间和干制之后一种或多种氨基酸(诸如天冬氨酸)和来源于所述氨基酸的代谢物(诸如氨)的量,因此可以调节、适当地减少在烟草加热期间形成的丙烯酰胺的形成。又如,还可以调节、适当地减少在烟草加热时会产生硫磺味的其他氨基酸的形成。本文描述了来自烟草的几种AAT基因组多核苷酸序列,包括NtAAT1-S(SEQ ID NO:5)、NtAAT1-T(SEQ ID NO:7)、NtAAT2-S(SEQID NO:1)、NtAAT2-T(SEQ ID NO:3)、NtAAT3-S(SEQ ID NO:9)、NtAAT3-T(SEQ ID NO:11)、NtAAT4-S(SEQ ID NO:13)和NtAAT4-T(SEQ ID NO:15)。还公开了NtAAT1-S(SEQ ID NO:6)、NtAAT1-T(SEQ ID NO:8)、NtAAT2-S(SEQ ID NO:2)、NtAAT2-T(SEQ ID NO:4)、NtAAT3-S(SEQ ID NO:10)、NtAAT3-T(SEQ ID NO:12)、NtAAT4-S(SEQ ID NO:14)和NtAAT4-T(SEQ IDNO:16)的相应推导的多肽序列。NtAAT2-S和NtAAT2-T以及较小程度的NtAAT1-S、NtAAT1-T在干制期间在天冬氨酸生物合成中起特定作用。相比之下,NtAAT4-S和NtAAT4-T转录物主要在叶子干制的前两天下调,但是NtAAT4-T在晾干八天后保持表达,因此不能排除NtAAT4-T蛋白参与干制。NtAAT3-S的表达在叶子干制期间保持低水平,并且在变黄阶段期间不被调节。在干制期间有时轻微诱导NtAAT3-T,然而表达水平保持相对较低。
一些优点
有利地,NtAAT多核苷酸序列可以在干制期间特别是从干制开始被高度表达。调节一个或多个NtAAT多核苷酸序列的表达可导致调节气溶胶中丙烯酰胺的水平,因为可在整个干制过程中调节天冬氨酸的水平。特别地,减少一个或多个NtAAT多核苷酸序列的表达可导致气溶胶中丙烯酰胺的水平降低。
由于天冬氨酸是其他氨基酸诸如苏氨酸、甲硫氨酸和半胱氨酸生物合成(其中一些在加热时产生硫磺味)的关键,因此调节NtAAT多核苷酸序列的表达可以调节这种不期望的气味。此外,知道氨可能是在干制期间产生的氨基酸的副产物,降低NtAAT多核苷酸序列的表达和/或由其编码的蛋白质的活性可以降低干制植物材料以及来源于所述干制植物材料的烟和气溶胶中的氨的水平。氨基酸的增加特别发生在晾干烟草和晒干烟草中,因为与烟道干制烟草材料相比,这些干制方法导致在烟道干制烟草材料中氨基酸含量增加。因此,本公开特别适用于晾干和烟道干制烟草材料。
有利地,对本文所述的改性植物中尼古丁水平的影响是有限的,当改性植物旨在用于生产烟草植物和消费的烟草产品时,这是所希望的。
有利地,可以产生消费者更可接受的非遗传修饰植物。
有利地,本公开不限于EMS突变植物的使用。EMS突变植物在育种后可能不具有改善作物特性的潜力。一旦开始育种,由于不同的原因,EMS突变植物的理想特征可能会丢失。举例来说,可能需要多个突变,突变可以是显性或隐性的,并且可能难以在基因靶标中鉴定点突变。相反,本公开利用了可以被特异性地操作以产生具有所需表型的植物的NtAAT多核苷酸的用途。本公开可以应用于各种植物品种或农作物。
在一个方面,描述了一种植物细胞,所述植物细胞包含:(i)多核苷酸,所述多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ IDNO:11、SEQ ID NO:13或SEQ ID NO:15具有至少80%的序列同一性的序列,由其组成或基本上由其组成;(ii)由(i)中所示的所述多核苷酸编码的多肽;(iii)多肽,所述多肽包含与SEQ ID NO:6或SEQ ID NO:8具有至少95%的序列同一性、与SEQ ID NO:2或SEQ ID NO:4或SEQ ID NO:10或SEQ ID NO:12具有至少93%的序列同一性或与SEQ ID NO:14或SEQ IDNO:16具有至少94%的序列同一性的序列,由其组成或基本上由其组成;或(iv)构建体、载体或表达载体,所述构建体、载体或表达载体包含(i)中所示的经分离的多核苷酸,其中与所述多核苷酸或多肽的表达或活性未被修饰的对照植物细胞相比,所述植物细胞包含至少一种修饰,所述修饰调节所述多核苷酸或所述多肽的表达或活性。
在另一方面,公开了一种植物细胞,所述植物细胞包含:(i)多核苷酸,所述多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ IDNO:11、SEQ ID NO:13或SEQ ID NO:15具有至少80%的序列同一性的序列,由其组成或基本上由其组成;(ii)由(i)中所示的所述多核苷酸编码的多肽;(iii)多肽,所述多肽包含与SEQ ID NO:6或SEQ ID NO:8具有至少95%的序列同一性、与SEQ ID NO:2或SEQ ID NO:10或SEQ ID NO:12具有至少93%的序列同一性或与SEQ ID NO:4或SEQ ID NO:14或SEQ IDNO:16具有至少94%的序列同一性的序列,由其组成或基本上由其组成;或(iv)构建体、载体或表达载体,所述构建体、载体或表达载体包含(i)中所示的经分离的多核苷酸,其中与所述多核苷酸或多肽的表达或活性未被修饰的对照植物细胞相比,所述植物细胞包含至少一种修饰,所述修饰调节所述多核苷酸或所述多肽的表达或活性。合适地,所述植物细胞包含多核苷酸,所述多核苷酸包含与SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:1或SEQ ID NO:3具有至少80%的序列同一性的序列,由其组成或基本上由其组成,合适地,其中所述植物细胞包含多核苷酸,所述多核苷酸包含与SEQ ID NO:1或SEQ ID NO:3具有至少80%的序列同一性的序列,由其组成或基本上由其组成。
合适地,所述植物细胞包含多肽,所述多肽包含与SEQ ID NO:6或SEQ ID NO:8具有至少95%的序列同一性或与SEQ ID NO:2或SEQ ID NO:4具有至少93%的序列同一性的序列,由其组成或基本上由其组成,合适地,其中所述植物细胞包含多肽,所述多肽包含与SEQ ID NO:2或SEQ ID NO:4具有至少93%的序列同一性的序列,由其组成或基本上由其组成。
合适地,所述植物细胞包含多肽,所述多肽包含与SEQ ID NO:6或SEQ ID NO:8具有至少95%的序列同一性或与SEQ ID NO:2具有至少93%的序列同一性或与SEQ ID NO:4具有至少94%的序列同一性的序列,由其组成或基本上由其组成,合适地,其中所述植物细胞包含多肽,所述多肽包含与SEQ ID NO:2具有至少93%的序列同一性或与SEQ ID NO:4具有至少94%的序列同一性的序列,由其组成或基本上由其组成。合适地,NtAAT1-S(SEQ IDNO:5或SEQ ID NO:6)、NtAAT1-T(SEQ ID NO:7或SEQ ID NO:8)、NtAAT2-S(SEQ ID NO:1或SEQ ID NO:2)和NtAAT2-T(SEQ ID NO:3或SEQ ID NO:4)中的一个或多个的表达和/或活性被调节,而NtAAT3-S(SEQ ID NO:9或SEQ ID NO:10)、NtAAT3-T(SEQ ID NO:11或SEQ IDNO:12)、NtAAT4-S(SEQ ID NO:13或SEQ ID NO:14)和NtAAT4-T(SEQ ID NO:15或SEQ IDNO:16)中的一个或多个的表达和/或活性未被调节。
合适地,所述至少一种修饰是所述植物细胞基因组的修饰,或者是所述构建体、载体或表达载体的修饰,或者是转基因修饰。
合适地,所述植物细胞基因组的所述修饰或所述构建体、载体或表达载体的所述修饰是突变或编辑。
合适地,与所述对照植物细胞相比,所述修饰降低所述多核苷酸或所述多肽的表达或活性。
合适地,所述植物细胞包含干扰多核苷酸,所述干扰多核苷酸包含与从根据权利要求1(i)所述多核苷酸转录的RNA的至少19个核苷酸至少80%互补的序列。
合适地,与来源于对照植物的干制或干燥叶子中的氨基酸水平相比,所述多核苷酸或所述多肽的经调节的表达或活性调节来源于所述植物细胞的干制或干燥叶子中的氨基酸水平,合适地其中所述氨基酸是天冬氨酸或来源于所述天冬氨酸的代谢物。
合适地,来自所述植物细胞的干制或干燥叶子中的尼古丁水平与对照植物细胞的干制或干燥叶子中的尼古丁水平基本上相同;和/或其中与来源于对照植物的干制或干燥叶子中的丙烯酰胺水平相比,来源于所述植物细胞的干制或干燥叶子中的丙烯酰胺水平降低和/或其中与来源于对照植物的干制或干燥叶子中的氨基酸水平相比,来源于所述植物细胞的干制或干燥叶子中的氨水平降低。
在另一方面,描述了包含本文所述植物细胞的植物或其部分。在另一方面,描述了如本文所述的植物或其部分,其中与对照植物或其部分相比,在所述植物的至少一部分中天冬氨酸或来源于所述天冬氨酸的代谢物的量被改变。
在另一方面,描述了来源于如本文所述的植物或其部分的植物材料、干制植物材料或均质植物材料,合适地,其中所述干制植物材料是晾干或晒干或烟道干制的植物材料。
在另一方面,描述了本文所述的植物材料,其包含来自如本文所述的植物或其部分的生物质、种子、茎、花或叶子。
在另一方面,描述了烟草产品,其包含如本文所述的植物细胞、如本文所述的植物的一部分或如本文所述的植物材料。
在另一方面,描述了产生如本文所述的植物的方法,包括以下步骤:(a)提供植物细胞,所述植物细胞包含多核苷酸,所述多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15具有至少80%的序列同一性的序列,由其组成或基本上由其组成;(b)与对照植物细胞相比,修饰所述植物细胞以调节所述多核苷酸的表达;以及(c)将所述植物细胞繁殖到植物中。
合适地,步骤(c)包括从包含所述植物细胞的插条或幼苗培养所述植物。
合适地,修饰所述植物细胞的步骤包括通过基因组编辑或基因组工程修饰所述细胞的所述基因组。
合适地,所述基因组编辑或基因组工程选自CRISPR/Cas技术、锌指核酸酶介导的诱变、化学或放射诱变、同源重组、寡核苷酸定向诱变和大范围核酸酶介导的诱变。
合适地,修饰所述植物细胞的步骤包括用构建体转染所述细胞,所述构建体包含可操作地连接到组成型启动子的多核苷酸,所述多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15具有至少80%的序列同一性的序列,由其组成或基本上由其组成。
合适地,修饰所述植物细胞的步骤包括将干扰多核苷酸引入细胞中,所述干扰多核苷酸包含与从根据权利要求1(i)所述的多核苷酸转录的RNA至少80%互补的序列。
合适地,所述植物细胞用表达干扰多核苷酸的构建体转染,所述干扰多核苷酸包含与从根据权利要求1(i)所述的多核苷酸转录的RNA的至少19个核苷酸至少80%互补的序列。
在另一方面,描述了用于制备干制植物材料的方法,与对照植物材料相比,所述干制植物材料具有改变量的天冬氨酸或来源于所述天冬氨酸的代谢物,所述方法包括以下步骤:(a)提供如本文所述的植物或其部分或植物材料;(b)任选地自其收获所述植物材料;以及(c)干制所述植物材料。
合适地,所述植物材料包括干制叶子、干制茎或干制花或它们的混合物。
合适地,所述干制方法选自由晾干、火烤干制(fire curing)、烟熏干制(smokecuring)和烟道干制(flue curing)组成的组。
附图说明
图1是示出在收获(成熟)后、干制两天(48小时)后和干制结束时弗吉尼亚烟、白肋烟和东方烟栽培烟草中总游离氨基酸含量的图。
图2是示出在田间生长的瑞士白肋烟的叶样品中天冬氨酸(asp)和天冬酰胺(asn)的收获后量(三次大量叶平行测定)的图。测量以时程方式在晾干房中收集直至干制50天的叶样品(茎中间位置)中的游离氨基酸。
图3是示出NtAAT2-S/T RNAi T0植物(E324)和相应的对照植物(CTE324)的叶中间的尼古丁含量的图。
图4是示出NtAAT2-S/T RNAi T0植物(E324)和相应的对照植物(CTE324)的叶中间的天冬酰胺含量的图。
具体实施方式
本公开中所用的章节标题用于组织目的并且不旨在进行限制。
除非另外定义,否则本文所用的所有技术和科学术语都具有与所属领域普通技术人员通常所理解相同的含义。在有矛盾的情况下,将以本文档(包括定义)为准。下文描述优选方法和材料,但与本文所述的那些类似或等效的方法和材料可用于实施或测试本发明。本文所披露的所述材料、方法和实例仅仅是说明性的并且不打算是限制性的。
如本文所用的术语“包含”、“包括”、“具有(having/has)”、“可以”、“含有”以及它们的变体打算是开放性过渡短语、术语或措辞,不排除额外动作或结构的可能性。
除非上下文另外明确规定,否则单数形式“一(a/an)”以及“所述”包括多个指示物。
术语“和/或”意指(a)或(b)或者(a)和(b)两者。
本公开考虑了“包含”本文呈现的实施方案或要素、“由其组成”和“基本上由其组成”的其他实施方案,无论是否明确地阐述。
对于本文中数值范围的叙述,明确地考虑了它们之间具有相同精度的每个中间数值。举例来说,对于范围6-9,除了6和9之外涵盖数值7和8,并且对于范围6.0-7.0,明确涵盖数值6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9以及7.0。
如整个说明书和权利要求书中所使用,以下术语具有以下含义:
“编码序列”或“多核苷酸编码”是指包含编码多肽的多核苷酸的核苷酸(RNA或DNA分子)。编码序列还可包括可操作地连接到调节元件的起始和终止信号,所述调节元件包括能够指导在施用多核苷酸的个体或哺乳动物的细胞中表达的启动子和聚腺苷酸化信号。编码序列可以经密码子优化。
“互补”或“互补的”可以指核苷酸或核苷酸类似物之间的Watson-Crick(例如,A-T/U和C-G)或Hoogsteen碱基配对。“互补性”是指两个多核苷酸之间共有的性质,使得当它们彼此反平行排列时,每个位置处的核苷酸碱基将是互补的。
“构建体”是指包含一种或多种多核苷酸的双链重组多核苷酸片段。构建体包括与互补“有义链或编码链”碱基配对的“模板链”。给定构筑体可以在两个可能方向中插入载体内,所述两个可能方向是关于位于载体(例如表达载体)内的启动子方向来说相同(或有义)方向或相反(或反义)方向。
在对照植物或对照植物细胞的上下文中,术语“对照”是指其中一个或多个基因或多肽的表达、功能或活性未被修饰(例如,增加或减少)并且因此其可以与其中相同的一个或多个基因或多肽的表达、功能或活性已被修饰的植物进行比较的植物或植物细胞。如本文所用,“对照植物”是除了测试参数以外全部参数大体上等效于测试植物或经修饰植物的植物。例如,当提及已引入多核苷酸的植物时,对照植物是没有引入这种多核苷酸的等同植物。对照植物可以是已引入对照多核苷酸的等同植物。在此类情况下,对照多核苷酸是预期对植物几乎不产生或不产生表型作用的多核苷酸。对照植物可以包含空白载体。对照植物可对应于野生型植物。对照植物可以是T1分离体不再具有转基因的空分离体。
“供体DNA”或“供体模板”是指包括至少一部分目的基因的双链DNA片段或分子。供体DNA可以编码全功能多肽或部分功能多肽。
“内源基因或多肽”是指源自生物体的基因组并且没有经历改变(诸如遗传物质的丢失、获得或交换)的基因或多肽。内源性基因进行标准基因传递和基因表达。内源多肽经历正常表达。
“增强子序列”是指可以增加基因表达的序列。这些序列可以位于经转录区域的上游、内含子内或下游。经转录区从启动子到转录终止区包含外显子和插入内含子。基因表达的增强可以通过多种机制进行,包括提高转录效率、稳定成熟的mRNA和翻译增强。
“表达”是指功能产物的产生。例如,多核苷酸片段的表达可以指多核苷酸片段的转录(例如,产生mRNA或功能RNA的转录)和/或mRNA翻译成前体或成熟多肽。“过表达”指的是转基因生物体中产生的基因产物超过来自同一实验的空分离(或非转基因)生物体产生的水平。
“功能”和“全功能”描述具有生物学功能或活性的多肽。“功能基因”是指转录成mRNA的基因,其被翻译成功能或活性多肽。
“基因构建体”是指包含编码多肽的多核苷酸的DNA或RNA分子。编码序列可包括可操作地连接到调节元件的起始和终止信号,所述调节元件包括能够指导表达的启动子和聚腺苷酸化信号。
“基因组编辑”是指改变编码内源多肽的内源基因,从而获得截短的内源多肽或具有氨基酸取代的内源多肽的多肽表达。基因组编辑可包括用修复机制诸如HDR将待靶向的内源基因的区域或整个内源基因替换为具有截短或氨基酸取代的基因拷贝。基因组编辑还可包括通过在内源基因中产生双链断裂,然后使用NHEJ修复,从而在内源基因中产生氨基酸取代。在可产生氨基酸取代的修复期间,NHEJ可添加或缺失至少一个碱基对。基因组编辑还可以包括通过两种核酸酶对同一DNA股同时起作用来删除基因区段,从而在两个核酸酶目标位点之间形成截短并且通过NHEJ修复DNA断裂。
关于序列的“异源”是指源自外来物种的序列,或者如果来自相同物种,则是通过有意的人为干预从其天然形式在组成和/或基因组基因座方面基本上修饰的序列。
“同源介导的修复”或“HDR”是指当细胞核中存在同源的DNA片段时,主要在细胞周期的G2期和S期,细胞中修复双链DNA损伤的机制。HDR使用供体DNA或供体模板引导修复并且可用于形成基因组的特异性序列改变,包括靶向添加整个基因。如果供体模板与定点核酸酶一起提供,那么细胞机制将通过同源重组修复断裂,所述同源重组在DNA裂解存在下将加强几个数量级。当不存在同源的DNA片段时,可以替代地发生NHEJ。
术语“同源性”或“相似性”是指通过序列比对比较的两个多肽之间或两个多核苷酸分子之间的序列相似性程度。被比较的两个离散多核苷酸之间的同源性程度是在可比较位置处的相同或匹配核苷酸的数目的函数。
在两个或更多个多核苷酸或多肽的上下文中,“相同”或“同一性”是指序列在特定区域上具有特定百分比的相同残基。百分比可以通过最佳比对两个序列,比较两个序列的指定区域,测定两个序列中存在相同残基的位置数产生匹配位置数,匹配位置数除以指定区域中的位置总数,并且结果乘以100产生序列一致性百分比来计算。在两个序列具有不同长度或比对产生一个或多个交错端并且指定比较区域仅包括单个序列的情况下,单个序列的残基包括于计算的分母而非分子中。当比较DNA和RNA时,胸腺嘧啶(T)和尿嘧啶(U)视为相当。同一性可以人工鉴定或通过使用计算机序列算法诸如ClustalW、ClustalX、BLAST、FASTA或Smith-Waterman测定。流行的多重比对程序ClustalW(Nucleic Acids Research(1994)22,4673-4680;Nucleic Acids Research(1997),24,4876-4882)是用于产生多肽或多核苷酸的多重比对的合适方式。ClustalW的合适参数可能如下:对于多核苷酸比对:缺口开放罚分=15.0,缺口延伸罚分=6.66,并且矩阵=一致性。对于多肽比对:缺口开放罚分=10.o,缺口延伸罚分=0.2,并且矩阵=Gonnet。对于DNA和蛋白质比对:ENDGAP=-1,并且GAPDIST=4。本领域技术人员将会意识到,可能有必要改变这些和其他参数以达到最佳序列比对。然后,由这样的比对合适地以(N/T)计算一致性百分比,其中N是序列共享一致残基的位置数,T是比较的位置总数,包含缺口但不包括突出端。
术语“增加”或“增加的”是指增加约10%至约99%,或增加至少10%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少90%、至少95%、至少98%、至少99%、至少100%、至少150%、或至少200%或更多的数量或功能或活性,诸如但不限于多肽功能或活性、转录功能或活性和/或多肽表达。术语“增加的”或短语“增加的量”可以指修饰的植物或由修饰的植物产生的产物中的数量或功能或活性,其大于以相同方式加工的未经修饰的植物或来自相同品种的植物的产物中发现的数量或功能或活性。因此,在一些情况下,将已经以相同方式加工的相同品种的野生型植物用作对照,通过该对照测量是否获得数量的增加。
如本文所用,术语“减少”或“减少的”是指减少约10%至约99%,或减少至少10%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少90%、至少95%、至少98%、至少99%、或至少100%、或至少150%、或至少200%或更多的数量或功能,诸如多肽功能、转录功能或多肽表达。术语“增加的”或短语“增加的量”可以指修饰的植物或由修饰的植物产生的产物中的数量或功能,其小于以相同方式加工的未经修饰的植物或来自相同品种的植物的产物中发现的数量或功能。因此,在一些情况下,将已经以相同方式加工的相同品种的野生型植物用作对照,通过该对照测量是否获得数量的减少。
术语“抑制”或“被抑制”是指减少约98%至约100%,或减少至少98%、至少99%,但特别是100%的数量或功能或活性,诸如但不限于多肽功能或活性、转录功能或活性和/或多肽表达。
术语“引入”是指将多核苷酸(例如,构建体)或多肽提供到细胞中。引入包括提及多核苷酸向真核细胞中的掺入,其中多核苷酸可掺入细胞的基因组中,并且包括提及多核苷酸或多肽向细胞的瞬时提供。引入包括稳定或短暂转型法,以及性别交叉。因此,在将多核苷酸(例如,重组构建体/表达构建体)插入细胞的上下文中,“引入”是指“转染”或“转化”或“转导”,并且包括提及多核苷酸向真核细胞中的掺入,其中多核苷酸可以掺入细胞的基因组(例如,染色体、质粒、质体或线粒体DNA)中,转化为自主复制子或瞬时表达(例如,转染的mRNA)。
术语“分离的”或“纯化的”是指基本上或实质上不含在其天然状态下通常伴随其的组分的材料。纯度和均质性通常使用例如聚丙烯酰胺凝胶电泳或高效液相色谱等分析化学技术测定。作为制剂中存在的主要种类的多肽是基本上纯化的。特别地,分离的多核苷酸与位于所需基因侧面并编码除所需多肽之外的多肽的开放阅读框分离。如本文所用,术语“纯化的”表示多核苷酸或多肽在电泳凝胶中产生实质上一个带。特别地,它是指多核苷酸或多肽的纯度为至少85%,更优选为至少95%,并且最优选为至少99%。分离的多核苷酸可以从其天然存在的宿主细胞纯化。技术人员已知的常规多核苷酸纯化方法可用于获得分离的多核苷酸。术语还涵盖重组多核苷酸和化学合成的多核苷酸。
“调节”是指引起或促进所关注的过程、途径、功能或活性的定性或定量变化、改变或修饰。非限制性地,这样的变化、改变或修饰可以是所关注的相关过程、途径、功能或活性的增加或减少。例如,可以调节基因表达或多肽表达或多肽功能或活性。通常,将通过与对照比较来确定相关变化、改变或修饰。
如本文所用的“非同源端接合(NHEJ)路径”指的是通过无需同源模板而直接接合断裂端修复DNA中的双股断裂的路径。不依赖于模板的通过NHEJ的DNA端再接合是随机易错修复方法,其在DNA断点处引入无规微插入和微缺失(插入缺失)。这一方法可用于有意中断、缺失或改变靶向基因序列的读取范围。NHEJ通常使用称为微同源性的短同源DNA序列来引导修复。这些微同源性通常存在于双股断裂的末端上的单股悬垂物中。当悬垂物完全相容时,NHEJ通常精准修复断裂,但也可能存在导致核苷酸损失的不精确修复,但当悬垂物不相容时更常见。
术语“非天然存在”描述的不是自然界形成的或自然界中不存在的实体,诸如多核苷酸、基因突变、多肽、植物、植物细胞和植物材料。可以通过本文中所描述或本领域已知的方法来制备、合成、起始、修饰、干预或操纵这类非天然存在的实体或人工实体。可以由人制备、合成、起始、修饰、干预或操纵这类非天然存在的实体或人工实体。因此,例如,非天然存在的植物、非天然存在的植物细胞或非天然存在的植物材料,可使用传统植物育种技术(例如回交)或通过遗传操纵技术(例如反义RNA、干扰RNA、大范围核酸酶等等)进行制备。进一步举例来说,可以通过第一植物或植物细胞基因渗入第二植物或植物细胞(其自身可以是天然存在的)内,或通过将一个或多个基因突变(例如一种或多种多态性)从第一植物或植物细胞转移到第二植物或植物细胞内来制备非天然存在的植物、非天然存在的植物细胞或非天然存在的植物材料,使得所得到的植物、植物细胞或植物材料或其后代包括并非天然形成或在自然界中不存在的基因组成(例如基因组、染色体或其区段)。所得到的植物、植物细胞或植物材料因此是人工的或非天然存在的。相应地,可以通过修饰第一天然存在的植物或植物细胞中的基因序列来制备人工的或非天然存在的植物或植物细胞,即使所得到的基因序列在第二植物或植物细胞中天然存在,所述第二植物或植物细胞包括与第一植物或植物细胞不同的基因背景。在某些实施方案中,突变不是天然存在于多核苷酸或多肽(诸如基因或多肽)中的天然发生的突变。遗传背景的差异可以通过表型差异或通过本领域已知的分子生物学技术来检测,这些分子生物学技术诸如多核苷酸测序、是否存在遗传标记(例如,微卫星RNA标记)。
“寡核苷酸”或“多核苷酸”是指共价连接在一起的至少两个核苷酸。单链的描述还定义互补链的序列。因此,多核苷酸也涵盖所描绘的单链的互补链。多核苷酸的许多变体可以用于与给定多核苷酸相同的目的。因此,多核苷酸也涵盖基本上相同的多核苷酸及其互补物。单链提供可以在严格杂交条件下与给定序列杂交的探针。因此,多核苷酸也涵盖在严格杂交条件下杂交的探针。多核苷酸可以是单链或双链的,或者可以包含双链和单链序列的部分。多核苷酸可以是DNA(基因组DNA和cDNA两者)、RNA或杂交体,其中多核苷酸可以包含脱氧核糖核苷酸和核糖核苷酸的组合,以及包括尿嘧啶、腺嘌呤、胸腺嘧啶、胞嘧啶、鸟嘌呤、肌苷、黄嘌呤、次黄嘌呤、异胞嘧啶和异鸟嘌呤的碱基的组合。多核苷酸可以通过化学合成方法或通过重组方法获得。
单链DNA杂交互补片段的特异性由反应条件的“严格性”决定(Sambrook等人,Molecular Cloning and Laboratory Manual,第二版,Cold Spring Harbor(1989))。杂交严格度随着形成DNA双螺旋体的倾向降低而增加。在多核苷酸杂交反应中,可以选择严格性以有利于特异性杂交(高严格性),所述特异性杂交可用于例如从文库中鉴定全长克隆。低特异性交杂(低严格度)可用于鉴别相关但不精确(同源,但不相同)的DNA分子或区段。DNA双链体根据以下因素稳定:(1)互补碱基对的数目;(2)碱基对的类型;(3)反应混合物的盐浓度(离子强度);(4)反应温度;和(5)存在某些有机溶剂,诸如甲酰胺,其降低DNA双链体稳定性。一般来说,探针越长,适当退火所需的温度越高。常见方法是改变温度;较高相对温度导致较严格的反应条件。在“严格条件”下杂交描述了杂交方案,其中彼此至少60%同源的多核苷酸保持杂交。一般来说,选择严格条件比规定的离子强度和pH值下的特异性序列的热熔点(Tm)低约5℃。Tm是与给定序列互补的50%探针与给定序列在平衡下杂交的温度(在确定的离子强度、pH和多核苷酸浓度下)。由于给定序列通常过量存在,因此在Tm下,50%的探针处于平衡状态。
“严格杂交条件”是使探针、引物或寡核苷酸仅与其特定序列杂交的条件。严格条件是序列依赖性的并且将不同。严格条件通常包括:(1)低离子强度和高温洗涤,例如15mM氯化钠、1.5mM柠檬酸钠、0.1%十二烷基硫酸钠,在50℃下;(2)杂交过程中的变性剂,例如,50%(v/v)甲酰胺,0.1%牛血清白蛋白,0.1%Ficoll,0.1%聚乙烯吡咯烷酮,50mM磷酸钠缓冲液(750mM氯化钠,75mM柠檬酸钠,pH 6.5),在42℃;或(3)50%甲酰胺。洗涤通常还包含42℃下的5xSSC(0.75M NaCl、75mM柠檬酸钠)、50mM磷酸钠(pH 6.8)、0.1%焦磷酸钠、5x邓波特溶液(Denhardt's solution)、超声处理的鲑鱼精子DNA(50μg/mL)、0.1%SDS以及10%硫酸葡聚糖,以及42℃下的0.2xSSC(氯化钠/柠檬酸钠)中以及55℃下的50%甲酰胺中,随后由55℃下的含有EDTA的0.1xSSC组成的高严格度洗涤。适当地,条件使得彼此至少约65%、70%、75%、85%、90%、95%、98%或99%同源的序列通常保持彼此杂交。
“中等严格条件”使用洗涤溶液和较不严格的杂交条件,使得多核苷酸将与多核苷酸的整体,片段、衍生物或类似物杂交。一个实例包含在55℃下在6xSSC、5x邓波特溶液、0.5%SDS以及100μg/mL变性鲑鱼精子DNA中杂交,随后在37℃下在1xSSC、0.1%SDS中一次或多次洗涤。可以调整温度、离子强度等来适应实验因素,例如探针长度。其他中等严格条件已经进行了描述(参见Ausubel等人,Current Protocols in Molecular Biology,第1-3卷,John Wiley&Sons,Inc.,Hoboken,N.J.(1993);Kriegler,Gene Transfer andExpression:A Laboratory Manual,Stockton Press,New York,N.Y.(1990);Perbal,APractical Guide to Molecular Cloning,第2版,John Wiley&Sons,New York,N.Y.(1988))。
“低严格条件”使用洗涤溶液和不如中等严格性的较不严格的杂交条件,使得多核苷酸将与多核苷酸的整体,片段、衍生物或类似物杂交。低严格性杂交条件的非限制性实例包括在35%甲酰胺、5xSSC、50mM Tris HCl(pH 7.5)、5mM EDTA、0.02%PVP、0.02%Ficoll、0.2%BSA、100μg/mL变性鲑鱼精子DNA、10%(重量/体积)硫酸葡聚糖在40℃下杂交,然后在2xSSC、25mM Tris HCl(pH 7.4)、5mM EDTA和0.1%SDS中在50℃下洗涤一次或多次。低严格性的其他条件(诸如跨物种杂交的条件)已进行了充分描述(参见Ausubel等人,1993;Kriegler,1990)。
“可操作地连接”是指基因的表达处于与其空间连接的启动子的控制之下。启动子在其控制下可以位于基因的5'(上游)或3'(下游)。启动子和基因之间的距离可以与启动子和产生启动子的基因中其控制的基因之间的距离大致相同。如所属领域中已知,可以调节这一距离的变化而不损失启动子功能。“可操作地连接”是指多核苷酸片段在单个片段中的缔合,从而一个片段的功能由另一个片段调节。例如,当启动子能够调节多核苷酸片段的转录时,其可操作地与该多核苷酸片段连接。
术语“植物”指处于其生命周期或发育的任何阶段的任何植物及其后代。在一个实施方案中,植物是烟草植物,它指的是属于烟草属的植物。该术语包括提及的完整植物、植物器官、植物组织、植物繁殖体、植物种子、植物细胞及其后代。植物细胞包括(但不限于)来自种子、悬浮培养物、胚芽、分生组织区域、愈伤组织、叶子、根、嫩枝、配子体、孢子体、花粉以及花粉粒的细胞。本文描述了烟草植物的合适的种类、栽培种、杂种和品种。
“多核苷酸”、“多核苷酸序列”或“多核苷酸片段”在本文中可互换使用,并且是指单链或双链的RNA或DNA的聚合物,任选地包含合成的、非天然的或改变的核苷酸碱基。核苷酸(通常以其5'单磷酸酯形式存在)由其如下的单字母名称指代:"A"针对腺苷酸或脱氧腺苷酸(分别针对RNA或DNA),"C"针对胞苷酸或脱氧胞苷酸,"G"针对鸟苷酸或脱氧鸟苷酸,"U"针对尿苷酸,"T"针对脱氧胸苷酸,"R"针对嘌呤(A或G),"Y"针对嘧啶(C或T),"K"针对G或T,"H"针对A或C或T,"I"针对肌苷并且"N"针对任何核苷酸。多核苷酸可以是(但不限于)基因组DNA、互补DNA(cDNA)、mRNA或反义RNA或其片段。此外,多核苷酸可以是单链或双链的、单链和双链区的混合物、包括DNA和RNA的杂交分子或具有单链和双链区的混合物的杂交分子或其片段。另外,多核苷酸可以由包括DNA、RNA或两者的三链区或者其片段构成。多核苷酸可以含有一个或多个经修饰的碱基,例如硫代磷酸酯,并且可以是肽核酸(PNA)。一般来说,多核苷酸可以由分离的或克隆的cDNA片段、基因组DNA、寡核苷酸或个别核苷酸或前述的组合组装。尽管本文描述的多核苷酸显示为DNA序列,但是多核苷酸包括其相应的RNA序列以及它们的互补(例如,完全互补)的DNA或RNA序列,包括其反向互补物。本公开的多核苷酸在所附序列表中列出。
“多肽”或“多肽序列”是指其中一种或多种氨基酸残基是对应的天然存在的氨基酸的人工化学类似物的氨基酸的聚合物,以及天然存在的氨基酸的聚合物。该术语还包括修饰,包括但不限于糖基化、脂质附着、硫酸化、谷氨酸残基的γ-羧化、羟基化和ADP-核糖基化。本公开的多肽在所附序列表中列出。
“启动子”是指能够赋予、激活或增强细胞中多核苷酸的表达的合成或天然来源的分子。该术语是指通常位于双链多核苷酸片段的上游并与其可操作地连接的多核苷酸元件/序列。启动子可以完全源自邻近感兴趣的天然基因的区域,或者可以由来源于不同天然启动子或合成多核苷酸片段的不同元件组成。启动子可以包含一个或多个特异性转录调节序列以进一步提高表达和/或改变其的空间表达和/或暂时表达。启动子还可以包含末端强化子或抑制子元件,其可位于来自转录起始位点的多达几千个碱基对。启动子可以来源于包括病毒、细菌、真菌、植物、昆虫以及动物的源。启动子可以关于发生表达的细胞、组织或器官或关于发生表达的发育阶段,或回应于外部刺激(例如生理学压力、病原体、金属离子或诱发剂)组成性或有差异地调节基因组分的表达。
如本文可互换使用的“组织特异性启动子”和“组织优选启动子”指的是主要但并非必须专门在一种组织或器官中表达,而是还可以在一种特异性细胞中表达的启动子。“发育调节型启动子”是指其功能由发育事件决定的启动子。“组成型启动子”是指引起基因在大多数时间在大多数细胞类型中表达的启动子。响应于内源或外源刺激的存在,例如通过化合物(化学诱导剂)或响应于环境、激素、化学和/或发育信号,“诱导型启动子”选择性表达可操作连接的DNA序列。诱导型或调节型启动子的实例包括由光、热、压力、洪水或干旱、病原体、植物激素、创伤或化学药品诸如乙醇、茉莉酮酸酯、水杨酸或安全剂调节的启动子。
如本文所用,“重组”是指两个另外分离的序列片段的人工组合,诸如通过化学合成或通过基因工程技术操作分离的多核苷酸片段。该术语还包括提及的已通过引入异源多核苷酸而被修饰的细胞或载体或来源于如此修饰的细胞的细胞,但不涵盖由于天然发生的事件(例如,自发突变、天然转化或转导或转座)诸如在没有人为干预的情况下发生的事件对细胞或载体的改变。
“重组构建体”是指自然界中通常不被一起发现的多核苷酸的组合。因此,重组构建体可包含来源于不同来源的调节序列和编码序列,或来源于相同来源但以不同于自然界通常发现的方式排列的调节序列和编码序列。重组构建体可以是重组DNA构建体。
本文可互换使用的“调节序列”和“调节元件”是指位于编码序列上游(5'非编码序列)、内部或下游(3'非编码序列)并且影响相关编码序列的转录、RNA加工或稳定性或翻译的多核苷酸序列。调节序列包括启动子、翻译前导序列、内含子和多腺苷酸化识别序列。术语“调节序列”和“调节元件”在本文中可以互换使用。
“位点特异性核酸酶”是指能够特异性识别和切割DNA序列的酶。定点核酸酶可以经工程改造。工程改造的定点核酸酶的实例包括锌指核酸酶(ZFN)、TAL效应子核酸酶(TALEN)、CRISPR/Cas9类系统以及大范围核酸酶。
术语“烟草”在总体意义上用于指烟草作物(例如,在田间生长的多种烟草植物而不是水培生长的烟草)、烟草植物及其部分,包括但不限于如本文所述制备和/或获得的根、茎、叶、花和种子。应当理解,烟草是指烟草植物及其产品。
术语“烟草产品”是指消费者烟草产品,包括但不限于吸烟材料(例如,香烟、雪茄和烟斗烟草)、鼻烟、嚼用烟草、口香糖和锭剂,以及用于制造消费者烟草产品的组分、材料和成分。合适地,这些烟草产品由从烟草收获的烟草的叶和茎制造,并根据烟草制备中的常规技术对其进行切割、干燥、干制和/或发酵。
“转录终止子”、“终止序列”或“终止子”是指位于编码序列下游的DNA序列,包括聚腺苷酸化识别序列和编码能够影响mRNA加工或基因表达的调节信号的其他序列。聚腺苷酸化信号通常特征为影响聚腺苷酸段向mRNA前驱体的3'端的添加。
“转基因”是指任何细胞、细胞系、愈伤组织、植物部分或植物,其基因组由于异源多核苷酸诸如重组构建体的存在而被改变,包括那些初始转基因事件以及通过有性杂交或无性繁殖从初始转基因事件产生的那些。该术语不包括通过常规植物育种方法或通过天然发生的事件(诸如随机交叉受精、非重组病毒感染、非重组细菌转化、非重组转座或自发突变)的基因组(染色体或染色体外)的改变。
“转基因植物”是指在其基因组内包含一种或多种异源多核苷酸的植物,即,含有通常在其中未发现的重组遗传物质并且已通过人工操作引入所述植物中(或引入植物的祖细胞中)的植物。例如,异源多核苷酸可以稳定地整合到基因组内,使得多核苷酸传递到连续的世代。异源多核苷酸可以单独或作为重组构建体的一部分整合到基因组中。基因改良胚质的商业开发还发展到向作物植物中引入多种特性的阶段,通常称为基因堆叠法。在这一方法中,可以向植物中引入赋予所关注的不同特征的多个基因。基因堆叠可以通过许多方式实现,包括(但不限于)共转型、重新转型以及用不同转基因品系交叉。因此,从通过转型引入重组DNA的植物细胞生长的植物是转基因植物,全部是含有所以引入转基因的植物的子代(有性产生或无性产生)。应当理解,术语转基因植物包括整个植物或树木以及该植物或树木的部分,例如谷粒、种子、花、叶、根、果实、花粉、茎等。各异源多核苷酸可以赋予转基因植物不同性状。
“转录激活子样效应子”或“TALE”是指识别并结合特定DNA序列的多肽结构。“TALEDNA结合域”指的是包括串联33-35个氨基酸重复的阵列的DNA结合域,也称为RVD模块,其中每一个特异性地识别单个DNA碱基对。RVD模块可以任何顺序安排来装配识别已确定序列的阵列。TALE DNA结合域的结合特异性通过RVD阵列随后20个氨基酸的单个截短重复确定。TALE DNA结合域可具有12到27个RVD模块,其中每一个含有RVD并且识别单个DNA碱基对。特异性RVD已鉴别四个可能DNA核苷酸(A、T、C和G)中每一个的识别。因为TALE DNA结合域是模块,所以识别四个不同DNA核苷酸的重复序列可以连接在一起来识别任何具体DNA序列。这些靶向DNA结合域又可与催化域组合形成功能性酶,包括人工转录因子、甲基转移酶、整合酶、核酸酶以及重组酶。
本文可互换使用的“转录激活子样效应子核酸酶”或“TALEN”是指核酸酶的催化结构域(例如核酸内切酶FokI)和可靶向定制DNA序列的设计的TALE DNA结合结构域的工程化融合多肽。
“TALEN单体”是指具有催化核酸酶结构域和设计的TALE DNA结合结构域的工程化融合多肽。两个TALEN单体可以设计成目标并且裂解TALEN目标区域。
“转基因”是指包含已从一种生物中分离并引入到不同生物中的基因序列的基因或遗传物质。这种DNA的非天然片段可以保留在转基因生物中产生RNA或多肽的能力,或者它可以改变转基因生物遗传密码的正常功能。转基因的引入具有改变生物体的表型的可能。
关于多核苷酸的“变体”是指:(i)多核苷酸的一部分或片段;(ii)多核苷酸或其部分的互补物;(iii)与目的多核苷酸或其互补物基本上相同的多核苷酸;或(iv)在严格条件下与目的多核苷酸、其互补物或与其基本上相同的多核苷酸杂交的多核苷酸。
关于肽或多肽的“变体”是指通过氨基酸的插入、缺失或保守取代而在序列上不同但保留至少一种生物学功能或活性的肽或多肽。变体也可以指保留至少一种生物学功能或活性的多肽。氨基酸的保守取代,即,用性质(例如,亲水性、带电区域的程度和分布)相似的不同氨基酸取代氨基酸,在本领域中被认为通常涉及微小变化。
术语“品种”指共享恒定特征的植物群体,所述恒定特征使其与相同物种的其他植物分开。尽管具有一种或多种独特性状,但品种的特征进一步在于所述品种内个体之间的极小整体变化。品种通常在市场上有出售。
“载体”指包含用于使得能够转运多核苷酸的多核苷酸组分、多核苷酸构建体和多核苷酸缀合物等的组合的多核苷酸媒介物。载体可以是病毒载体、细菌噬菌体、细菌人工染色体或酵母人工染色体。载体可以是DNA或RNA载体。合适的载体包括能够进行染色体外复制的附加体,例如环状双链核苷酸质粒;线性化的双链核苷酸质粒;以及任何来源的其他媒介。如本文所用,“表达载体”是包含用于使得能够表达多核苷酸的多核苷酸组分、多核苷酸构建体和多核苷酸缀合物等的组合的多核苷酸媒介物。合适的表达载体包括能够进行染色体外复制的附加体,例如环状双链核苷酸质粒;线性化的双链核苷酸质粒;以及任何来源的其他功能等效的表达载体。表达载体包含位于多核苷酸、多核苷酸构建体或多核苷酸缀合物的上游并与其可操作地连接的至少一个启动子,如下文所定义。
“锌指”是指识别并结合DNA序列的多肽结构。锌指结构域是人类蛋白质组中最常见的DNA结合基元。单个锌指含有约30个氨基酸并且结构域通常通过结合3个连续DNA碱基对通过每个碱基对单个氨基酸侧链的相互作用起作用。
“锌指核酸酶”或“ZFN”是指嵌合多肽分子,其包含至少一个锌指DNA结合结构域,所述至少一个锌指DNA结合结构域有效地连接到至少一种核酸酶或核酸酶的一部分,当完全组装时,所述核酸酶或核酸酶的一部分能够切割DNA。
除非本文另外定义,否则结合本发明使用的科学与技术术语将具有所属领域普通技术人员通常所理解的含义。例如,本文所述的与细胞和组织培养、分子生物学、免疫学、微生物学、遗传学以及多肽和多核苷酸化学和杂交有关使用的任何命名和技术是本领域熟知和常用的那些。术语的含义和范围应该明确;然而在具有任何潜在不明确性的事件中,本文提供的定义优先于任何词典或外来定义。另外,除非上下文另外需要,否则单数术语应包括复数并且复数术语应包括单数。
多核苷酸
在一个实施方案中,提供了一种经分离的多核苷酸,其包含与本文所述的任何序列具有至少60%的序列同一性的序列,由其组成或基本上由其组成,所述序列包括序列表中所示的任何多核苷酸。适当地,经分离的多核苷酸包含序列、由序列组成或基本上由序列组成,所述序列与其具有至少60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、75%、80%、85%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的序列同一性。合适地,本文所述的多核苷酸编码具有序列表中所示多肽的至少约50%、60%、70%、80%、90%、95%、96%、97%、98%、99%、100%或更多的功能或活性的活性AAT多肽。
在另一个实施方案中,提供了一种经分离的多核苷酸,其包含与SEQ ID NO:1、SEQID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ IDNO:15具有至少80%的序列同一性的多核苷酸,由其组成或基本上由其组成。
在另一个实施方案中,提供了一种经分离的多核苷酸,其包含与SEQ ID NO:5或SEQ ID NO:7具有至少80%的序列同一性的序列,由其组成或基本上由其组成。
在某些实施方案中,提供了一种经分离的多核苷酸,其包含与SEQ ID NO:1或SEQID NO:3具有至少80%的序列同一性的序列,由其组成或基本上由其组成。
合适地,经分离的多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15具有至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性的序列,由其组成或基本上由其组成。
合适地,经分离的多核苷酸包含与SEQ ID NO:5或SEQ ID NO:7具有至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性的序列,由其组成或基本上由其组成。
合适地,经分离的多核苷酸包含与SEQ ID NO:1或SEQ ID NO:3具有至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性的序列,由其组成或基本上由其组成。
在另一个实施方案中,提供了多核苷酸,其包含与SEQ ID NO:1、SEQ ID NO:3、SEQID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15具有很大同源性(即,序列相似性)或很大同一性的多核苷酸,由其组成或基本上由其组成。
在另一个实施方案中,提供了多核苷酸,其包含与SEQ ID NO:5或SEQ ID NO:7具有很大同源性(即,序列相似性)或很大同一性的多核苷酸,由其组成或基本上由其组成。
在另一个实施方案中,提供了多核苷酸,其包含与SEQ ID NO:1或SEQ ID NO:3具有很大同源性(即,序列相似性)或很大同一性的多核苷酸,由其组成或基本上由其组成。
在另一个实施方案中,提供了与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15具有很大同源性(即,序列相似性)或很大同一性的片段,所述片段与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15的对应片段具有至少约80%、85%、86%87%、88%、89%、90%、91%、92%、93%、94%、95%96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性。
在另一个实施方案中,提供了与SEQ ID NO:5或SEQ ID NO:7具有很大同源性(即,序列相似性)或很大同一性的片段,所述片段与SEQ ID NO:5或SEQ ID NO:7的对应片段具有至少约80%、85%、86%87%、88%、89%、90%、91%、92%、93%、94%、95%96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性。
在另一个实施方案中,提供了与SEQ ID NO:1或SEQ ID NO:3具有很大同源性(即,序列相似性)或很大同一性的片段,所述片段与SEQ ID NO:1或SEQ ID NO:3的对应片段具有至少约80%、85%、86%87%、88%、89%、90%、91%、92%、93%、94%、95%96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性。
在另一个实施方案中,提供了包含与SEQ ID NO:5或SEQ ID NO:7具有足够程度或很大程度的同一性或相似性的多核苷酸,其编码充当AAT的多肽。
在另一个实施方案中,提供了包含与SEQ ID NO:1或SEQ ID NO:3具有足够程度或很大程度的同一性或相似性的多核苷酸,其编码充当AAT的多肽。
在另一个实施方案中,提供了包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15具有足够程度或很大程度的同一性或相似性的多核苷酸,其编码充当AAT的多肽。
在另一个实施方案中,提供了包含与SEQ ID NO:5或SEQ ID NO:7具有足够程度或很大程度的同一性或相似性的多核苷酸,其编码充当AAT的多肽。
在另一个实施方案中,提供了包含与SEQ ID NO:1或SEQ ID NO:3具有足够程度或很大程度的同一性或相似性的多核苷酸,其编码充当AAT的多肽。
在另一个实施方案中,提供了一种多核苷酸的聚合物,其包含在本文中命名为SEQID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ IDNO:13或SEQ ID NO:15的多核苷酸,由其组成或基本上由其组成。
在另一个实施方案中,提供了一种多核苷酸的聚合物,其包含在本文中命名为SEQID NO:5或SEQ ID NO:7的多核苷酸,由其组成或基本上由其组成。
在另一个实施方案中,提供了一种多核苷酸的聚合物,其包含在本文中命名为SEQID NO:1或SEQ ID NO:3的多核苷酸,由其组成或基本上由其组成。
合适地,本文所述的多核苷酸编码AAT多肽。
如本文所述,NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ ID NO:3)是与绿色烟草相比在干制48小时后表达最多的基因。表达水平可以是绿色烟草的2、3、4、5、6、7、8、9、10或11倍。在本公开的某些实施方案中,优选使用NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ IDNO:3)。多核苷酸可包括核苷酸的聚合物,其可以是未经修饰的或经修饰的脱氧核糖核酸(DNA)或核糖核酸(RNA)。因此,多核苷酸可以是(但不限于)基因组DNA、互补DNA(cDNA)、mRNA或反义RNA或其片段。此外,多核苷酸可以是单链或双链DNA、单链和双链区混合的DNA、包括DNA和RNA的杂交分子或具有单链和双链区的混合物的杂交分子或其片段。另外,多核苷酸可以由包括DNA、RNA或两者的三链区或者其片段构成。多核苷酸可以含有一个或多个经修饰的碱基,如硫代磷酸酯,并且可以是肽核酸。一般来说,多核苷酸可以由分离的或克隆的cDNA片段、基因组DNA、寡核苷酸或个别核苷酸或前述的组合组装。尽管本文描述的多核苷酸显示为DNA序列,但是它们包括其相应的RNA序列以及它们的互补(例如,完全互补)的DNA或RNA序列,包括其反向互补物。
多核苷酸通常将含有磷酸二酯键,尽管在一些情况下,包括可能具有替代主链的多核苷酸类似物,包括例如氨基磷酸酯、硫代磷酸酯、二硫代磷酸酯或O-甲基亚磷酰胺键;以及肽多核苷酸主链和键。其他类似多核苷酸包含具有阳性主链;非离子主链和非核糖主链的多核苷酸。核糖-磷酸主链的修饰可以出于多种原因而完成,例如增加此类分子在生理环境中的稳定性和半衰期,或作为生物芯片上的探针。可以制备天然存在的多核苷酸和类似物的混合物;或者,可以制备不同多核苷酸类似物的混合物,以及天然存在的多核苷酸和类似物的混合物。
多种多核苷酸类似物是已知的,包括例如氨基磷酸酯、硫代磷酸酯、二硫代磷酸酯、O-甲基亚磷酰胺键以及肽多核苷酸主链和键。其他类似多核苷酸包含具有阳性主链、非离子主链和非核糖主链的多核苷酸。还包含含有一种或多种碳环糖的多核苷酸。
其他类似物包含作为肽多核苷酸类似物的肽多核苷酸。这些主链在中性条件下是基本上非离子的,与天然存在的多核苷酸的高度荷电的磷酸二酯主链形成对比。这可以产生优势。首先,肽多核苷酸主链可以显示出改善的杂交动力学。对于错配碱基对相对于完全匹配的碱基对,肽多核苷酸在解链温度方面具有更大变化。对于内部错配,DNA和RNA通常显示出解链温度的2-4℃下降。在非离子肽多核苷酸主链的情况下,下降接近于7-9℃。类似地,由于其非离子性质,连接至这些主链的碱基的杂交对盐浓度相对不敏感。另外,肽多核苷酸可以不被细胞酶降解或更少程度地被细胞酶降解,并且因此可以是更稳定的。
在所公开的多核苷酸及其片段的用途中,有片段在杂交测定中作为探针的用途或在扩增测定中作为引物的用途。这类片段一般包括DNA序列的至少约10、11、12、13、14、15、16、17、18、19或20个或更多个邻接核苷酸。在其他实施方案中,DNA片段包括DNA序列的至少约10、15、20、30、40、50或60个或更多个邻接核苷酸。因此,在一个方面,还提供了一种用于检测多核苷酸的方法,该方法包括使用探针或引物或两者。示例性引物在本文中描述。
影响杂交条件选择的基本参数和设计合适条件的指导由Sambrook,J.,E.F.Fritsch和T.Maniatis(1989,Molecular Cloning:A Laboratory Manual,ColdSpring Harbor Laboratory Press,Cold Spring Harbor,N.Y.)描述。使用遗传密码的知识与本文所述的多肽序列结合,可以制备简并寡核苷酸组。这类寡核苷酸可用作例如聚合酶链反应(PCR)中的引物,由此分离且扩增DNA片段。在某些实施方案中,简并引物可以用作基因文库的探针。这样的文库包括cDNA文库、基因组文库,以及甚至电子表达序列标签或DNA文库。通过这种方法鉴定的同源序列随后用作探针,以鉴定本文中鉴定的序列的同源物。
如本文所述,在降低的严格条件(通常是中等严格条件)和通常高度严格条件下与多核苷酸杂交的多核苷酸和寡核苷酸(例如,引物或探针)也是潜在的用途。影响杂交条件选择的基本参数和设计合适条件的指导由Sambrook,J.,E.F.Fritsch和T.Maniatis(1989,Molecular Cloning:ALaboratory Manual,Cold Spring Harbor Laboratory Press,ColdSpring Harbor,N.Y.阐述,并且可基于例如多核苷酸的长度或碱基组成,由本领域普通技术人员容易地确定。
本文定义了达到中等和高度严格条件的一种方法。应理解,通过应用控制杂交反应和双链体稳定性的基本原则,可以根据需要调整洗涤温度和洗涤盐浓度,以实现所需严格性程度,如本领域技术人员已知的和下文进一步描述的(参见例如,Sambrook,J.,E.F.Fritsch和T.Maniatis(1989,Molecular Cloning:A Laboratory Manual,ColdSpring Harbor Laboratory Press,Cold Spring Harbor,N.Y)。当将多核苷酸与未知序列的多核苷酸杂交时,杂交长度被假定为杂交多核苷酸的长度。当杂交已知序列的多核苷酸时,可以通过比对多核苷酸的序列并且鉴定一个或多个最佳序列互补性区域来确定杂交物长度。预期到长度小于50个碱基对的杂交物的杂交温度应比杂交物的解链温度低5至10℃,其中解链温度根据下述等式确定。对于长度小于18个碱基对的杂交物,解链温度(℃)=2(A+T碱基数目)+4(G+C碱基数目)。对于长度超过18个碱基对的杂交物,解链温度(℃)=81.5+16.6(log10[Na+])+0.41(%G+C)-(600/N),其中N是杂交物中的碱基数目,并且[Na+]是杂交缓冲液中的钠离子浓度(1×标准柠檬酸钠的[Na+]=0.165M)。通常,每种这类杂交多核苷酸的长度是与它杂交的多核苷酸的长度的至少25%(通常至少50%、60%或70%,并且最常至少80%),并且同与它杂交的多核苷酸具有至少60%序列一致性(例如至少70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或100%)。
如本领域技术人员应理解,线性DNA具有两个可能定向:5'-至-3'方向和3'-至-5'方向。例如,如果第一序列以5'-至-3'方向定位,并且如果第二序列以5'-至-3'方向定位在相同多核苷酸分子/链内,则第一序列和第二序列以相同方向定向,或具有相同定向。通常,启动子序列和处于给定启动子调节下的目的基因以相同定向放置。然而,对于以5'-至-3'方向定位的第一序列,如果第二序列以3'-至-5'方向定位在相同多核苷酸分子/链内,则第一序列和第二序列以反义方向定向,或具有反义定向。如果第一序列(5'-至-3'方向)和第一序列(以5'-至-3'定位的第一序列)的反向互补序列定位在相的多核苷酸分子/链内,则相对于彼此具有反义定向的两个序列可以替代地描述为具有相同定向。本文所示的序列以5'-至-3'方向显示。
NtAAT1-S(SEQ ID NO:5)、NtAAT1-T(SEQ ID NO:7)、NtAAT2-S(SEQ ID NO:1)、NtAAT2-T(SEQ ID NO:3)、NtAAT3-S(SEQ ID NO:9)、NtAAT3-T(SEQ ID NO:11)、NtAAT4-S(SEQ ID NO:13)和NtAAT4-T(SEQ ID NO:15)中的一个或多个可包括至少一种修饰(例如,突变)。
在某些实施方案中,NtAAT1-S(SEQ ID NO:5)和NtAAT1-T(SEQ ID NO:7)中的一个或多个可包括至少一种修饰(例如,突变)。
在某些实施方案中,NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ ID NO:3)中的一个或多个可包括至少一种修饰(例如,突变)。
在某些实施方案中,NtAAT1-S(SEQ ID NO:5)、NtAAT1-T(SEQ ID NO:7)、NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ ID NO:3)中的一个或多个可包括至少一种修饰(例如,突变)。
在某些实施方案中,NtAAT1-S(SEQ ID NO:5)、NtAAT1-T(SEQ ID NO:7)、NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ ID NO:3)中的一个或多个可包括至少一种修饰(例如,突变),而NtAAT3-S(SEQ ID NO:9)、NtAAT3-T(SEQ ID NO:11)、NtAAT4-S(SEQ ID NO:13)和NtAAT4-T(SEQ ID NO:15)中的一个或多个不包括修饰(例如,突变)。
在某些实施方案中,NtAAT1-S(SEQ ID NO:5)、NtAAT1-T(SEQ ID NO:7)、NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ ID NO:3)中的一个或多个可包括至少一种修饰(例如,突变),而NtAAT3-S(SEQ ID NO:9)、NtAAT3-T(SEQ ID NO:11)、NtAAT4-S(SEQ ID NO:13)和NtAAT4-T(SEQ ID NO:15)不包括修饰(例如,突变)。
多肽
在另一方面,提供了一种经分离的多肽,其包含与本文所述的任何多肽具有至少60%的序列同一性的多肽,由其组成或基本上由其组成,所述多肽包括序列表中所示的任何多肽。适当地,经分离的多肽包含序列、由序列组成或基本上由序列组成,所述序列具有与其的至少60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、75%、80%、85%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性。
在一个实施方案中,提供了由本文所述的任何多核苷酸编码的多肽,包括与SEQID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ IDNO:13或SEQ ID NO:15具有至少80%的序列同一性的多核苷酸。
在另一个实施方案中,提供了一种经分离的多肽,其包含与SEQ ID NO:6、SEQ IDNO:8、SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:10或SEQ ID NO:12具有至少60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、75%、80%、85%、87%、88%、89%、90%、91%、92%、93%、94%、95%96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性的序列,由其组成或基本上由其组成。
在另一个实施方案中,提供了一种经分离的多肽,其包含与SEQ ID NO:2或SEQ IDNO:4具有至少60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、75%、80%、85%、87%、88%、89%、90%、91%、92%、93%、94%、95%96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性的序列,由其组成或基本上由其组成。
在另一个实施方案中,提供了一种经分离的多肽,其包含与SEQ ID NO:6或SEQ IDNO:8具有至少60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、75%、80%、85%、87%、88%、89%、90%、91%、92%、93%、94%、95%96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性的序列,由其组成或基本上由其组成。
在另一个实施方案中,提供了一种经分离的多肽,其包含与SEQ ID NO:6或SEQ IDNO:8具有至少95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性;与SEQ ID NO:2或SEQ ID NO:4具有至少93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性%;或与SEQ ID NO 14或SEQ ID NO16具有至少94%、95%96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%或100%的序列同一性的序列,由其组成或基本上由其组成。
多肽可包含与SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:2、SEQ ID NO:4、SEQ IDNO:10或SEQ ID NO:12具有足够程度或很大程度的同一性或相似性的序列,以用作AAT。多肽可包含与SEQ ID NO:6或SEQ ID NO:8具有足够程度或很大程度的同一性或相似性的序列,以用作AAT。多肽可包含与SEQ ID NO:2或SEQ ID NO:4具有足够程度或很大程度的同一性或相似性的序列,以用作AAT。多肽的片段通常保留全长序列的一些或全部AAT功能或活性。
如本文所述,NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ ID NO:3)是与绿色烟草相比在干制48小时后表达最多的基因。表达水平可以是绿色烟草的2、3、4、5、6、7、8、9、10或11倍。在本公开的某些实施方案中,优选使用NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ IDNO:3)。如本文所讨论的,多肽还包括通过引入任何类型的改变(例如,氨基酸的插入、缺失或取代;糖基化状态的改变;影响重折叠或异构化的改变、三维结构或自缔合状态)而产生的突变体,其可以被有意地工程化或天然地分离,条件是它们仍然具有其功能或活性中的一些或全部。合适地,该功能或活性被调节。
缺失是指从多肽中去除一种或多种氨基酸。插入指被引入多肽中的预定位点内的一个或多个氨基酸残基。插入可包含单个或多个氨基酸的序列内插入。置换指多肽的氨基酸由具有相似特性(例如相似疏水性、亲水性、抗原性、形成或破坏a-螺旋结构或β-片层结构的倾向)的其他氨基酸替换。氨基酸置换通常为单个残基,但可以是成簇的,取决于对多肽施加的功能制约,并且范围可为约1至约10个氨基酸。氨基酸置换优选是如下所述的保守氨基酸置换。氨基酸置换、缺失和/或插入可使用肽合成技术例如固相肽合成或通过重组DNA操纵进行制备。用于操作DNA序列以产生多肽的取代、插入或缺失变体的方法是本领域所熟知的。该变体可具有产生沉默变化并产生功能上等同的多肽的改变。可基于残基的极性、电荷、溶解性、疏水性、亲水性和两亲特性的相似性做出有意的氨基酸取代,只要该物质的次级结合得以保持即可。举例来说,带负电的氨基酸包含天冬氨酸和谷氨酸;带正电的氨基酸包含赖氨酸和精氨酸;并且具有相似亲水性值含不带电极性首基的氨基酸包含亮氨酸、异亮氨酸、缬氨酸、甘氨酸、丙氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、苯丙氨酸和酪氨酸。保守取代可以例如根据下表进行。第二列中的相同块和优选第三列中的相同行中的氨基酸可以彼此取代:
Figure BDA0002662172560000261
多肽可以是成熟多肽或不成熟多肽或来源于不成熟多肽的多肽。多肽可以采取线性形式或使用已知方法环化。多肽通常包含至少10、至少20、至少30或至少40个邻接氨基酸。
NtAAT1-S(SEQ ID NO:6)、NtAAT1-T(SEQ ID NO:8)、NtAAT2-S(SEQ ID NO:2)、NtAAT2-T(SEQ ID NO:4)、NtAAT3-S(SEQ ID NO:10)、NtAAT3-T(SEQ ID NO:12)、NtAAT4-S(SEQ ID NO:14)和NtAAT4-T(SEQ ID NO:16)中的一个或多个可包括至少一种修饰(例如,突变)。
在某些实施方案中,NtAAT1-S(SEQ ID NO:6)、NtAAT1-T(SEQ ID NO:8)、NtAAT2-S(SEQ ID NO:2)和NtAAT2-T(SEQ ID NO:4)中的一个或多个可包括至少一种修饰(例如,突变)。
在某些实施方案中,NtAAT1-S(SEQ ID NO:6)和NtAAT1-T T(SEQ ID NO:8)中的一个或多个可包括至少一种修饰(例如,突变)。
在某些实施方案中,NtAAT2-S(SEQ ID NO:2)和NtAAT2-T(SEQ ID NO:4)中的一个或多个可包括至少一种修饰(例如,突变)。
在某些实施方案中,NtAAT1-S(SEQ ID NO:6)、NtAAT1-T(SEQ ID NO:8)、NtAAT2-S(SEQ ID NO:2)和NtAAT2-T(SEQ ID NO:4)中的一个或多个可包括至少一种修饰(例如,突变),而NtAAT3-S(SEQ ID NO:10)、NtAAT3-T(SEQ ID NO:12)、NtAAT4-S(SEQ ID NO:14)和NtAAT4-T(SEQ ID NO:16)中的一个或多个不包括修饰(例如,突变)。
在某些实施方案中,NtAAT1-S(SEQ ID NO:6)、NtAAT1-T(SEQ ID NO:8)、NtAAT2-S(SEQ ID NO:2)和NtAAT2-T(SEQ ID NO:4)中的一个或多个可包括至少一种修饰(例如,突变),而NtAAT3-S(SEQ ID NO:10)、NtAAT3-T(SEQ ID NO:12)、NtAAT4-S(SEQ ID NO:14)和NtAAT4-T(SEQ ID NO:16)不包括修饰(例如,突变)。
修饰植物
a.转化
重组构建体可用于转化植物或植物细胞,以调节多肽表达、功能或活性。重组多核苷酸构建体可以包括编码如本文所述的一种或多种多核苷酸的多核苷酸,所述一种或多种多核苷酸可操作地连接于适合表达多肽的调节区。因此,多核苷酸可以包括编码如本文所述的多肽的编码序列。调节了多肽表达、功能或活性的植物或植物细胞可以包括突变的、非天然存在的、转基因的、人造的或基因工程的植物或植物细胞。适当地,转基因植物或植物细胞包括已通过重组DNA的稳定整合而改变的基因组。重组DNA包含已在细胞外部经基因工程改造和构建的DNA,并且包含含有天然存在的DNA或cDNA或合成DNA的DNA。转基因植物可包括由最初转化的植物细胞再生的植物,以及来自经转化的植物的以后世代或杂交的后代转基因植物。合适地,与对照植物相比,转基因修饰改变了本文所述的多核苷酸或多肽的表达、功能或活性。
由重组多核苷酸编码的多肽可以是天然多肽,或对于细胞可以是异源的。在一些情况下,重组构建体含有可操作地连接于调节区的调节表达的多核苷酸。在本文中描述了合适调节区的实例。
还提供含有重组多核苷酸构建体的载体,如本文中所描述的那些。合适的载体主链包含例如本领域常规使用的载体主链,如质粒、病毒、人工染色体、细菌人工染色体、酵母人工染色体或噬菌体人工染色体。合适的表达载体包含但不限于源自例如噬菌体、杆状病毒和逆转录病毒的质粒和病毒载体。众多载体和表达系统是商购可得的。
载体可以包含例如复制起点、支架附着区域或标记。标记基因可以赋予植物细胞可选择表型。举例来说,标记可以赋予杀生物剂抗性,如对抗生素(例如卡那霉素(kanamycin)、G418、博来霉素(bleomycin)或潮霉素(hygromycin))或除草剂(例如草甘膦(glyphosate)、氯磺隆(chlorsulfuron)或草胺膦(phosphinothricin))的抗性。另外,表达载体可以包含设计为促进所表达多肽的操纵或检测(例如纯化或定位)的标签序列。标签序列,诸如荧光素酶、β-葡糖醛酸酶、绿色荧光多肽、谷胱甘肽S-转移酶、聚组氨酸、c-myc或血凝素序列通常表达为与所编码的多肽的融合体。这类标签可以插入多肽内的任何地方,包括在羧基或氨基末端处。
植物或植物细胞可以通过使重组多核苷酸整合到其基因组来进行转化,以变得稳定转化。本文中所描述的植物或植物细胞可以是稳定转化的。稳定转化的细胞在每次细胞分裂中通常保留引入的多核苷酸。植物或植物细胞可以进行瞬时转化,使得重组多核苷酸不整合到其基因组内。瞬时转化的细胞在每次细胞分裂中通常失去引入的重组多核苷酸的全部或一部分,使得在足够数目的细胞分裂后,引入的重组多核苷酸无法在子细胞中检测到。
本领域中的许多方法可用于转化植物细胞,包括生物射弹、基因枪技术、农杆菌介导的转化、病毒载体介导的转化、冻融法、微粒轰击、直接DNA摄取、超声处理、显微注射、植物病毒介导的转移和电穿孔。用于将外源DNA整合到植物染色体内的农杆菌属系统已被广泛研究、修改和开发用于植物基因工程改造。通过常规方法将裸重组DNA分子与适当的T-DNA序列连接,所述裸重组DNA分子包含以有义或反义方向与调节序列可操作地连接的对应于主题纯化多肽的DNA序列。通过聚乙二醇技术或电穿孔技术将这些引入原生质体内,所述两种技术都是标准的。替代地,将包含编码本发明纯化多肽的重组DNA分子的此类载体引入活农杆菌细胞,然后将其转移到植物细胞中。通过裸DNA而无伴随T-DNA载体序列的转化可以经由原生质体与含DNA脂质体的融合或经由电穿孔来完成。不伴随T-DNA载体序列的裸DNA也可以用于经由惰性、高速度微弹转化细胞。
如果细胞或培养的组织用作转化的受体组织,那么需要时,通过本领域技术人员已知的技术,可以由经转化的培养物再生植物。
有待包含在重组构建体中的调节区的选择取决于几个因素,包含但不限于效率、可选择性、可诱导性、所需表达水平和细胞或组织优先表达。通过适当选择调节区且相对于编码序列放置调节区,调节编码序列的表达对于本领域技术人员是常规工作。多核苷酸的转录可以相似方式进行调节。一些合适的调节区仅或占优势地在某些细胞类型中起始转录。用于鉴定且表征植物基因组DNA中的调节区的方法是本领域已知的。
合适的启动子包括由组织特异性因子识别的组织特异性启动子,所述组织特异性启动子存在于不同组织或细胞类型中(例如根特异性启动子、枝条特异性启动子、木质部特异性启动子),或存在于不同发育阶段期间,或响应不同环境条件存在。合适的启动子包括组成型启动子,其可在大多数细胞类型中活化,而无需特异性诱导剂。用于控制RNAi多肽生产的合适启动子的例子包括花椰菜花叶病毒35S(CaMV/35S)、SSU、OCS、lib4、usp、STLS1、B33、nos或遍在蛋白或菜豆球蛋白启动子。本领域技术人员能够产生重组启动子的多种变体。
组织特异性启动子是仅在植物发育期间的特定时间,在特定细胞或组织中(如在营养组织或生殖组织中)活跃的转录控制元件。例如,当多核苷酸在某些组织中的表达是优选的时,组织特异性表达可以是有利的。在发育控制下的组织特异性启动子的实例包括可仅(或主要仅)在某些组织中起始转录的启动子,所述组织诸如营养组织(例如根或叶)或生殖组织(诸如果实、胚珠、种子、花粉、雌蕊、花或任何胚胎组织)。生殖组织特异性启动子可以是例如花药特异性、胚珠特异性、胚特异性、胚乳特异性、珠被特异性、种子和种皮特异性、花粉特异性、花瓣特异性、萼片特异性或其组合。
合适的叶特异性启动子包括来自C4植物(玉蜀黍)的丙酮酸正磷酸双激酶(PPDK)启动子、来自玉蜀黍的cab-m1Ca+2启动子、拟南芥(Arabidopsis thaliana)myb相关基因启动子(Atmyb5)、二磷酸核酮糖羧化酶(RBCS)启动子(例如,在叶和光生长幼苗中表达的番茄RBCS 1、RBCS2和RBCS3A基因,在发育中的番茄果实中表达的RBCS1和RBCS2,或几乎专一地以高水平在叶片和叶鞘的叶肉细胞中表达的二磷酸核酮糖羧化酶启动子)。
合适的衰老特异性启动子包含在果实催熟、叶枯萎和脱落期间活跃的番茄启动子、编码半胱氨酸蛋白酶的基因的玉蜀黍启动子、82E4的启动子和SAG基因的启动子。可使用合适的花药特异性启动子。可选择本领域技术人员已知的合适的根优先启动子。合适的种子优选的启动子包括种子特异性启动子(在种子发育期间有活性的那些启动子,诸如种子储存多肽的启动子)和种子发芽启动子(在种子发芽期间有活性的那些启动子)。这种种子优选的启动子包括Cim1(细胞分裂素诱导的信使);cZ19B1(玉米19kDa玉米醇溶蛋白);milps(肌醇-1-磷酸合酶);mZE40-2,也称为Zm-40;nuclc;以及celA(纤维素合酶)。γ-玉米醇溶蛋白是胚乳特异性启动子。Glob-1是胚特异性启动子。对于双子叶植物,种子特异性启动子包括豆β-菜豆蛋白、油菜籽蛋白、-伴大豆球蛋白、大豆凝集素、十字花科蛋白等。对于单子叶植物,种子特异性启动子包括玉米15kDa玉米醇溶蛋白启动子、22kDa玉米醇溶蛋白启动子、27kDa玉米醇溶蛋白启动子、g-玉米醇溶蛋白启动子、27kDaγ-玉米醇溶蛋白启动子(诸如gzw64A启动子,参见Genbank登录号S78780)、waxy启动子、shrunken 1启动子、shrunken 2启动子、球蛋白1启动子(参见Genbank登录号L22344)、Itp2启动子、cim1启动子、玉米end1和end2启动子、nuc1启动子、Zm40启动子、eep1和eep2;lec1、硫氧还蛋白H启动子;mlip15启动子、PCNA2启动子;以及shrunken-2启动子。
诱导型启动子的实例包含响应病原体攻击、厌氧条件、高温、光、干旱、寒冷温度或高盐浓度的启动子。病原体诱导型启动子包括来自与发病机理相关的多肽(PR多肽)的启动子,这些启动子在病原体(例如,PR多肽、SAR多肽、β-1,3-葡聚糖酶、几丁质酶)感染后被诱导。
除植物启动子之外,其他合适的启动子可以来源于细菌来源,例如,章鱼碱合酶启动子、胭脂碱合酶启动子,并且其他启动子来源于Ti质粒,或者可以来源于病毒启动子(例如,花椰菜花叶病毒(CaMV)的35S和19S RNA启动子、烟草花叶病毒的组成型启动子、花椰菜花叶病毒(CaMV)19S和35S启动子或玄参花叶病毒35S启动子)。
将多核苷酸引入植物细胞并随后插入植物基因组的合适方法包括显微注射(Crossway等人,Biotechniques 4:320-334(1986))、电穿孔(Riggs等人,Proc.Natl.Acad.Sci.USA 83:5602-5606(1986))、农杆菌(Agrobacterium)介导的转化(US5,981,840和US 5,563,055)、直接基因转移(Paszkowski等人,EMBO J.3:2717-2722(1984))和弹道粒子加速(参见例如US 4,945,050;US 5,879,918;US 5,886,244;US 5,932,782;Tomes等人,Plant Cell,Tissue,and Organ Culture:Fundamental Methods,编辑Gamborg和Phillips(Springer-Verlag,Berlin)(1995);以及McCabe等人,Biotechnology 6:923-926(1988))。
b.突变
公开了包含本文所述的一种或多种多核苷酸或多肽中的突变的植物或植物细胞,其中所述突变导致调节的AAT功能或活性。除了所述突变之外,突变植物或植物细胞可在如本文所述的相同多核苷酸或多肽中或在基因组内的一种或多种其他多核苷酸或多肽中具有一个或多个其他突变。
还提供了一种用于调节(干制)植物或(干制)植物材料中如本文所述的AAT多肽的水平的方法,所述方法包括将调节至少一种基因的表达的一个或多个突变引入所述植物的基因组中,其中所述至少一种基因选自根据本公开的序列。
还提供了一种用于鉴定具有调节的AAT水平的植物的方法,所述方法包括对于根据本公开的序列中一个或多个突变的存在筛选来自目的植物的多核苷酸样品,并且任选地将所鉴定的突变与已知调节水平的一个或AAT的突变相关联。
还公开了对于根据本公开的基因中的一个或多个突变是杂合的或纯合的植物或植物细胞,其中所述突变导致基因的表达或由其编码的多肽的功能或活性的调节。
大量方法可用于组合一种植物中的突变,包含有性杂交。在根据本公开内容的基因中具有一个或多个有利的杂合或纯合突变(其调节基因的表达或由其编码的多肽的功能或活性)的植物可以与在一个或多个其他基因中具有一个或多个有利的杂合或纯合突变(其调节基因的表达或由其编码的多肽的功能或活性)的植物杂交。在一个实施方案中,进行杂交以在同一植物内在根据本公开的基因内引入一个或多个有利的杂合或纯合突变。
如果植物中本公开的一种或多种多肽的功能或活性低于或高于植物中相同多肽的功能或活性,则功能或活性增加或降低,所述植物未被修饰以抑制所述多肽的功能或活性并且已经使用相同方案培养、收获和干制。
在一些实施方案中,使用诱变方法将突变引入植物或植物细胞中,并且使用本领域技术人员已知的方法诸如Southern印迹分析、DNA测序、PCR分析或表型分析来鉴定或选择引入的突变。可以使用本领域众所周知的方法来确定影响基因表达或干扰所编码的多肽的功能的突变。基因外显子中的插入突变通常导致空突变。保守残基中的突变在抑制编码的多肽的代谢功能方面可以特别有效。例如,应当理解,一个或多个高度保守区域中的突变可能改变多肽功能,而那些高度保守区域之外的突变可能对多肽功能有很小影响或没有影响。此外,单个核苷酸中的突变可产生终止密码子,这将导致截短的多肽,并且取决于截短的程度,丧失功能。
还公开了用于获得突变型多核苷酸和多肽的方法。任何目的植物,包含植物细胞或植物材料,可以通过多种已知诱导诱变的方法进行遗传修饰,所述方法包含定点诱变、寡核苷酸指导的诱变、化学诱导的诱变、辐射诱导的诱变、利用经修饰的碱基的诱变、利用缺口双链体DNA的诱变、双链断裂诱变、利用修复缺陷型宿主株的诱变、通过全基因合成的诱变、DNA改组和其他等效方法。
还公开了多核苷酸和多肽的片段。多核苷酸的片段可以编码保留天然多肽的生物学功能并因此参与植物中代谢物转运网络的多肽片段。替代地,用作杂交探针或PCR引物的多核苷酸片段通常不编码保留生物学功能的片段多肽。此外,所公开的多核苷酸的片段包括可以在本文所讨论的重组构建体中组装的那些。多核苷酸的片段的范围可以是至少约25个核苷酸、约50个核苷酸、约75个核苷酸、约100个核苷酸、约150个核苷酸、约200个核苷酸、约250个核苷酸、约300个核苷酸、约400个核苷酸、约500个核苷酸、约600个核苷酸、约700个核苷酸、约800个核苷酸、约900个核苷酸、约1000个核苷酸、约1100个核苷酸、约1200个核苷酸、约1300个核苷酸或约1400个核苷酸,并且至多编码本文所述多肽的全长多核苷酸。多肽的片段的范围可以是至少约25个氨基酸、约50个氨基酸、约75个氨基酸、约100个氨基酸、约150个氨基酸、约200个氨基酸、约250个氨基酸、约300个氨基酸、约400个氨基酸、约500个氨基酸,并且至多本文所述的全长多肽。突变型多肽变体可以用于制备包括一种或多种突变型多肽变体的突变型、非天然存在的或转基因植物(例如,突变型、非天然存在的、转基因、人造或基因工程改造的植物)。合适地,突变多肽变体保留了未突变多肽的功能。突变多肽变体的功能可以更高、更低或与未突变多肽大约相同。
本文所述的多核苷酸和多肽中的突变可包括人为突变或合成突变或基因工程突变。本文所述的多核苷酸和多肽中的突变可以是通过包括体外或体内操作步骤的过程获得或可获得的突变。本文所述的多核苷酸和多肽中的突变可以是通过包括人为干预的过程获得或可获得的突变。
在多核苷酸中随机引入突变的方法可包括化学诱变和放射诱变。化学诱变涉及使用外源添加的化学物质(诸如诱变、致畸或致癌的有机化合物)来诱发突变。主要产生点突变和短缺失、插入、错义突变、简单序列重复、颠换和/或转换的诱变剂(包括化学诱变剂或辐射)可用于产生突变。诱变剂包括甲磺酸乙酯、甲磺酸甲酯、N-乙基-N-亚硝基脲、三乙基三聚氰胺、N-甲基-N-亚硝基脲、丙卡巴肼、苯丁酸氮芥、环磷酰胺、硫酸二乙酯、丙烯酰胺单体、美法仑、氮芥、长春新碱、二甲基亚硝胺、N-甲基-N'-硝基-亚硝基胍、亚硝基胍、2-氨基嘌呤、7,12-二甲基-苯并(a)蒽、环氧乙烷、六甲基磷酰胺、白消安(bisulfan)、二环氧烷烃(二环氧辛烷、二环氧丁烷等)、2-甲氧基-6-氯-9-[3-(乙基-2-氯-乙基)氨基丙基氨基]吖啶二盐酸盐和甲醛。
还设想了可能不是由诱变剂直接引起的基因座中的自发突变,只要它们产生所需表型。合适的诱变试剂还可以包含例如电离辐射,如X射线、γ射线、快中子照射和UV辐射。对于每种类型的植物组织,诱变化学物质或辐射的剂量通过实验确定,使得获得低于以致死性或繁殖不育为特征的阈值水平的突变频率。本领域技术人员已知的任何植物多核苷酸制备方法均可用于制备用于突变筛选的植物多核苷酸。
突变过程可包括一种或多种植物杂交步骤。
在突变后,可以执行筛选,以鉴定产生提前终止密码子或者无功能基因的突变。突变后,可以进行筛选以鉴定产生能够以增加或降低的水平表达的功能基因的突变。突变体的筛选可以通过测序或通过使用对该基因或多肽特异的一种或多种探针或引物来进行。还可在多核苷酸中产生特异性突变,其可导致调节的基因表达、调节的mRNA稳定性或调节的多肽稳定性。这类植物在本文中被称为“非天然存在的”或“突变型”植物。通常,突变型或非天然存在的植物将包括在被操作之前在植物中不存在的外来或合成或人造核苷酸的至少一部分(例如,DNA或RNA)。外来核苷酸可以是单个核苷酸、两个或更多个核苷酸、两个或更多个连续核苷酸或两个或更多个非连续核苷酸,例如至少10、20、30、40、50、100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400或1500或更多个连续或非连续核苷酸。
c.转基因和编辑
除诱变之外,可调节本文所述的一种或多种多核苷酸或多肽的表达或功能或活性的组合物包括可干扰一个或多个内源基因的转录的序列特异性多核苷酸;可干扰RNA转录物(例如,双链RNA、siRNA、核酶)的翻译的序列特异性多核苷酸;可干扰一种或多种多肽的稳定性的序列特异性多肽;可干扰一种或多种多肽的酶功能或一种或多种多肽相对于底物或调节多肽的结合功能的序列特异性多核苷酸;对一种或多种多肽表现出特异性的抗体;可干扰一种或多种多肽的稳定性或一种或多种多肽的酶功能或一种或多种多肽的结合功能的小分子化合物;结合一种或多种多核苷酸的锌指多肽;以及对一种或多种多核苷酸具有功能的大范围核酸酶。基因编辑技术、遗传编辑技术和基因组编辑技术是本领域众所周知的。
d.锌指核酸酶
锌指多肽可用于调节本文所述的一种或多种多核苷酸的表达或功能或活性。在多个实施方案中,通过锌指核酸酶介导的诱变修饰包括多核苷酸编码序列的一部分或全部的基因组DNA序列。在基因组DNA序列中搜索锌指多肽结合的独特位点。替代地,在基因组DNA序列中搜索锌指多肽结合的两个独特位点,其中两个位点在相对的链上并靠近在一起,例如相隔1、2、3、4、5、6或更多个碱基对。因此,提供了结合多核苷酸的锌指多肽。
锌指多肽可被工程化以识别基因中的选定靶位点。锌指多肽可包含通过截短或扩展或定点诱变过程结合选择方法的来源于天然锌指DNA结合结构域和非天然锌指DNA结合结构域的基序的任何组合,所述选择方法诸如但不限于噬菌体展示选择、细菌双杂交选择或细菌单杂交选择。术语“非天然锌指DNA结合结构域”是指结合多核苷酸靶内的三碱基对序列并且不存在于包含待修饰的多核苷酸的细胞或生物体中的锌指DNA结合结构域。设计结合靶基因独特的特异性多核苷酸的锌指多肽的方法是本领域已知的。
在其他实施方案中,可以选择锌指多肽以结合多核苷酸的调节序列。更具体来说,调节序列可以包括转录起始位点、起始密码子、外显子区、外显子-内含子边界、终止子或终止密码子。相应地,本公开提供了在本文所述的一种或多种多核苷酸附近或其内通过锌指核酸酶介导的诱变产生的突变型、非天然存在的或转基因植物或植物细胞,以及通过锌指核酸酶介导的诱变用于制备这类植物或植物细胞的方法。用于将锌指多肽和锌指核酸酶递送到植物的方法与下文所述用于递送大范围核酸酶的方法相似。
e.大范围核酸酶
在另一方面,描述了使用大范围核酸酶如I-CreI,用于产生突变型、非天然存在的或转基因或以其他方式遗传修饰的植物的方法。天然存在的大范围核酸酶以及重组大范围核酸酶可以用于特异性引起在植物基因组DNA的单个位点或相对少数位点处的双链断裂,以允许破坏本文所述的一种或多种多核苷酸。大范围核酸酶可以是具有改变的DNA识别特性的经工程改造的大范围核酸酶。大范围核酸酶多肽可以通过本领域已知的多种不同机制递送到植物细胞中。
本发明涵盖大范围核酸酶的用途,以使植物细胞或植物中的本文所述一种或多种多核苷酸(或如本文描述的其任何组合)失活。具体来说,本公开提供了一种使用大范围核酸酶使植物中的多核苷酸失活的方法,其包括:a)提供包括如本文所述的多核苷酸的植物细胞;(b)将大范围核酸酶或编码大范围核酸酶的构建体引入所述植物细胞内;和(c)允许大范围核酸酶使多核苷酸基本上失活
大范围核酸酶可以用于切割在多核苷酸的编码区内的大范围核酸酶识别位点。这类切割通常导致在通过非同源末端连接的诱变DNA修复后,在大范围核酸酶识别位点处的DNA缺失。基因编码序列中的这类突变通常足以使基因失活。这种修饰植物细胞的方法首先涉及使用合适的转化方法将大范围核酸酶表达盒递送至植物细胞。为了最高效率,期望将大范围核酸酶表达盒连接至可选标记,且在选择剂的存在下选择成功转化的细胞。这种方法使得大范围核酸酶表达盒整合到基因组内,然而,如果植物可能需要监管机构批准,那么这可能是不理想的。在这类情况下,使用常规育种技术,大范围核酸酶表达盒(和连接的可选标记基因)可以在后续植物世代中分离开。
在大范围核酸酶表达盒递送后,植物细胞最初在对于使用的具体转化程序典型的条件下生长。这可能意味着在低于26℃的温度下,通常在黑暗中,使经转化的细胞在培养基上生长。这类标准条件可以使用一段时间,优选1-4天,以允许植物细胞从转化过程恢复。在该初始恢复期之后的任何时间点,可以升高生长温度以刺激工程化的大范围核酸酶切割和突变大范围核酸酶识别位点的功能。
f.TALEN
一种基因编辑方法涉及转录激活因子样效应物核酸酶(transcriptionactivator-like effector nuclease,TALEN)的使用,其诱导细胞可以修复机制响应的双链断裂。NHEJ从双链断裂的任一侧重新连接DNA,其中有很少或没有用于退火的序列重叠。这一修复机制经由插入或缺失、或染色体重排诱导基因组中的错误。任何这类误差可以致使在所述位置处编码的基因产物无功能。对于某些应用,可能需要从植物基因组中精确除去多核苷酸。这类应用可能使用一对经工程改造的大范围核酸酶,所述一对大范围核酸酶各自切割在预期缺失的任一侧上的大范围核酸酶识别位点。也可以使用能够识别并结合基因并将双链断裂引入基因组的TALEN。因此,在另一方面,涵盖了使用TAL效应物核酸酶,用于生产如本文所述的突变型、非天然存在的或转基因或以其他方式遗传修饰的植物的方法。
g.CRISPR/Cas
另一种基因编辑方法涉及细菌CRISPR/Cas系统的使用。细菌和古细菌显示出称为规律成簇间隔短回文重复(clustered regularly interspaced short palindromicrepeat,CRISPR)的染色体元件,它是适应性免疫系统的一部分,防止侵入病毒和质粒DNA。在II型CRISPR系统中,CRISPR RNA(crRNA)与反式激活crRNA(tracrRNA)和CRISPR相关联的(Cas)多肽一起发挥作用,以在靶DNA中引入双链断裂。通过Cas9的靶切割要求在crRNA和tracrRNA之间的碱基配对,以及在crRNA和靶DNA之间的碱基配对。靶识别通过称为原型间隔序列毗邻基序(protospacer-adjacent motif,PAM)的短基序的存在得到促进,所述PAM符合序列NGG。这一系统可以用于基因组编辑。Cas9通常通过双重RNA按程序工作,所述双重RNA由crRNA和tracrRNA组成。然而,这些RNA的核心组分可以组合成单一杂交物‘引导RNA’用于Cas9靶向。对靶DNA使用非编码RNA引导用于位点特异性切割有希望比现有技术(如TALEN)明显更直截了当。使用CRISPR/Cas策略,重新靶向核酸酶复合物仅需要引入新的RNA序列,而无需重新设计多肽转录因子的特异性。CRISPR/Cas技术是以国际申请WO 2015/189693的方法在植物中实施的,该方法公开了广泛适用于植物物种的病毒介导的基因组编辑平台。烟草脆裂病毒(TRV)的RNA2基因组被设计以携带指导RNA并将其递送到过表达Cas9核酸内切酶的圆叶烟草(Nicotiana benthamiana)植物中。在本公开的上下文中,指导RNA可以来源于本文公开的任何序列,并且WO2015/189693的教导内容适用于编辑植物细胞的基因组并获得所需的突变型植物。该技术的快速发展产生了在植物中具有广泛适用性的各种方案,这些方案已在许多最近的科学综述文章中很好地编目(例如,Plant Methods(2016)12:8;以及Front Plant Sci.(2016)7:506)。Biotechnology Advances(2015)33,1,41-52)中描述了对CRISPR/Cas系统的综述,该文献特别关注于其应用。ActaPharmaceutica Sinica B(2017)7,3,292-302和Curr.Op.in Plant Biol.(2017)36,1–8中讨论了CRISPR/Cas用于操作植物基因组的用途的更新进展。非盈利质粒库(addgene.org)“addgene”中列出了用于植物的CRISPR/Cas9质粒,并且CRISPR/Cas质粒是可商购的。
h.反义修饰
反义技术是可以用于调节多肽表达的另一熟知方法。将待抑制基因的多核苷酸克隆且可操作地连接于调节区和转录终止序列,使得RNA的反义链被转录。重组构建体随后转化到植物细胞内,并且产生RNA的反义链。多核苷酸无需是待抑制基因的整个序列,但通常与待抑制基因的有义链的至少一部分基本上互补。
多核苷酸可以转录成核酶,或催化RNA,其影响mRNA的表达。核酶可以设计为与几乎任何靶RNA特异性配对,且切割在特定位置处的磷酸二酯主链,由此使靶RNA功能失活。异源多核苷酸可以编码设计为切割特定mRNA转录物的核酶,从而阻止多肽的表达。锤头状核酶可用于破坏特定mRNA,但可以使用在位点特异性识别序列处切割mRNA的多种核酶。锤头状核酶在由侧翼区指示的位置处切割mRNA,所述侧翼区与靶mRNA形成互补碱基对。唯一的要求是靶RNA包含5'-UG-3'多核苷酸。锤头状核酶的构建和产生是本领域已知的。锤头状核酶序列可以嵌入稳定RNA如转移RNA(tRNA)内,以增加.体内切割效率。
在一个实施方案中,可以干扰RNA转录物翻译的序列特异性多核苷酸是干扰RNA。RNA干扰或RNA沉默是进化上保守的过程,特异性mRNA通过其可被靶向用于酶促降解。一种双链RNA(双链RNA)通过细胞(例如双链RNA病毒、或干扰RNA多核苷酸)引入或产生,以起始干扰RNA途径。双链RNA可以通过RNase III转化为长度为21-24bp的多个小干扰RNA(siRNA)双链体,RNase III是双链RNA特异性核酸内切酶。siRNA可以随后被RNA诱导的沉默复合物识别,所述沉默复合物通过ATP依赖性过程促进siRNA的解链。siRNA的解开的反义链将激活的RNA诱导的沉默复合物引导到靶mRNA,所述靶mRNA包含与siRNA反义链互补的序列。靶向mRNA和反义链可以形成A形螺旋,并且A形螺旋的大沟可以由活化RNA诱导沉默复合物识别。靶mRNA可以在由siRNA链5'末端的结合位点限定的单个位点被激活的RNA诱导的沉默复合物切割。活化RNA诱导沉默复合物可以再循环,以催化另一切割事件。
干扰RNA表达载体可包含编码干扰RNA多核苷酸的干扰RNA构建体,所述干扰RNA多核苷酸通过降低mRNA、前mRNA或相关RNA变体的表达水平而表现出RNA干扰。表达载体可以包含置于干扰RNA构建体上游且可操作地连接于干扰RNA构建体的启动子,如本文进一步描述的。干扰RNA表达载体可包含合适的最小核心启动子、目的干扰RNA构建体、上游(5')调节区、下游(3')调节区,包括转录终止和多腺苷酸化信号,以及其他本领域技术人员已知的序列,例如多种选择标记。
双链RNA分子可包括由单个寡核苷酸以茎-环结构组装的siRNA分子,其中siRNA分子的自身互补有义和反义区通过基于多核苷酸或基于非多核苷酸的接头连接,以及具有两个或更多个环结构和包含自身互补有义和反义链的茎的环状单链RNA,其中环状RNA可以在体内或体外加工以产生能够介导干扰RNA的活性siRNA分子。
还涵盖了小发夹RNA分子的使用。除了反向互补(有义)序列外,它们还包括特定的反义序列,通常由间隔物或环序列分开。间隔物或环的切割提供了单链RNA分子和其反向互补序列,使得它们可以退火以形成双链RNA分子(任选具有另外的加工步骤,可以导致来自任一或两条链的3'端或5'端的一个、两个、三个或更多个核苷酸的添加或去除)。间隔物可以具有足够长度,以在间隔物切割(和任选地,可以导致来自任一或两条链的3'端或5'端的一个、两个、三个、四个或更多个核苷酸的添加或去除的后续加工步骤)之前,允许反义和有义序列退火且形成双链结构(或茎)。间隔序列通常是位于两个互补多核苷酸区域之间的不相关多核苷酸,当退火为双链多核苷酸时,所述两个互补多核苷酸区域包含小发夹RNA。间隔序列一般包括约3至约100个核苷酸。
可以通过选择用于产生发夹双链体的合适序列组成、环大小和茎长,产生任何目的RNA多核苷酸。用于设计发夹双链体的茎长的合适范围包括至少约10、11、12、13、14、15、16、17、18、19或20个核苷酸的茎长,如约14-30个核苷酸、约30-50个核苷酸、约50-100个核苷酸、约100-150个核苷酸、约150-200个核苷酸、约200-300个核苷酸、约300-400个核苷酸、约400-500个核苷酸、约500-600个核苷酸以及约600-700个核苷酸。用于设计发夹双链体的环长的合适范围包括约4-25个核苷酸、约25-50个核苷酸或如果发夹双链体的茎长相当大,那么更长的环长。在某些实施方案中,双链RNA或ssRNA分子长度在约15与约40个核苷酸之间。在另一个实施方案中,siRNA分子是长度在约15与约35个核苷酸之间的双链RNA或ssRNA分子。在另一个实施方案中,siRNA分子是长度在约17与约30个核苷酸之间的双链RNA或ssRNA分子。在另一个实施方案中,siRNA分子是长度在约19与约25个核苷酸之间的双链RNA或ssRNA分子。在另一个实施方案中,siRNA分子是长度在约21至约23个核苷酸之间的双链RNA或ssRNA分子。在某些实施方案中,具有大于21个核苷酸的双链体区域的发夹结构可以促进有效的siRNA定向沉默,而与环序列和长度无关。本文描述了RNA干扰的示例性序列。
靶mRNA序列通常长度为约14至约50个核苷酸之间。因此,可以扫描靶mRNA的长度在约14至约50个核苷酸之间的区域,所述区域优选满足以下一个或多个标准:A+T/G+C之比在约2:1至约1:2之间;5'端的AA二核苷酸或CA二核苷酸;靶mRNA特有的至少10个连续核苷酸的序列(即,该序列不存在于来自相同植物的其他mRNA序列中);并且没有超过三个连续鸟嘌呤(G)核苷酸或超过三个连续胞嘧啶(C)核苷酸的“运行”。这些标准可以使用本领域已知的各种技术来评估,例如,可以使用计算机程序诸如BLAST来搜索公众可获得的数据库,以确定所选序列是否是靶mRNA所特有的。另选地,可以使用可商购获得的计算机软件(例如,可商购获得的OligoEngine,Target Finder和siRNA设计工具)来选择序列(并设计siRNA序列)。
在一个实施方案中,选择满足上述标准中的一个或多个、长度在约14与约30个核苷酸之间的靶mRNA序列。在另一个实施方案中,选择满足上述标准中的一个或多个、长度在约16与约30个核苷酸之间的序列。在又一个实施方案中,选择满足上述标准中的一个或多个、长度在约19与约30个核苷酸之间的序列。在另一个实施方案中,选择满足上述标准中的一个或多个、长度在约19与约25个核苷酸之间的序列。
在一个示例性实施方案中,siRNA分子包含与本文所述的任何一种多核苷酸的至少12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30个或更多个连续核苷酸互补的特异性反义序列。
siRNA分子包含的特异性反义序列可以与互补物相同或基本相同。在一个实施方案中,siRNA分子包含的特异性反义序列与靶mRNA序列的互补物至少约75%、80%、85%、90%、95%、96%、97%、98%、99%或100%相同。确定序列一致性的方法是本领域已知的,并且可以例如通过使用University of Wisconsin Computer Group(GCG)软件的或NCBI网站上提供的BLASTN程序进行确定。
诱导植物中双链RNA沉默的一种方法是用产生发夹RNA的基因构建体转化(参见Nature(2000)407,319-320)。这类构建体包括由适当间隔物分开的靶基因序列的反向区。由于产生了内含子剪接的发夹RNA,功能性植物内含子区域作为间隔片段的插入还提高了基因沉默诱导的效率(Plant J.(2001),27,581-590)。合适地,茎长为约50个核苷酸至约1千个碱基长度。用于产生内含子剪接的发夹RNA的方法在本领域中充分描述(参见例如Bioscience,Biotechnology,and Biochemistry(2008)72,2,615-617)。
具有双链体或双链结构的干扰RNA分子,例如双链RNA或小发夹RNA可具有平端,或可具有3'或5'突出端。如本文所用,“突出端”指当一个RNA链的3'端延伸超出另一条链的5'端(3'突出端),或反之亦然(5'突出端)时,由双链体结构突出的一个或多个不成对的核苷酸。包括突出端的核苷酸可以是核糖核苷酸、脱氧核糖核苷酸或其修饰形式。在一个实施方案中,干扰RNA分子的至少一条链具有长度约1至约6个核苷酸的3'突出端。在其他实施方案中,3'突出端长度为约1至约5个核苷酸、约1至约3个核苷酸以及约2至约4个核苷酸。
当干扰RNA分子在分子的一端包括3'突出端时,另一端可以是平端的或也具有突出端(5'或3')。当干扰RNA分子在分子的两端包括突出端时,突出端的长度可以是相同的或不同的。在一个实施方案中,干扰RNA分子在分子的两端包括约1至约3个核苷酸的3'突出端。在另一实施方案中,干扰RNA分子是在分子的两端具有2个核苷酸的3'突出端的双链RNA。在另一实施方案中,构成干扰RNA的突出端的核苷酸是TT二核苷酸或UU二核苷酸。
干扰RNA分子可以包括一个或多个5'或3'帽状结构。术语“帽状结构”指在寡核苷酸的任一端处并入的化学修饰,这使分子免于核酸外切酶降解,并且还可以促进在细胞内的递送或定位。
适用于干扰RNA分子的另一种修饰是将一个或多个部分或缀合物化学连接到干扰RNA分子,所述一个或多个部分或缀合物增强了干扰RNA分子的功能、细胞分布、细胞摄取、生物利用度或稳定性。多核苷酸可以通过本领域充分确定的方法进行合成或修饰。化学修饰包括2'修饰、引入非天然碱基、共价联接到配体、以及用硫代磷酸酯键取代磷酸酯键。在这个实施方案中,双链体结构的完整性通过至少一个,且通常为两个化学键得到加强。
可以修饰两条单链中的一条或两条的核苷酸以调节细胞酶的活化,如但不限于某些核酸酶。用于降低或抑制细胞酶活化的技术是本领域已知的,包括但不限于2'-氨基修饰、2'-氟修饰、2'-烷基修饰、不带电的主链修饰、吗啉代修饰、2'-O-甲基修饰和氨基磷酸酯。
配体可以结合至干扰RNA分子,例如以增强其细胞吸收。在某些实施方案中,疏水性配体结合至分子,以促进细胞膜的直接渗透。在某些情况下,阳离子配体与寡核苷酸的结合通常使得对核酸酶的抗性改善。
“靶向诱导基因组局部病变”(TILLING)是另一种诱变技术,其可用于产生和/或鉴定编码具有修饰的表达、功能或活性的多肽的多核苷酸。TILLING还允许选择携带这类突变体的植物。TILLING组合高密度诱变与高流通量筛选方法。用于TILLING的方法是本领域众所周知的(参见McCallum等人,(2000)Nat Biotechnol 18:455-457和Stemple(2004)NatRev Genet 5(2):145-50)。
多个实施方案涉及包含本文描述的多核苷酸中的一种或多种或者一种或多种干扰RNA构建体的表达载体。
多个实施方案涉及包括本文所述的多核苷酸中的一种或多种或者一种或多种干扰RNA构建体的表达载体。
多个实施方案涉及包括一种或多种多核苷酸或一种或多种干扰RNA构建体的表达载体,所述干扰RNA构建体编码本文所述的一种或多种干扰RNA多核苷酸,其能够自我退火以形成发夹结构,其中所述构建体包括(a)本文所述的多核苷酸中的一种或多种;(b)编码间隔元件的第二序列,所述间隔元件形成发夹结构的环;和(c)置于与第一序列相同的定向、包括第一序列的反向互补序列的第三序列,其中第二序列置于第一序列和第三序列之间,并且第二序列可操作地连接于第一序列和第三序列。
所公开的序列可以用于构建不形成发夹结构的多种多核苷酸。举例来说,可以通过(1)通过可操作地连接于第一启动子来转录DNA的第一条链,和(2)通过可操作地连接于第二启动子来转录DNA片段的第一条链的反向互补序列,来形成双链RNA。多核苷酸的每条链可以由相同表达载体或不同表达载体转录。具有RNA干扰的RNA双链体可被酶促转化为siRNA以调节RNA水平。
因此,多个实施方案涉及包括一种或多种本文所述的多核苷酸或编码能够自我退火的干扰RNA多核苷酸的干扰RNA构建体的表达载体,其中所述构建体包括(a)本文所述的多核苷酸中的一种或多种;和(b)置于与第一序列相同的定向、包括第一序列的互补(例如反向互补)序列的第二序列。
提供了通过促进基因表达的共抑制,用于调节本文所述多肽中的一种或多种(或如本文所述的其任何组合)的内源表达水平的多种组合物和方法。
提供了通过调节mRNA的翻译用于调节内源基因表达水平的多种组合物和方法。宿主(烟草)植物细胞可用表达载体转化,所述表达载体包括:可操作地连接至多核苷酸的启动子,所述多核苷酸以就启动子而言的反义定向放置,以允许与mRNA的一部分具有序列互补性的RNA多核苷酸的表达。
用于调节mRNA翻译的多种表达载体可以包括:可操作地连接于多核苷酸的启动子,其中序列以就启动子而言的反义定向放置。反义RNA多核苷酸的长度可以改变,并且可以是约15-20个核苷酸、约20-30个核苷酸、约30-50个核苷酸、约50-75个核苷酸、约75-100个核苷酸、约100-150个核苷酸、约150-200个核苷酸以及约200-300个核苷酸。
i.可动遗传因子
作为另外一种选择,可通过将转座子(例如IS元件)引入目的植物的基因组内,靶向基因以灭活。这些可动遗传因子可以通过有性杂交受精来引入,并且插入突变体可以针对多肽功能的丧失来筛选。通过例如伴性异花受精,通过使亲本植物与未实施转座子诱导诱变的植物杂交,可将亲本植物中的破坏基因引入其他植物内。可以利用本领域技术人员已知的任何标准育种技术。在一个实施方案中,可以通过插入一个或多个转座子灭活一种或多种基因。突变可能导致一种或多种基因的纯合破坏、一种或多种基因的杂合破坏,或如果破坏超过一种基因,那么可能导致纯合和杂合破坏两者的组合。合适的转座元件包含反转录转座子、反转座子和SINE样元件。这类方法是本领域技术人员已知的。
j.核酶
或者,可以通过将源自许多小环状RNA的核酶引入植物中来靶向基因以灭活,所述小环状RNA能够自切割和复制。这些RNA可以单独复制(类病毒RNA)或伴随辅助病毒(卫星RNA)而复制。合适RNA的实例包含源自鳄梨日斑病类病毒的那些,以及源自烟草环斑病毒、苜蓿短暂条纹病毒、绒毛烟草斑驳病毒、莨菪斑驳病毒和地下三叶草斑驳病毒的卫星RNA。多种靶RNA特异性核酶是本领域技术人员已知的。
突变型或非天然存在的植物或植物细胞可以在一个或多个基因中具有一个或多个突变的任何组合,其导致那些基因或其产物的表达或功能或活性的调节。举例来说,突变型或非天然存在的植物或植物细胞可以具有单个基因中的单个突变;单个基因中的多个突变;两个或更多个或者三个或更多个或者四个或更多个基因中的单个突变;或者两个或更多个或者三个或更多个或者四个或更多个基因中的多个突变。这些突变的实例描述于本文中。又如,突变型或非天然存在的植物或植物细胞可以在基因的特定部分(诸如在编码多肽或其部分的活性位点的基因的区域)中具有一个或多个突变。又如,突变型或非天然存在的植物或植物细胞可以在一个或多个基因之外的区域(诸如在其调节的基因的上游或下游区域)中具有一个或多个突变,条件是它们调节基因的功能或表达。上游元件可以包括启动子、增强子或转录因子。一些元件如增强子可以置于它调节的基因的上游或下游。元件无需定位接近于它调节的基因,因为一些元件已发现位于它调节的基因上游或下游几十万个碱基对处。突变型或非天然存在的植物或植物细胞可以具有位于基因的前100个核苷酸内、基因的前200个核苷酸内、基因的前300个核苷酸内、基因的前400个核苷酸内、基因的前500个核苷酸内、基因的前600个核苷酸内、基因的前700个核苷酸内、基因的前800个核苷酸内、基因的前900个核苷酸内、基因的前1000个核苷酸内、基因的前1100个核苷酸内、基因的前1200个核苷酸内、基因的前1300个核苷酸内、基因的前1400个核苷酸内、或基因的前1500个核苷酸内的一个或多个突变。突变型或非天然存在的植物或植物细胞可以具有位于基因的100个核苷酸的第一、第二、第三、第四、第五、第六、第七、第八、第九、第十、第十一、第十二、第十三、第十四或第十五集合或其组合内的一个或多个突变。公开了包括突变型多肽变体的突变型或非天然存在的植物或植物细胞(例如,如本文所述的突变型、非天然存在的或转基因植物或植物细胞等)。
在一个实施方案中,使来自植物的种子诱变且随后生长成第一代突变型植物。随后使第一代植物自花授粉,并且使来自第一代植物的种子生长成第二代植物,所述第二代植物随后就其基因座中的突变进行筛选。尽管诱变的植物材料可以针对突变进行筛选,但筛选第二代植物的优点在于所有体细胞突变都对应于生殖系突变。本领域技术人员应理解,包含但不限于种子、花粉、植物组织或植物细胞的多种植物材料可以进行诱变,以便产生突变型植物。然而,当筛选植物多核苷酸的突变时,诱变的植物材料的类型可能有影响。举例来说,当在非诱变植物授粉之前对花粉实施诱变时,使授粉获得的种子生长成第一代植物。第一代植物的每一个细胞将含有在花粉中产生的突变;因此这些第一代植物随后可针对突变进行筛选,而不是等到第二代进行。
修饰植物的制备、筛选和杂交
从个体植物、植物细胞或植物材料制备的多核苷酸可以任选地合并,以加速在源自诱变的植物组织、细胞或材料的植物群体中筛选突变。可以筛选植物、植物细胞或植物材料的一个或多个后续世代。任选合并的群组的大小取决于使用的筛选方法的灵敏度。
任选合并样品后,可以对其进行多核苷酸特异性扩增技术,诸如PCR。对该基因或紧邻该基因的序列特异的任何一种或多种引物或探针可用于扩增任选合并的样品内的序列。合适地,一个或多个引物或探针设计为扩增最可能出现有用突变的基因座的区域。最优选地,引物设计为检测多核苷酸区域内的突变。另外,引物和探针优选避免已知的多态性位点,以便容易筛选点突变。为了便于扩增产物的检测,可以使用任何常规标记方法来标记一个或多个引物或探针。使用本领域充分理解的方法,可以基于本文中所描述的序列来设计引物或探针。
为了便于检测扩增产物,可以使用任何常规标记方法来标记引物或探针。使用本领域充分理解的方法,可以基于本文中所描述的序列来设计这些引物或探针。
可以通过本领域已知的方法鉴定多态性,并且一些多态性已在文献中得到描述。
在一些实施方案中,植物可以从植物、植物组织或植物细胞再生或生长。可以使用从植物细胞或植物组织再生或生长植物的任何适合方法,例如(但不限于)从原生质体组织培养或再生。适当地,植物可以通过在愈伤组织诱导培养基、嫩芽诱导培养基和/或根部诱导培养基上生长经转型植物细胞再生。参见例如Plant Cell Reports(1986)5:81-84。这些植物接着可生长,并且经相同经转型品系或不同品系授粉,并且鉴别具有所要表型特征表达的所得杂交体。可以生长两代或更多代来确保所要表型特征的表达稳定保持和遗传,并且采摘种子以确保获得所要表型特征的表达。因此如本文所用,“经转型种子”指的是种子含有稳定整合到植物基因组中的核苷酸构筑体。
因此,在另一方面,提供了制备突变型植物的方法。所述方法涉及提供包括编码本文所述的功能性多核苷酸(或如本文所述的其任何组合)的基因的植物的至少一个细胞。接下来,在有效调节本文所述多核苷酸功能的条件下处理植物的至少一个细胞。至少一个突变型植物细胞随后繁殖成突变型植物,其中与对照植物相比较,所述突变型植物具有调节水平的所述多肽(或如本文所述的其任何组合)。在这一制备突变型植物的方法的一个实施方案中,处理步骤涉及在有效获得至少一个突变型植物细胞的条件下,使至少一个细胞经受如上所述的化学诱变剂。在这一方法的另一个实施方案中,处理步骤涉及在有效获得至少一个突变型植物细胞的条件下,使至少一个细胞经受辐射源。术语“突变型植物”包括其中与对照植物相比基因型被修饰(合适地,通过除基因工程或基因修饰之外的方式)的突变型植物。
在某些实施方案中,突变型植物、突变型植物细胞或突变型植物材料可以包括一个或多个突变,所述一个或多个突变在另一种植物、植物细胞或植物材料中天然存在,且赋予所需性状。该突变可引入(例如基因渗入)另一种植物、植物细胞或植物材料(例如具有与突变源自于其的植物不同的遗传背景的植物、植物细胞或植物材料)内,以对其赋予该性状。因此,例如,可以将在第一植物中天然发生的突变引入第二植物中,诸如具有与第一植物不同的遗传背景的第二植物。技术人员因此能够搜索且鉴定在基因组中天然携带本文中所描述基因的一种或多种突变等位基因的植物,所述基因赋予所需性状。可以通过多种方法(包含育种、回交和基因渗入)将天然存在的突变体等位基因转移到第二植物,以产生在本文中所描述基因中具有一个或多个突变的品系、品种或杂交物。相同的技术也可以应用于一个或多个非天然突变从第一植物到第二植物的基因渗入。可以在突变型植物的库中筛选展示所需性状的植物。合适地,利用如本文所述的多核苷酸的知识进行选择。因此,能够与对照相比筛选基因性状。这样的筛选方法可以涉及如本文讨论的常规扩增和/或杂交技术的应用。因此,本公开的另一方面涉及鉴定突变型植物的方法,该方法包括以下步骤:(a)提供包含来自植物的多核苷酸的样品;(b)确定多核苷酸的序列,其中多核苷酸的序列与对照植物的多核苷酸相比的差异表明所述植物是突变型植物。在另一方面,提供了鉴定突变型植物的方法,该突变型植物与对照植物相比积聚了增加或降低水平的一种或多种氨基酸,该方法包括以下步骤:(a)提供来自待筛选植物的样品;(b)确定所述样品是否包含在本文所述的一种或多种多核苷酸中的一个或多个突变;(c)确定所述植物的至少一种氨基酸的水平。在另一方面,提供了制备突变型植物的方法,该突变型植物与对照植物相比具有增加或降低水平的至少一种氨基酸,该方法包括以下步骤:(a)提供来自第一植物的样品;(b)确定所述样品是否包含在本文所述的一种或多种多核苷酸中的导致调节水平的至少一种氨基酸的一个或多个突变;(c)将一个或多个突变转移到第二株植物中。可以使用本领域已知的多种方法,如通过基因工程改造、基因操纵、基因渗入、植物育种、回交等等,将突变转移到第二植物内。在一个实施方案中,第一植物是天然存在的植物。在一个实施方案中,第二植物具有与第一植物不同的基因背景。在另一方面,提供了制备突变型植物的方法,该突变型植物与对照植物相比具有增加或降低水平的至少一种氨基酸,该方法包括以下步骤:(a)提供来自第一植物的样品;(b)确定所述样品是否包含在本文所述的一种或多种多核苷酸中的导致调节水平的至少一种氨基酸的一个或多个突变;(c)将一个或多个突变从第一植物基因渗入到第二植物中。在一个实施方案中,基因渗入步骤包括植物育种,任选地包含回交等等。在一个实施方案中,第一植物是天然存在的植物。在一个实施方案中,第二植物具有与第一植物不同的基因背景。在一个实施方案中,第一植物不是栽培品种或优良栽培品种。在一个实施方案中,第二植物是栽培品种或优良栽培品种。另一方面涉及通过本文中所描述的方法获得或可获得的突变型植物(包含栽培品种或优良栽培品种突变型植物)。在某些实施方式中,“突变型植物”可具有仅定位于植物的特定区域,例如在本文所述的一种或多种多核苷酸的序列内的一个或多个突变。根据这一实施方案,突变型植物的剩余基因组序列将与诱变前的植物相同或基本上相同。
在某些实施方案中,突变型植物可具有位于植物的一个以上基因组区域中的一个或多个突变,诸如在本文所述的一种或多种多核苷酸的序列内以及在基因组的一个或多个其他区域内。根据这一实施方案,突变型植物的剩余基因组序列将与诱变前的植物不同或基本上不同。在某些实施方案中,突变型植物可能不具有本文所述的多核苷酸的一个或多个、两个或更多个、三个或更多个、四个或更多个、或者五个或更多个外显子中的一个或多个突变;或可能不具有本文所述的多核苷酸的一个或多个、两个或更多个、三个或更多个、四个或更多个、或者五个或更多个内含子中的一个或多个突变;或可能不具有本文所述的多核苷酸的启动子中的一个或多个突变;或可能不具有本文所述的多核苷酸的3’非翻译区中的一个或多个突变;或可能不具有本文所述的多核苷酸的5’非翻译区中的一个或多个突变;或可能不具有本文所述的多核苷酸的编码区中的一个或多个突变;或可能不具有本文所述的多核苷酸的非编码区中的一个或多个突变;或其部分中的其两个或更多个、三个或更多个、四个或更多个、五个或更多个;或者六个或更多个的任何组合。
在另一方面,提供了鉴定植物、植物细胞或植物材料的方法,该植物、植物细胞或植物材料包含在编码本文所述的多核苷酸的基因中的突变,该方法包括:(a)使植物、植物细胞或植物材料诱变;(b)从所述植物、植物细胞或植物材料或其后代获得样品;(c)确定基因或其变体或片段的多核苷酸序列,其中所述序列的差异指示其中的一个或多个突变。该方法还允许选择具有突变的植物,所述突变发生在影响植物细胞中基因表达的基因组区域中,诸如转录起始位点、起始密码子、内含子区域、外显子-内含子的边界、终止子或终止密码子。
植物科、物种、品种、种子和组织培养
适用于基因修饰的植物包括单子叶植物和双子叶植物以及植物细胞系统,包括以下科之一的物种:爵床科(Acanthaceae)、葱科(Alliaceae)、六出花科(Alstroemeriaceae)、石蒜科(Amaryllidaceae)、夹竹桃科(Apocynaceae)、棕榈科(Arecaceae)、菊科(Asteraceae)、小檗科(Berberidaceae)、红木科(Bixaceae)、十字花科(Brassicaceae)、凤梨科(Bromeliaceae)、大麻科(Cannabaceae)、石竹科(Caryophyllaceae)、三尖杉科(Cephalotaxaceae)、藜科(Chenopodiaceae)、秋水仙科(Colchicaceae)、葫芦科(Cucurbitaceae)、薯蓣科(Dioscoreaceae)、麻黄科(Ephedraceae)、古柯科(Erythroxylaceae)、大戟科(Euphorbiaceae)、豆科(Fabaceae)、唇形科(Lamiaceae)、亚麻科(Linaceae)、石松科(Lycopodiaceae)、锦葵科(Malvaceae)、黑药花科(Melanthiaceae)、芭蕉科(Musaceae)、桃金娘科(Myrtaceae)、蓝果树科(Nyssaceae)、罂粟科(Papaveraceae)、松科(Pinaceae)、车前草科(Plantaginaceae)、禾本科(Poaceae)、蔷薇科(Rosaceae)、茜草科(Rubiaceae)、杨柳科(Salicaceae)、无患子科(Sapindaceae)、茄科(Solanaceae)、红豆杉科(Taxaceae)、山茶科(Theaceae)或葡萄科(Vitaceae)。
合适物种可以包含以下各属的成员:黄葵属(Abelmoschus)、冷杉属(Abies)、槭属(Acer)、剪股颖属(Agrostis)、葱属(Allium)、六出花属(Alstroemeria)、凤梨属(Ananas)、穿心莲属(Andrographis)、须芒草属(Andropogon)、蒿属(Artemisia)、芦竹属(Arundo)、颠茄属(Atropa)、小檗属(Berberis)、甜菜属(Beta)、红木属(Bixa)、芸苔属(Brassica)、金盏菊属(Calendula)、山茶属(Camellia)、喜树属(Camptotheca)、大麻属(Cannabis)、辣椒属(Capsicum)、红花属(Carthamus)、长春花属(Catharanthus)、三尖杉属(Cephalotaxus)、菊属(Chrysanthemum)、金鸡纳属(Cinchona)、西瓜属(Citrullus)、咖啡属(Coffea)、秋水仙属(Colchicum)、鞘蕊花属(Coleus)、甜瓜属(Cucumis)、南瓜属(Cucurbita)、狗牙根属(Cynodon)、曼陀罗属(Datura)、石竹属(Dianthus)、洋地黄属(Digitalis)、薯蓣属(Dioscorea)、油棕属(Elaeis)、麻黄属(Ephedra)、蔗茅属(Erianthus)、古柯属(Erythroxylum)、桉树属(Eucalyptus)、羊茅属(Festuca)、草莓属(Fragaria)、雪花莲属(Galanthus)、大豆属(Glycine)、棉属(Gossypium)、向日葵属(Helianthus)、橡胶树属(Hevea)、大麦属(Hordeum)、天仙子属(Hyoscyamus)、麻风树属(Jatropha)、莴苣属(Lactuca)、亚麻属(Linum)、黑麦草属(Lolium)、羽扇豆属(Lupinus)、番茄属(Lycopersicon)、石松属(Lycopodium)、木薯属(Manihot)、苜蓿属(Medicago)、薄荷属(Mentha)、芒属(Miscanthus)、芭蕉属(Musa)、烟草属、稻属(Oryza)、黍属(Panicum)、罂粟属(Papaver)、银胶菊属(Parthenium)、狼尾草属(Pennisetum)、矮牵牛属(Petunia)、虉草属(Phalaris)、梯牧草属(Phleum)、松属(Pinus)、早熟禾属(Poa)、一品红属(Poinsettia)、杨属(Populus)、萝芙木属(Rauwolfia)、蓖麻属(Ricinus)、蔷薇属(Rosa)、甘蔗属(Saccharum)、柳属(Salix)、血根草属(Sanguinaria)、赛莨菪属(Scopolia)、黑麦属(Secale)、茄属(Solanum)、高粱属(Sorghum)、米草属(Spartina)、菠菜属(Spinacea)、菊蒿属(Tanacetum)、红豆杉属(Taxus)、可可属(Theobroma)、小黑麦属(Triticosecale)、小麦属(Triticum)、北美穗草属(Uniola)、藜芦属(Veratrum)、长春花属(Vinca)、葡萄属(Vitis)和玉蜀黍属(Zea)。
合适物种可包括:黍属(Panicum spp.)、高粱属(Sorghum spp.)、芒属(Miscanthus spp.)、甘蔗属(Saccharum spp.)、蔗茅属(Erianthus spp.)、杨属(Populusspp.)、须芒草(Andropogon gerardii)、象草(Pennisetum purpureum)、鹬草(Phalarisarundinacea)、狗牙根(Cynodon dactylon)、高羊茅(Festuca arundinacea)、草原网茅(Spartina pectinata)、紫花苜蓿(Medicago sativa)、芦荻(Arundo donax)、裸麦(Secalecereale)、柳属(Salix spp.)、桉属(Eucalyptus spp.)、小黑麦(Triticosecale)、竹、向日葵(Helianthus annuus)、红花(Carthamus tinctorius)、麻风树(Jatropha curcas)、蓖麻(Ricinus communis)、油棕(Elaeis guineensis)、亚麻(Linum usitatissimum)、芥菜(Brassica juncea)、甜菜(Beta vulgaris)、木薯(Manihot esculenta)、番茄(Lycopersicon esculentum)、莴苣(Lactuca sativa)、香蕉(Musyclise alca)、马铃薯(Solanum tuberosum)、甘蓝(青花菜、花椰菜、抱子甘蓝)(Brassica oleracea)、山茶(Camellia sinensis)、草莓(Fragaria ananassa)、可可(Theobroma cacao)、咖啡(Coffeycliseca)、葡萄(Vitis vinifera)、菠萝(Ananas comosus)、辣椒(Capsicumannum)、洋葱(Alliumcepa)、香瓜(Cucumis melo)、黄瓜(Cucumis sativus)、笋瓜(Cucurbita maxima)、南瓜(Cucurbita moschata)、菠菜(Spinacea oleracea)、西瓜(Citrullus lanatus)、秋葵(Abelmoschus esculentus)、茄子(Solanummelongena)、蔷薇属(Rosa spp.)、康乃馨(Dianthus caryophyllus)、碧冬茄属(Petunia spp.)、一品红(Poinsettia pulcherrima)、白羽扇豆(Lupinus albus)、燕麦(Uniola paniculata)、翦股颖属(Agrostis spp.)、山杨(Populus tremuloides)、松属(Pinus spp.)、冷杉属(Abiesspp.)、槭属(Acer spp.)、大麦(Hordeum vulgare)、草地早熟禾(Poa pratensis)、黑麦草属(Lolium spp.)和貓尾草(Phleum pratense)、柳枝稷(Panicum virgatum)、苏丹草(Sorghuycliseor)、巨芒(Miscanthus giganteus)、甘蔗属(Saccharum sp.)、白杨(Populus balsamifera)、玉米(Zea mays)、大豆(Glycine max)、西洋油菜(Brassicanapus)、小麦(Triticum aestivum)、陆地棉(Gossypium hirsutum)、稻(Oryza sativa)、向日葵(Helianthus annuus)、紫花苜蓿(Medicago sativa)、甜菜(Beta vulgaris)或御谷(Pennisetum glaucum)。
多个实施方式涉及经修饰的突变型烟草、非天然存在的烟草或转基因烟草植物或植物细胞,以调节基因表达水平,由此产生与对照相比较,其中多肽的表达水平在目的组织中经调节的植物或植物细胞(例如烟草植物或植物细胞)。所公开的组合物和方法可以应用于烟草属的任何物种,包括黄花烟草(N.rustica)和烟草(例如,LA B21、LN KY171、TI1406、Basma、Galpao、Perique、Beinhart 1000-1和Petico)。其他物种包括无茎烟草(N.acaulis)、尖叶烟草(N.acuminata)、非洲烟草(N.africana)、花叶烟草(N.alata)、阿米基诺氏烟草(N.ameghinoi)、抱茎烟草(N.amplexicaulis)、阿伦兹氏烟草(N.arentsii)、渐狭叶烟草(N.attenuata)、阿姆布吉烟草(N.azambujae)、贝纳莫特氏烟草(N.benavidesii)、本赛姆氏烟草(N.benthamiana)、印度烟草(N.bigelovii)、博内里烟草(N.bonariensis)、洞生烟草(N.cavicola)、克利夫兰氏烟草(N.clevelandii)、心叶烟草(N.cordifolia)、伞床烟草(N.corymbosa)、迪伯纳氏烟草(N.debneyi)、木丝烟草(N.excelsior)、福尔吉特氏烟草(N.forgetiana)、香烟草(N.fragrans)、粉蓝烟草(N.glauca)、粘烟草(N.glutinosa)、古特斯比氏烟草(N.goodspeedii)、哥西氏烟草(N.gossei)、杂交烟草(N.hybrid)、因古儿巴烟草(N.ingulba)、卡瓦卡米氏烟草(N.kawakamii)、奈特氏烟草(N.knightiana)、郎氏烟草(N.Iangsdorffii)、渐尖叶烟草(N.linearis)、长花烟草(N.Iongiflora)、海滨烟草(N.maritima)、特大管烟草(N.megalosiphon)、摩西氏烟草(N.miersii)、夜花烟草(N.noctiflora)、裸茎烟草(N.nudicaulis)、欧布斯特烟草(N.obtusifolia)、西方烟草(N.occidentalis)、西方亚种香芥烟草(N.occidentalis subsp.hesperis)、耳状烟草(N.otophora)、圆维烟草(N.paniculata)、少花烟草(N.pauciflora)、矮牵牛状烟草(N.petunioides)、蓝茉莉叶烟草(N.plumbaginifolia)、夸德瑞伍氏烟草(N.quadrivalvis)、雷蒙德氏烟草(N.raimondii)、波缘烟草(N.repanda)、莲座烟草(N.rosulata)、莲座亚种因古儿巴烟草(N.rosulata subsp.ingulba)、圆叶烟草(N.rotundifolia)、赛特氏烟草(N.setchellii)、拟似烟草(N.simulans)、前叶烟草(N.solanifolia)、斯佩格茨氏烟草(N.spegazzinii)、斯托可通氏烟草(N.stocktonii)、香甜烟草(N.suaveolens)、美花烟草(N.sylvestris)、拟穗状烟草(N.thyrsiflora)、绒毛烟草(N.tomentosa)、绒毛状烟草(N.tomentosiformis)、三角叶烟草(N.trigonophylla)、荫生烟草(N.umbratica)、波叶烟草(N.undulata)、颤毛烟草(N.velutina)、序叶烟草(N.wigandioides)和花烟草(N.x sanderae)。适当地,烟草植物是烟草。
本文还涵盖使用烟草栽培品种和优良烟草栽培品种。因此,转基因、非天然存在的或突变型植物可以是烟草品种或优良烟草栽培品种,其包括一种或多种转基因、或者一个或多个基因突变或其组合。基因突变(例如,一种或多种多态性)可以是非天然存在于个别烟草品种或烟草栽培品种(例如,优良烟草栽培品种)中的突变,或可以是的确天然存在的基因突变,条件是所述突变并非天然存在于个别烟草品种或烟草栽培品种(例如,优良烟草栽培品种)中。
特别有用的烟草品种包括白肋烟型、黑烟型、烤烟型和东方型烟草。品种或栽培品种的非限制性实例是:BD 64、CC 101、CC 200、CC 27、CC 301、CC 400、CC 500、CC 600、CC700、CC 800、CC 900、Coker 176、Coker 319、Coker 371Gold、Coker 48、CD 263、DF911、DT538LC Galpao烟草、GL 26H、GL 350、GL 600、GL 737、GL 939、GL 973、HB 04P、HB 04P LC、HB3307PLC、杂交403LC、杂交404LC、杂交501LC、K 149、K 326、K 346、K 358、K394、K 399、K730、KDH 959、KT 200、KT204LC、KY10、KY14、KY 160、KY 17、KY 171、KY 907、KY907LC、KY14xL8 LC、Little Crittenden、McNair 373、McNair 944、msKY 14×L8、窄叶Madole、窄叶Madole LC、NBH 98、N-126、N-777LC、N-7371LC、NC 100、NC 102、NC 2000、NC 291、NC297、NC 299、NC 3、NC 4、NC 5、NC 6、NC7、NC 606、NC 71、NC 72、NC 810、NC BH 129、NC2002、Neal Smith Madole、OXFORD 207、PD 7302LC、PD 7309LC、PD 7312LC、'Perique'烟草、PVH03、PVH09、PVH19、PVH50、PVH51、R 610、R 630、R 7-11、R 7-12、RG 17、RG 81、RGH51、RGH 4、RGH 51、RS 1410、Speight 168、Speight 172、Speight 179、Speight 210、Speight 220、Speight 225、Speight 227、Speight 234、Speight G-28、Speight G-70、Speight H-6、Speight H20、Speight NF3、TI 1406、TI 1269、TN 86、TN86LC、TN 90、TN 97、TN97LC、TN D94、TN D950、TR(Tom Rosson)Madole、VA 309、VA359、AA 37-1、B 13P、Xanthi(Mitchell-Mor)、Bel-W3、79-615、Samsun Holmes NN、KTRDC 2号杂交49、白肋21、KY 8959、KY 9、MD 609、PG 01、PG 04、PO1、PO2、PO3、RG 11、RG 8、VA 509、AS44、Banket A1、巴斯玛Drama B84/31、巴斯玛I Zichna ZP4/B、巴斯玛Xanthi BX 2A、Batek、Besuki Jember、C104、Coker 347、Criollo Misionero、Delcrest、Djebel 81、DVH 405、
Figure BDA0002662172560000491
Comum、HB04P、希克斯阔叶、Kabakulak Elassona、Kutsage E1、LA BU 21、NC 2326、NC 297、PVH2110、Red Russian、Samsun、Saplak、Simmaba、Talgar 28、Wislica、Yayaldag、Prilep HC-72、Prilep P23、Prilep PB 156/1、Prilep P12-2/1、Yaka JK-48、Yaka JB 125/3、TI-1068、KDH-960、TI-1070、TW136、巴斯玛、TKF 4028、L8、TKF 2002、GR141、Basma xanthi、GR149、GR153、Petit Havana。即使本文未特别指明,也设想上述的低转化亚变种。
实施方案还涉及用于产生已被修饰以调节本文所述的多核苷酸(或如本文所述的其任何组合)的表达或功能的突变型植物、非天然存在的植物、杂交植物或转基因植物的组合物和方法。有利地,所获得的突变型植物、非天然存在的植物、杂交植物或转基因植物可以在整体外观上与对照植物相似或基本上相同。多种表型特征,如成熟程度、每一植物叶数、秆高、叶插入角度、叶大小(宽度和长度)、节间距离以及叶片-中脉比可以通过田地观测进行评价。
一个方面涉及本文所述的突变型植物、非天然存在的植物、杂交植物或转基因植物的种子。优选地,所述种子是烟草种子。另一方面涉及本文所述的突变型植物、非天然存在的植物、杂交植物或转基因植物的花粉或胚珠。此外,提供了如本文所述的突变型植物、非天然存在的植物、杂交植物或转基因植物,其还包含赋予雄性不育的多核苷酸。
还提供了如本文所述的突变型植物、非天然存在的植物、杂交植物或转基因植物或其一部分的可再生细胞的组织培养物,其中培养物再生能够表达亲本的所有形态和生理特征的植物。可再生细胞包括来自叶、花粉、胚、子叶、下胚轴、根、根尖、花药、花及其部分、胚珠、芽、茎、柄、髓和囊的细胞或来源于它们的愈伤组织或原生质体。本文所述的植物材料可以是干制烟草材料,诸如晾干或晒干烟草材料。空气和晒干烟草品种的实例是白肋烟型和黑烟型。本文所述的植物材料可以是烤烟材料,诸如弗吉尼亚烟型。
对于烟草干制的CORESTA推荐描述于:CORESTA指南第17号,2016年4月,Sustainability in Leaf Tobacco Production。
一个目的是提供突变型、转基因或非天然存在的植物或其部分,其表现出NtAAT的水平被调节,这导致植物材料中,例如,干制叶子中至少一种氨基酸诸如天冬氨酸的水平被调节。由于已知天冬氨酸在加热烟草叶子时产生丙烯酰胺,因此调节天冬氨酸的水平也可导致丙烯酰胺水平的调节。天冬氨酸的合成对于其他氨基酸诸如天冬酰胺、苏氨酸、异亮氨酸、半胱氨酸和甲硫氨酸的合成也至关重要。因此,当天冬氨酸的水平被调节时,这些其他氨基酸中的一种或多种的水平可被调节。某些氨基酸诸如苏氨酸、甲硫氨酸和半胱氨酸可在加热产生的烟雾或气溶胶中产生硫磺味。因此,调节这些氨基酸水平还可以调节这种硫磺味。
在某些实施方案中,NtAAT1-S、NtAAT1-T、NtAAT2-S、NtAAT2-T、NtAAT3-S、NtAAT3-T、NtAAT4-S和NtAAT4-T中的一个或多个的活性和/或表达被调节。
在某些实施方案中,NtAAT1-S和NtAAT1-T中的一个或多个的活性和/或表达被调节。
在某些实施方案中,NtAAT2-S和NtAAT2-T中的一个或多个的活性和/或表达被调节。
在某些实施方案中,NtAAT1-S、NtAAT1-T、NtAAT2-S和NtAAT2-T中的一个或多个的活性和/或表达被调节。
在某些实施方案中,NtAAT1-S、NtAAT1-T、NtAAT2-S和NtAAT2-T中的一个或多个的表达和/或活性被调节,而NtAAT3-S、NtAAT3-T、NtAAT4-S和NtAAT4-T中的一个或多个的表达和/或活性未被调节。
在某些实施方案中,NtAAT1-S、NtAAT1-T、NtAAT2-S和NtAAT2-T中的一个或多个的表达和/或活性被调节,而NtAAT3-S、NtAAT3-T、NtAAT4-S和NtAAT4-T的表达和/或活性未被调节。
适当地,突变型、转基因或非天然存在的植物或其一部分具有与对照植物基本上相同的视觉外观。
因此,本文描述了与对照细胞或对照植物相比具有调节水平的至少一种氨基酸的突变型、转基因或非天然存在的植物或其部分或植物细胞。突变型、转基因或非天然存在的植物或植物细胞已被修饰,以通过调节本文所述的一种或多种对应多核苷酸的表达来调节本文所述的一种或多种多肽的合成或功能。合适地,至少在绿叶、合适地干制的叶子中观察到调节水平的至少一种氨基酸。
另一方面,涉及突变型、非天然存在的或转基因的植物或细胞,其中与所述多肽的表达或功能未被调节(例如,降低)的对照植物相比,本文所述的一种或多种AAT多肽的表达或功能被调节(例如,降低),并且植物的一部分(例如,绿叶、合适地干制的叶子或干制的烟草)具有调节(例如,降低)水平的其中至少5%的至少一种氨基酸。在某些实施方案中,植物诸如绿叶、合适地干制的叶子或干制的烟草中至少一种氨基酸的水平可以被调节(例如,降低)例如至少5%、至少10%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少90%、至少95%、至少98%、至少99%、或至少100%、或至少150%、或至少200%或更多的数量或功能。至少一种氨基酸的水平可以降低到不可检测的量。
再一方面,涉及源自或可源自突变型、非天然存在的或转基因的植物或细胞的干制植物材料,诸如干制的叶子或干制的烟草,其中本文所述的一种或多种多核苷酸的表达或由其编码的多肽的功能被调节(例如,降低),并且其中与对照植物相比,至少一种氨基酸的水平被调节(例如,降低)至少5%、至少10%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少90%、至少95%、至少98%、至少99%、或至少100%、或至少150%、或至少200%。
适当地,所述植物或其一部分(例如叶)的视觉外观与对照植物基本上相同。合适地,植物是烟草植物或咖啡植物。
实施方案还涉及用于产生突变型、非天然存在的或转基因的植物或植物细胞的组合物和方法,所述植物或植物细胞已被修饰以调节本文所述的一种或多种多核苷酸或多肽的表达或功能,所述一种或多种多核苷酸或多肽可以产生具有调节含量的至少一种氨基酸的植物或植物组分(例如,叶子(诸如绿叶或干制的叶子)或烟草)或植物细胞。
突变型、非天然存在的或转基因的植物在视觉外观上可以与对应的对照植物相似或基本上相同。在一个实施方案中,突变型、非天然存在的或转基因植物的叶重与对照植物基本上相同。在一个实施方案中,突变型、非天然存在的或转基因植物的叶数目与对照植物基本上相同。在一个实施方案中,突变型、非天然存在的或转基因植物的叶重和叶数目与对照植物基本上相同。在一个实施方案中,例如在田间移植后一、二或三或更多个月或者在打顶后10、20、30或36或更多天,突变型、非天然存在的或转基因植物的秆高与对照植物基本上相同。例如,突变型、非天然存在的或转基因植物的秆高不低于对照植物的秆高。在另一个实施方案中,突变型、非天然存在的或转基因植物的叶绿素含量与对照植物基本上相同。在另一个实施方案中,突变型、非天然存在的或转基因植物的秆高与对照植物基本上相同,并且突变型、非天然存在的或转基因植物的叶绿素含量与对照植物基本上相同。在其他实施方案中,突变型、非天然存在的或转基因植物的叶的大小、或形状、或数目、或着色与对照植物基本上相同。合适地,植物是烟草植物或咖啡植物。
在另一方面,提供了用于调节植物的至少一部分(例如,叶子(诸如干制的叶子)或烟草)中的至少一种氨基酸的量的方法,该方法包括以下步骤:(i)调节本文所述的一种或多种多肽(或如本文所述的其任何组合)的表达或功能,合适地,其中多肽由本文所述的对应多核苷酸编码;(ii)测量步骤(i)中获得的突变型、非天然存在的或转基因的植物的至少一部分(例如,叶子(诸如干制的叶子)或烟草或烟雾)中的至少一种氨基酸的水平;以及(iii)鉴定与对照植物相比其中至少一种氨基酸的水平已被调节的突变型、非天然存在的或转基因的植物。合适地,所述突变型、非天然存在的或转基因植物的视觉外观与对照植物基本上相同。合适地,所述植物是烟草植物。
在另一方面,提供了用于调节干制的植物材料诸如干制的叶子的至少一部分中的至少一种氨基酸的量的方法,该方法包括以下步骤:(i)调节一种或多种多肽(或如本文所述的其任何组合)的表达或功能,合适地,其中多肽由本文所述的对应多核苷酸编码;(ii)收获植物材料诸如一种或多种叶子并干制一段时间;(iii)测量在步骤(ii)中或在步骤(ii)期间获得的干制植物材料的至少一部分中的至少一种氨基酸的水平;以及(iv)鉴定与对照植物相比其中至少一种氨基酸的水平已被调节的干制植物材料。
与对照相比,表达的增加可以为约5%至约100%,或增加至少10%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少90%、至少95%、至少98%或100%或更多,诸如200%、300%、500%、1000%或更多,其包括转录功能或多核苷酸表达或多肽表达或它们的组合的增加。
与对照相比,功能或活性的增加可以为约5%至约100%,或增加至少10%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少90%、至少95%、至少98%或100%或更多,诸如200%、300%、500%、1000%或更多。
与对照相比,表达的减少可以为约5%至约100%,或减少至少10%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少90%、至少95%、至少98%或100%,其包括转录功能或多核苷酸表达或多肽表达或它们的组合的减少。合适地,表达降低。
与对照相比,功能或活性的降低可以为约5%至约100%,或降低至少10%、至少20%、至少25%、至少30%、至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少90%、至少95%、至少98%或100%。合适地,该功能或活性降低。
本文所述的多核苷酸和重组构建体可用于调节目的植物物种(合适地为烟草)中的本文所述的多核苷酸或多肽的表达或功能或活性。
许多基于多核苷酸的方法可用于增加基因在植物和植物细胞中的表达。作为实例,可以制备与待转化的植物相容的构建体、载体或表达载体,其包括目的基因连同能够在植物或植物细胞中过表达所述基因的上游启动子。示例性启动子在本文中描述。转化后,并且当在合适的条件下生长时,启动子可驱动表达,以调节植物或其特定组织中该酶的水平。在一个示例性实施方案中,生成携带本文所述的一种或多种多核苷酸(或如本文所述的其任何组合)的载体,以在植物或植物细胞中过表达所述基因。所述载体携带位于转基因上游的合适启动子(如花椰菜花叶病毒CaMV 35S启动子),从而驱动所述转基因在植物的所有组织中的组成型表达。所述载体还携带抗生素抗性基因,以便对经转化的愈伤组织和细胞系赋予选择。
来自启动子的序列的表达可通过包括表达控制序列(包括增强子、染色质激活元件、转录因子反应元件等)增强。此类控制序列可为组成型的,且以通用方式上调转录;或其可为兼性的,且响应于特定信号上调转录。专门指示与衰老相关的信号和在干制程序期间活跃的信号。
因此,各种实施方案涉及通过将多核苷酸的多个拷贝整合到植物基因组中来调节本文所述的一种或多种多核苷酸(或如本文所述的其任何组合)的表达水平的方法,包括:用包含与本文所述的一种或多种多核苷酸可操作地连接的启动子的表达载体转化植物细胞宿主。由重组多核苷酸编码的多肽可以是天然多肽,或对于细胞可以是异源的。
在一个实施方案中,本公开中使用的植物是晾干的植物,因为这样的植物在干制结束时具有高氨基酸含量(在田间生长时大于约27.4mg/g干重游离氨基酸含量)和高氨含量(在田间生长时大于约0.18%干重)。晾干的突变型、转基因或非天然存在的植物或其部分可具有这样的氨基酸含量,即在干制结束时田间生长时小于约27.4mg/g干重游离氨基酸含量,诸如在干制结束时田间生长时小于约20mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约15mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约10mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约5mg/g干重游离氨基酸含量。晾干的突变型、转基因或非天然存在的植物或其部分可具有在干制结束时田间生长时小于约0.18%干重的氨含量,或在干制结束时田间生长时小于约0.15%干重的氨含量,或在干制结束时田间生长时小于约0.10%干重的氨含量,或在干制结束时田间生长时小于约0.05%干重的氨含量。
在另一个实施方案中,本公开中使用的植物是晒干的植物,因为这样的植物具有高氨基酸含量(在干制结束时田间生长时大于约26.5mg/g干重游离氨基酸含量)和高氨含量(在干制结束时田间生长时大于约0.14%干重)。晒干的突变型、转基因或非天然存在的植物或其部分可具有这样的氨基酸含量,即在干制结束时田间生长时小于约26.5mg/g干重游离氨基酸含量,诸如在干制结束时田间生长时小于约20mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约20mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约15mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约10mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约5mg/g干重游离氨基酸含量。晒干的突变型、转基因或非天然存在的植物或其部分可具有在干制结束时田间生长时小于约0.14%干重的氨含量,或在干制结束时田间生长时小于约0.10%干重的氨含量,或在干制结束时田间生长时小于约0.05%干重的氨含量。
在另一个实施方案中,本公开中使用的植物是烟道干制的植物。这样的植物具有这样的氨基酸含量,即在干制结束时田间生长时大于约3mg/g干重游离氨基酸含量,以及在干制结束时田间生长时大于约0.02%干重的氨含量。烟道干制的突变型、转基因或非天然存在的植物或其部分可具有这样的氨基酸含量,即在干制结束时田间生长时小于约3mg/g干重游离氨基酸含量,诸如在干制结束时田间生长时小于约2.5mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约2.0mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约1.5mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约1.0mg/g干重游离氨基酸含量,或在干制结束时田间生长时小于约0.5mg/g干重游离氨基酸含量。晒干的突变型、转基因或非天然存在的植物或其部分可具有在干制结束时田间生长时小于约0.02%干重的氨含量,或在干制结束时田间生长时小于约0.10%干重的氨含量,或在干制结束时田间生长时小于约0.05%干重的氨含量。
在某些实施方案中,优选使用晾干或晒干的植物。
氨基酸含量可以使用本领域已知的多种方法来测量。一种这样的方法是MethodMP 1471 rev 5 2011,Resana,Italy:Chelab Silliker S.r.l,Mérieux NutriSciencesCompany。为了确定干制植物叶子中的氨基酸,如果需要,去除中肋中后,将干制叶子在40℃下干燥2-3天。然后,在分析氨基酸含量之前,将烟草材料磨成细粉(~100uM)。测量植物材料中氨基酸含量的另一种方法描述在UNI EN ISO 13903:2005中。在一个实施方案中,用于测量植物材料中氨基酸含量的方法描述在UNI EN ISO 13903:2005中。
氨含量可通过Skalar:MT24-硝酸盐、总生物碱、氨、氯化物、TKN确定。为了确定干制植物叶子中的氨,如果需要,去除中肋中后,将干制叶子在40℃下干燥2-3天。然后,在分析氨含量之前,将烟草材料磨成细粉(~100uM)。其他测量氨含量的方法是本领域已知的,包括以下描述的方法:加拿大卫生部(1999)Determination of ammonia in wholetobacco。烟草控制方案。加拿大卫生部官方方法T-302;以及烟草制造商组织(2002)UK烟雾成分研究。附录A第5部分方法:使用Dionex DX-500离子色谱仪(报告Nr GC15/M24/02)确定主流香烟烟雾中的氨产量。
携带本文中所描述的一种或多种多核苷酸(或如本文中所描述的其任何组合)的突变体等位基因的植物可以用于植物育种计划,以产生有用的品系、品种和杂种。特别地,可以使所述突变体等位基因渗入上述商业上重要的品种内。因此,提供了用于植物育种的方法,其包括将如本文所述的突变型植物、非天然存在的植物或转基因植物与含有不同遗传一致性的植物进行杂交。所述方法可以进一步包括将后代植物与另一植物杂交,且任选地重复杂交直到获得具有期望的基因性状或基因背景的后代。这类育种方法发挥的一个目的是将期望的基因性状引入其他品种、育种品系、杂种或栽培品种,尤其是具有商业利益的那些。另一个目的是便于在单个植物品种、品系、杂种或栽培品种中叠加不同基因的基因修饰。考虑种内以及种间交配。源自这类杂交的后代植物,也称为育种品系,是本公开的非天然存在的植物的实例。
在一个实施方案中,提供了用于产生非天然存在的植物的方法,该方法包括:(a)将突变型或转基因植物与第二植物杂交以产生后代烟草种子;(b)在植物生长条件下生长后代烟草种子以产生非天然存在的植物。该方法还可包括:(c)将上一代非天然存在的植物与其自身或另一种植物杂交以产生后代烟草种子;(d)在植物生长条件下生长步骤(c)的后代烟草种子,以产生另外的非天然存在的植物;以及(e)重复(c)和(d)的杂交和生长步骤多次以产生非天然存在的植物的进一步后代。所述方法可以任选包括在步骤(a)之前提供亲本植物的步骤,所述亲本植物包含得到表征且不同于突变型或转基因植物的遗传一致性。在一些实施方案中,取决于育种计划,将杂交和生长步骤重复0至2次、0至3次、0至4次、0至5次、0至6次、0至7次、0至8次,0至9次或0至10次,以便产生非天然存在的植物的世代。回交是这类方法的实例,其中后代与其亲本之一或与其亲本基因相似的另一植物进行杂交,以便获得在下一代中具有更接近于亲本之一的基因一致性的后代植物。用于植物育种,特别是植物育种的技术是众所周知的,并且可用于本公开的方法中。本公开还提供了通过这些方法产生的非天然存在的植物。某些实施方案不包含选择植物的步骤。
在本文中所描述方法的一些实施方案中,使用标准田地程序在田地评估源自育种和筛选变体基因的品系。包含原始未诱变亲本的对照基因型包含在内,并且按随机化完全区组设计或其他适当的田地设计,将入选者(entry)排列于田地。对于烟草,使用标准的农学实践,例如将烟草收获、称量且取样,用于在干制之前和干制期间的化学及其他常见测试。执行数据的统计分析,以确认所选择品系与亲本品系之间的相似性。任选地执行所选植物的细胞基因学分析,以确认染色体组和染色体配对关系。
DNA指纹鉴定、单核苷酸多态性、微卫星标记或类似技术可用在标记辅助选择(MAS)的育种计划中,以如本文所述的,将基因的突变等位基因转移或培育到其他烟草内。举例来说,育种者可通过含有突变体等位基因的基因型与农学期望的基因型的杂交来产生分离的群体。可使用本文中所列出的技术之一,使用从基因组序列或其片段所开发的标记来筛选F2中的植物或回交世代。鉴定为具有突变体等位基因的植物可以回交或自花授粉,以产生待筛选的第二群体。取决于预期遗传模式或所用MAS技术,有必要在每轮回交之前对所选择的植物进行自花授粉,以帮助鉴定所需个体植物。可重复进行回交或其他育种操作,直到恢复轮回亲本的所需表型。
根据本公开内容,在育种计划中,成功的杂交获得能育的F1植物。所选择的F1植物可与亲本之一杂交,并且第一回交世代植物进行自花授粉,以产生再次筛选变体基因表达(例如,基因的无效版本)的群体。将回交、自花授粉和筛选的过程重复例如至少4次,直到最终筛选产生可育且与轮回亲本相当相似的植物。如果需要的话,这种植物进行自花授粉,并且随后再次筛选后代,以确认植物展现变体基因表达。在一些实施方案中,筛选F2代中植物群体的变体基因表达,例如根据标准方法鉴定由于缺乏基因而不能表达多肽的植物,例如通过使用PCR方法,其中引物基于本文所述的多核苷酸(或如本文所述的其任何组合)的多核苷酸序列信息。
杂交烟草品种可通过以下方式产生:阻止第一品种的雌性亲本植物(即,种子亲本)的自花授粉,允许来自第二品种的雄性亲本植物的花粉使雌性亲本植物受精,且允许F1杂种种子在雌性植物上形成。可通过在花发育早期阶段将花朵去雄来阻止雌性植物的自花授粉。或者,可使用雄性不育的形式阻止在雌性亲本植物上形成花粉。举例来说,可通过细胞质雄性不育(CMS)或转基因雄性不育来产生雄性不育,其中转基因抑制小孢子和/或花粉形成、或自交不相容。含有CMS的雌性亲本植物是特别有用的。在雌性亲本植物是CMS的实施方案中,从雄性可育植物收获花粉并人工施用于CMS雌性亲本植物的柱头,并且收获所得到的F1种子。
本文所述品种和品系可用于形成单杂交烟草F1杂种。在这类实施方案中,亲本品种的植物可生长为基本上同质的相邻群体,以便于雄性亲本植物与雌性亲本植物的天然异花授粉。通过常规方式选择性地收获在雌性亲本植物上形成的F1种子。还可大批种植两个亲本植物品种,并收获由于自花授粉而在雌性亲本上形成的F1杂种种子和在雄性亲本上形成的种子的掺合物。或者,可进行三系杂交,其中单杂交F1杂种用作雌性亲本,并且与不同的雄性亲本杂交。作为另一替代方案,可产生双杂交杂种,其中两个不同单杂交的F1后代进行自身杂交。
可在突变型、非天然存在的或转基因植物群体中,筛选或选择具有所需性状或表型的那些群体成员。例如,可以筛选单个转化事件的后代群体中的具有所需表达水平或由其编码多肽的功能的那些植物。可使用物理和生物化学方法来鉴定表达或活性水平。这些方法包括用于检测多核苷酸的Southern分析或PCR扩增;用于检测RNA转录物的Northern印迹、S1 RNase保护、引物延伸或RT-PCR扩增;用于检测多肽和多核苷酸的酶或核酶功能的酶分析;以及用于检测多肽的多肽凝胶电泳、Western印迹、免疫沉淀和酶联免疫分析。其他技术诸如原位杂交、酶染色、免疫染色和酶测定也可用于检测多肽或多核苷酸的存在或表达、功能或活性。
如本文所述的突变型、非天然存在的或转基因植物细胞和植物包括一种或多种重组多核苷酸、一种或多种多核苷酸构建体、一种或多种双链RNA、一种或多种结合物或者一种或多种载体/表达载体。
非限制性地,本文所述的植物及其部分可以在根据本公开的一种或多种多核苷酸和/或多肽的表达、功能或活性已被调节之前或之后被修饰。
在突变型、非天然存在的或转基因植物及其部分中可以存在一种或多种下列进一步的基因修饰。
可以修饰涉及氮代谢中间体转化的一个或多个基因,从而降低至少一种烟草特异性亚硝胺(TSNA)的水平。此类基因的非限制性实例包括编码尼古丁脱甲基酶的那些(诸如WO2006/091194、WO2008/070274、WO2009/064771和WO2011/088180中所述的CYP82E4、CYP82E5和CYP82E10),以及硝酸还原酶,如WO2016046288中所述的。
可以修饰参与重金属吸收或重金属转运的一个或多个基因,从而降低重金属含量。非限制性实例包括以下中的基因:多药抗性相关多肽家族、阳离子扩散促进因子(CDF)家族、Zrt-Irt样多肽(ZIP)家族、阳离子交换剂(CAX)家族、铜转运蛋白(COPT)家族、重金属ATP酶家族(例如HMA,如WO2009/074325和WO2017/129739中所述)、天然抗性相关巨噬细胞多肽(NRAMP)的同系物家族和ATP结合盒(ABC)转运蛋白家族的其他成员(例如MRP),如WO2012/028309中所述,其参与重金属诸如镉的转运。
其他示例性修饰可产生具有调节的表达或功能的异丙基苹果酸合酶的植物,这导致蔗糖酯组成的改变,其可用于改变喜好概况(参见WO2013/029799)。
其他示例性修饰可产生具有调节的表达或功能的苏氨酸合酶的植物,其中甲硫氨酸的水平可以被调节(参见WO2013/029800)。
其他示例性修饰可产生具有调节的表达或功能的新黄质合酶、番茄红素β环化酶和9-顺式-环氧类胡萝卜素双加氧酶中的一种或多种的植物,以调节β-大马酮含量来改变风味特征(参见WO2013/064499)。
其他示例性修饰可产生具有调节的表达或功能放入氯化物通道的CLC家族成员的植物,以调节其中的硝酸盐水平(参见WO2014/096283和WO2015/197727)。
其他示例性修饰可产生具有调节的表达或功能的一种或多种AAT的植物,以调节叶子中的一种或多种氨基酸(诸如天冬氨酸)的水平和调节在加热或燃烧叶子时产生的气溶胶中的丙烯酰胺的水平(参见WO2017042162)。
其他修饰的实例包括调节除草剂耐受性,例如,草甘膦是许多广谱除草剂的活性成分。通过转移aroA基因(来自鼠伤寒沙门氏菌(Salmonella typhimurium)和大肠杆菌(E.coli)的草甘膦EPSP合成酶),已开发草甘膦抗性转基因植物。通过转化来自拟南芥的突变ALS(乙酰乳酸合成酶)基因已产生了抗磺脲植物。来自突变绿穗苋(Amaranthushybridus)的光系统II的OB多肽已被转移到植物中以产生抗阿特拉津转基因植物;并且抗溴苯腈转基因植物已通过掺入来自细菌克雷伯氏肺炎菌(Klebsiella pneumoniae)的bxn基因而产生。
另一示例性修饰导致对昆虫具有抗性的植物。苏云金芽孢杆菌(Bacillusthuringiensis,Bt)毒素可以提供一种有效方式来延迟抗Bt害虫的出现,如在花椰菜中最近说明的,其中金字塔形cry1Ac和cry1C Bt基因控制对任一单个多肽具有抗性的小菜蛾,并且显著延迟抗性昆虫的进化。
另一示例性修饰产生对由病原体(例如病毒、细菌、真菌)引起的疾病具有抗性的植物。已经设计了表达Xa21基因(抗白叶枯病)的植物和表达Bt融合基因和几丁质酶基因(抗三化螟和耐鞘)的植物。
另一示例性修饰产生改变的生殖能力,例如雄性不育。
另一示例性修饰产生耐受非生物胁迫(例如,干旱、温度、盐度)的植物,并且通过转移来自拟南芥属的酰基甘油磷酸酶,已产生耐受的转基因植物;编码甘露醇脱氢酶和山梨糖醇脱氢酶的基因改善抗旱性,所述甘露醇脱氢酶和山梨糖醇脱氢酶涉及甘露醇和山梨糖醇合成。
另一种示例性修饰产生其中一种或多种内源性糖基转移酶诸如N-乙酰葡糖胺基转移酶、β(1,2)-木糖基转移酶和α(1,3)-岩藻糖基转移酶的活性被调节的植物(参见WO/2011/117249)。
另一种示例性修饰产生其中一种或多种尼古丁N-脱甲基酶的活性被调节的植物,使得可以调节在干制期间形成的降烟碱和降烟碱代谢物的水平(参见WO2015169927)。
其他示例性修饰可以产生具有改善的储存多肽和油的植物、具有增强的光合效率的植物、具有延长的保存期限的植物、具有增强的碳水化合物含量的植物和抗真菌的植物。也可设想S-腺苷-L-甲硫氨酸(SAM)和/或胱硫醚γ-合酶(CGS)的表达已被调节的转基因植物。
参与尼古丁合成途径的一个或多个基因可以被修饰,从而产生在干制时产生调节水平的尼古丁的植物或植物部分。尼古丁合成基因可以选自由以下组成的组:A622、BBLa、BBLb、JRE5L1、JRE5L2、MATE1、MATE 2、MPO1、MPO2、MYC2a、MYC2b、NBB1、nic1、nic2、NUP1、NUP2、PMT1、PMT2、PMT3、PMT4和QPT或它们中的一个或多个的组合。
参与控制一种或多种生物碱的量的一个或多个基因可以被修饰,从而得到产生调节水平的生物碱的植物或植物部分。生物碱水平控制基因可以选自由以下组成的组:BBLa、BBLb、JRE5L1、JRE5L2、MATE1、MATE 2、MYC2a、MYC2b、nic1、nic2、NUP1和NUP2或它们中的一个或多个的组合。
一种或多种此类性状可基因渗入来自另一栽培品种的突变型、非天然存在的或转基因植物,或可直接转化到其内。
各种实施方案提供了突变型植物、非天然存在的植物或转基因植物,以及生物质,其中根据本公开的一种或多种多核苷酸的表达水平被调节,从而调节由其编码的多肽的水平。
本文所述植物的部分,特别是这些植物的叶片和中脉,可以掺入或用于制备各种消耗品,包括但不限于气溶胶形成材料、气溶胶形成装置、吸烟制品、可抽吸制品、无烟产品、医药或美容产品、静脉内制剂、片剂、粉末和烟草产品。气溶胶形成材料的实例包括烟草组合物、烟草、烟草提取物、烟丝、切丝填料、干制的烟草、膨胀烟草、均质烟草、再造烟草和烟斗烟草。吸烟制品和可抽吸制品是气溶胶形成装置的类型。吸烟制品或可抽吸制品的实例包含香烟、小雪茄和雪茄。无烟产品的实例包括嚼烟和鼻烟。在某些气溶胶形成装置而不是燃烧中,烟草组合物或另一气溶胶形成材料被一个或多个电加热元件进行加热,以产生气溶胶。在另一类型的被加热的气溶胶形成装置中,通过将热量从可燃性燃料元件或热源转移到物理上分开的气溶胶形成材料来产生气溶胶,所述气溶胶形成材料可以位于热源内、热源周围或热源下游。无烟烟草产品和多种含烟草的气雾形成材料可包含任何形式的烟草,包括沉积在其他成分上、混合于其他成分中、由其他成分包围或以其他方式与其他成分组合的干燥颗粒、碎片、小颗粒、粉末或浆料,所述其他成分采取任何形式,例如絮片、膜、卡(tab)、泡沫或珠。如本文中所使用,术语“烟雾”用于描述由例如香烟等吸烟制品或通过燃烧气溶胶形成材料而产生的一类气溶胶。
在一个实施方式中,本发明还提供了来自本文所述的突变型、转基因和非天然存在的植物的干制的植物材料。干制绿色烟叶的工艺是本领域技术人员已知的,并且包括但不限于如本文所述的晾干、火烤干制、烟道干制和晒干。
在另一个实施方式中,本发明描述了包括含有烟草的气雾形成材料的烟草产品,所述气雾形成材料包含来自本文所述的突变型烟草植物、转基因烟草植物或非天然存在的烟草植物的植物材料,例如叶,优选干制的叶。本文中所描述的烟草产品可以是掺合的烟草产品,其还可包括未修饰的烟草。
用于作物管理和农业的产品和方法
突变型、非天然存在的或转基因植物可具有在例如农业中的其他用途。例如,本文所述的突变型、非天然存在的或转基因植物可用于制备动物饲料和人类食物产品。
本公开还提供了用于产生种子的方法,其包括培养本文所述的突变型植物、非天然存在的植物或转基因植物,并且从栽培的植物收集种子。来自本文所述植物的种子可通过本领域中已知的方式进行条件处理,且包装在包装材料中,以形成制造物品。如纸和布等包装材料是本领域众所周知的。种子的包装可带有描述其中种子的性质的标记,例如固定到包装材料的标签或标记、印刷在包装上的标记。
用于对植物基因分型以鉴定、选择或育种的组合物、方法和试剂盒可包括检测多核苷酸样品中的多核苷酸(或如本文中所描述的其任何组合)存在的方式。因此,描述了一种组合物,其包含用于特异性扩增一种或多种多核苷酸的至少一部分的一种或多种引物,以及用于进行扩增或检测的任选地一种或多种探针和任选地一种或多种试剂。
相应地,公开了基因特异性的寡核苷酸引物或探针,其包含对应于本文所述的多核苷酸的约10个或更多个邻接多核苷酸。所述引物或探针可包含以下或由以下组成:约15、20、25、30、40、45或50个或更多个邻接多核苷酸,所述引物或探针与本文所述的一种或多种多核苷酸杂交(例如,特异性地杂交)。在一些实施方案中,引物或探针可包含约10至50个连续核苷酸、约10至40个连续核苷酸、约10至30个连续核苷酸或约15至30个连续核苷酸,或由其组成,其可用于基因鉴定(例如,Southern杂交)或分离(例如,细菌菌落或噬菌斑的原位杂交)或基因检测(例如,作为扩增或检测中的一种或多种扩增引物)的序列依赖性方法。可设计一个或多个特异性引物或探针,且用于扩增或检测多核苷酸的部分或全部。作为具体实例,可以在PCR方案中使用两种引物来扩增多核苷酸片段。PCR也可以使用来源于多核苷酸序列的一种引物和与多核苷酸序列上游或下游序列杂交的第二种引物进行,所述多核苷酸序列诸如启动子序列、mRNA前体的3'端或来源于载体的序列。用于体外扩增多核苷酸的热和等温技术的实例是本领域众所周知的。样品可以是或可源自植物、植物细胞或植物材料,或者由如本文所述的植物、植物细胞或植物材料制备或衍生的烟草产品。
在另一方面,还提供了检测样品中本文所述的多核苷酸(或如本文所述的其任何组合)的方法,该方法包括以下步骤:(a)提供包含或疑似包含多核苷酸的样品;(b)使所述样品与一种或多种引物或一种或多种探针接触,以特异性检测多核苷酸的至少一部分;以及(c)检测扩增产物的存在,其中扩增产物的存在指示样品中多核苷酸的存在。在另一方面,还提供了一种或多种引物或探针用于特异性检测多核苷酸的至少一部分的用途。还提供了用于检测至少一部分多核苷酸的试剂盒,其包含用于特异性检测至少一部分多核苷酸的一种或多种引物或探针。试剂盒可包含用于多核苷酸扩增(如PCR)的试剂,或用于探针杂交检测技术(如DNA印迹、RNA印迹、原位杂交或微阵列)的试剂。试剂盒可包括用于抗体结合检测技术(如蛋白质印迹、ELISA、SELDI质谱法或测试条)的试剂。试剂盒可包括用于DNA测序的试剂。试剂盒可包括试剂和使用说明。
在一些实施方案中,试剂盒可包括用于所述方法中的一种或多种的说明书。所述试剂盒可用于遗传一致性确定、系统发生研究、基因分型、单倍体分型、谱系分析或植物育种,特别是共显性评分。
本公开还提供了对包括如本文所述的多核苷酸的植物、植物细胞或植物材料进行基因分型的方法。基因分型提供了区分染色体对的同源物的手段,并且可用于区分植物群体中的分离体。分子标记方法可用于系统发生研究、表征作物品种之间的遗传关系、鉴定杂交或体细胞杂种、定位影响单基因性状的染色体区段、图位克隆和定量遗传研究。基因分型的具体方法可采用任意数目的分子标记分析技术,包含扩增片段长度多态性(AFLP)。AFLP是由多核苷酸变异性引起的扩增片段之间的等位基因差异的产物。因此,本公开进一步提供了使用诸如AFLP分析的技术来追踪一个或多个基因或多核苷酸以及与这些基因或多核苷酸基因连接的染色体序列的分离的方法。
还在以下实例中描述了本发明,提供所述实例以更详细地描述本发明。这些实例阐述目前设想用于进行本发明的优选模式,意图说明而不是限制本发明。
实施例
实施例1:白肋烟、弗吉尼亚烟和东方烟烟草叶子干制后的关键氨基酸上调基因的鉴定
为了鉴定在白肋烟、弗吉尼亚烟和东方烟烟草叶子的早期干制期间导致游离氨基酸变化的关键功能,在白肋烟、弗吉尼亚烟和东方烟中,对干制48小时后的干制叶子中与收获时成熟的叶子相比上调的基因功能进行了过表达分析(log2倍数变化>2,调整的p值<0.05)。鉴定了涉及产生游离氨基酸的基因,这些基因在干制48小时后是有活性的,与干制类型和烟草品种无关。研究了在早期干制期间影响天冬氨酸产生并且属于AAT家族的烟草基因。
在烟草基因组中鉴定了NtAAT多核苷酸的完整集合,其是NtAAT1-S(SEQ ID NO:5)、NtAAT1-T(SEQ ID NO:7)、NtAAT2-S(SEQ ID NO:1)、NtAAT2-T(SEQ ID NO:3)、NtAAT3-S(SEQ ID NO:9)、NtAAT3-T(SEQ ID NO:11)、NtAAT4-S(SEQ ID NO:13)和NtAAT4-T(SEQ IDNO:15),并且它们的推导多肽序列是NtAAT1-S(SEQ ID NO:6)、NtAAT1-T(SEQ ID NO:8)、NtAAT2-S(SEQ ID NO:2)、NtAAT2-T(SEQ ID NO:4)、NtAAT3-S(SEQ ID NO:10)、NtAAT3-T(SEQ ID NO:12)、NtAAT4-S(SEQ ID NO:14)和NtAAT4-T(SEQ ID NO:16)。
基因表达分析表明,在白肋烟、弗吉尼亚烟和东方烟中,与绿色叶子相比,在干制48小时后,NtAAT2-S(SEQ ID NO:1)和NtAAT2-T(SEQ ID NO:3)是表达最多的基因(>11x)(参见表1)。有趣的是,在干制48小时后,NtAAT1-T(SEQ ID NO:7)也被上调,但程度较小(>2.5)。在成熟叶子中,仅NtAAT2-S和NtAAT2-T已被上调,表明这些基因是为天冬酰胺合成提供天冬氨酸的主要驱动物。
NtAAT2-S和NtAAT2-T基因不仅在叶绿素降解的早期叶子干制期间高度表达,而且在花瓣中也高度表达(参见表2)。它们在根和叶子(见表2)和其他组织中的表达非常低,表明NtAAT2-S和NtAAT2-T的功能与非叶绿素地上器官的定位有关。对于NtAAT1-S和NtAAT1-T,似乎观察到同样的结果,但程度较小。因此,我们不能排除NtAAT1-S和NtAAT1-T也有助于干制叶子中天冬氨酸的合成。相反,NtAAT3-S/NtAAT3-T和NtAAT4-S/NtAAT4-T似乎在所有植物组织中组成性表达较高(参见表2)。
共表达分析证实NtAAT2-S、NtAAT2-T、NtASN1-S和NtASN1-T在早期干制阶段被共调节。为此,使用了由34个未干制和早期干制白肋烟样品组成的白肋烟干制转录组数据库。发现168个基因与NtASN1-S和NtASN1-T共表达,12个基因与NtAAT2-S和NtAAT2-T共表达(阈值>0.9)。在该转录组集合中,NtAAT2-S和NtAAT2-T以及NtASN1-S和NtASN1-T转录物均存在于与其他5种转录物相关联的两组RNA序列(共有9个序列)中。这种与干制期间的时间过程实验(参见图2)相关联的共表达以及花瓣和早期干制叶子中的共表达(参见表2和WO2017/042162)表明NtAAT2-S和NtAAT2-T以及NtASN1-S和NtASN1-T都有助于硝酸盐以协同方式同化为氨基酸和天冬酰胺。
研究了白肋烟烟草植物中NtAAT2-S和NtAAT2-T的沉默,以确定这两种基因是否均有助于减少干制白肋烟叶子中的天冬氨酸。在NtAAT2-S和NtAAT2-T两者的编码序列内的特定DNA片段(SEQ ID NO:17)与强组成型紫茉莉花叶病毒(MMV)启动子一起克隆在GATEWAY载体中。在MMV与根癌农杆菌(Agrobacterium tumefaciens)的胭脂碱合酶基因的3’nos终止子序列之间侧接NtAAT2-S和NtAAT2-T基因片段。使用标准农杆菌介导的转化方案转化白肋烟烟草品系TN90e4e5e10(Zyvert)。TN90e4e5e10(Zyvert)代表从甲基磺酸乙酯(EMS)诱变的白肋烟群体中选择,其在CYP82E4、CYP82E5v2和CYP82E10中含有敲除突变(参见Phytochemistry(2010)71:17-18)以防止去甲烟碱产生。使用这样的背景品系可以避免解释未来TSNA数据时可能出现的复杂情况。
为了能够选择低天冬氨酸含量的植物,在干制60小时后分析16个独立的T0植物叶子(E324)和4个相应的对照品系(CTE324),以确定对尼古丁(作为对照)(参见图3)和天冬氨酸(参见图4)的影响。T0植物叶片(E324)与对照品系(CTE324)之间的尼古丁含量没有显著差异。表现出最低水平的天冬氨酸的最佳T0品系是3、8、13、16、17和20,其中检测到的天冬氨酸的量很低(75ug/g)或检测不到。从这些显示最低水平的天冬氨酸的最佳T0品系收获种子。通过qPCR测定T1子代以确定与天冬氨酸和天冬酰胺含量相关的NtAAT2-S和NtAAT2-T沉默事件的效率。
由于天冬氨酸是合成其他氨基酸如天冬酰胺、苏氨酸、异亮氨酸、半胱氨酸和甲硫氨酸的关键途径,操作NtAAT基因(例如,用组成型启动子或特定衰老启动子,诸如SAG12或E4)可改变烟草干制叶子的化学性质。类似地,使用基因编辑策略(诸如CRISPR-Cas或突变体选择)敲除NtAAT基因可改变商品烟草的主要品种的氨基酸叶子化学性质以及烟气和气溶胶化学性质。
在本文中引用的或描述的任何出版物都提供了在本申请的提交日期之前公开的有关信息。本文中的陈述不应解释为承认发明人丧失先于这样的公开的资格。在上面的说明书中提及的所有出版物都通过引用并入本文。在不脱离本发明的范围和精神的情况下,本发明的各种修改和变化对于所属领域的技术人员来说将是显而易见的。尽管已经结合特定优选实施方案来描述本发明,但应理解,如所要求的本发明不应不恰当地限于此类特定实施方案。实际上,细胞生物学、分子生物学和植物生物学或有关领域的技术人员显而易见的用于实现本发明的所描述模式的不同改进意图在以下权利要求书的范围内。
表1
白肋烟(BU)、弗吉尼亚烟(FC)和东方烟(OR)烟草在早期干制期间的NtAAT表达(FPKM)
Figure BDA0002662172560000641
表2
在田间生长的白肋烟(BU)和弗吉尼亚烟(FC)植物的叶子、花瓣和根中的NtAAT基因的表达
Figure BDA0002662172560000651
序列表
SEQ ID NO:1:NtAAT2-S的核苷酸序列
atgaacatgtcacaacaatcaccgtcaccgtccgctgaccggaggttgagtgttctggcgagacaccttgaactgtcgtcctccgccaccgtcgaatcctctatcgtcgctgctcctacctctggaaatgctggaaccaactctgtcttctctcacatcgttcgcgctcccgaagatcctattctcggcgtaactctctctctctctctctctctctctcttcatccacacacacacgcactcactcacataacatattaagtatatgcgtgctcaaatgttctgtatgtattcatttgttccgtatcaaatgttctcttgttataagctgaattttagaggaattgtagtgctatttgctaatcgaaagagcttgatactcattctcttcctattgaattaaatattccttttttcttatggatgatgaatttaagacttttttttagtccgatcactacgaaatttcgatttcaagttgatagaagtgaaaaatgatggggttaacatatcaattgagcgaataaaaagagaaattcgtgtgttgatatcttcaaaagtgtatttaaatgtagagatatattgtgatttagtttctgttattatctttgtcttttttctattgaaatttgaatattatttgttgaagtcttcgtgacatatcttggtgttatgttttggttattaggtcactattgcttacaataaagatagtagccccatgaagttgaatttgggagttggtgcatatcgcacagaggtgatcatcctttttggattttgtatttgcgctattatggtcaatggagcactattatcagttgctggataatcatcctttttgatatttccttgattgaaatctaaaaacacgaataaaaagatatttactgatggatctgtgttttggtttcttcagattgacgcatttctgttaattgaaaagaattgtgattgttttggtgattgtggtgttattttagcttcatacagttaatccgacgccgtagtgtactagtgtttggctgatgtgctgccaagagataatgtttaagattatggtttgccataattgataaaatttaatattaaaagtacttggctggatgttctgcgtttgcataacttgtaatgcatatgaaaaagttacctttgattttcataattagtgagaaaactcaagtagcttccgcattcctgtcattgcactatcaaacacattaaacggtttccgacatatctacctagtttggaacttcatgatttctatttttcacaccttgtaataaatgataattcttggatctgtggtgtctttgttcaaaagatcacagagaagattgcatttattttttgtagtctagttggctcagagtctgtcaaacacaacttgttacatcgcattttacctgttagttaagaaacttgggtcatcaacaaatttgtcatgaggtggttatttcttggggctttgtgaattgctctcagcaatctgctagctttcttatgtggactcaaaacaatgaagctcttgagttgatgtgttgatttttcaatcagagtaaaacaagttctatatttggctgtgagagtaaagtgggagctattaaaattcctagctgaatttatgtttcttaatatcttaaatccttaaaggtagagggagaggaaggaggtttattgatgaagggctagtagttgtgtatacttagttctttttcaaatttcataagtatctcttgatggtttttctcgctgactgttgaatatggggctccacagtttgtgttgctatattgaaatgtttcagctaataaaactaacgtgtttctttttctttctcccttttttggggttatcaggaaggaaaacctcttgttttgaatgttgtaagacaagcagagcagctactagtaaatgacaggtacttgcattgccatttcatggagtatgaataaaatgtttccttaattctatgtgattaaacttcaagatttctgcaggtctcgcgttaaagagtacctatctattacgggactggcagacttcaataaattgagtgctaagctgatacttggcgccgacaggtataaaagttcctgttctctgtatagtgttgccgataagatatgcagggagataaagcatgtattttcctgttgcataggatgatatcttcagataataaggctccattccaagtgtttgatggcttggtagatctttgtgaagcatctattaacatttggtcacatttttttaaaaccaacttcccatcccatccatgccattccacgtgtcagttattcatgaaaatgctgttcacttgcatacatgttactgccgttgtgttgatttcctcaactctactcataatttctctgtgtggtcgcattctggtgatctgatttatctgataatatctgtacatgttttgaaatttgggtagtgtctctttgattagcgtgtaaagcaagcaactcttgatgcgtgtgatcaagtgtattgctgtctagagctgacagatgttaaatttatcttatgcgtttccaagatcttccagatgttctatgtaatctttttaggccagcttaaactttgacttgcttcatatacatttatgttaaaggagagttgttaatatacttcaatttttcacatttttaattcctctttttacctgtggtcctcacgagctcttactttctttgcttggtacagccccgctattcaagagaacagagtaacaactgtgcagtgcttgtctggcacaggctcattgagggttggagctgaatttttggctcgacattatcatcaagtaaactgctacatcttcctaacctacctttcattttccttcgttttcttagccttcgtgggtaaacaatcttcaaagttgaattaaccttgatgtaaccattcctgcagcgcacaatttatattccccaaccaacatggggaaaccacccaaaagttttcactttagctggattatcggtaaagagttaccgctactatgatccagcaactcgtggactcaattttcaaggtatgaaacacttccctacaatataatgatgtaacaggatattgtcccattagatatctatggctatgctgtttactattactctcttccaggatgatggatgttcttttagtcttattctggtatttgattacaaattatcacaagtctgaatcaagttgtggatggatggtttcacttgtttgattgcattgtaatccagcaaacttgtaaagtcatcgtcatctatgctttttctttatacctttttctgcgaggaaataagcgaagagagatggagatataacttgataataatggaatgcaacaaacgcctaatttaacatattagggaccaactaacgtctacatttgacattagctcttaacattttgactttttaataccttaccaaaaataaaaaagattgacattctaatgtcgcacggaaccaaaggtgggaatagctgataacatagaaaagtaaccaaacaagtcctggaatcttgtcaaaaaagaaattcagttgtcgaaatgttcttgaaaaaagttactgcaaccgcaatggtcggaagaataggaggaagaaattcaataatgcgggtcaaatagaggaggtgccactaaaaggccattggagaggggccgggaaacaccatctgaaagaggtacagtggtaccagaaggattatcgaatgctgatgcatagaaacgagtcagagattgaaacagtcactggaaagaggtttgatgttgtgacagcagtcacaataaagaaaagtggtgcaatcagaatgatcactggaaaggctagaattgtagaactatcataagaaagtgaattgtggagggaaatctctgtgaaaagacaaaatctatttaggtccacaagatcatagaggctctaatgccatgtgagaaactgagagagtggacggaaataaatagattacttgataaaatacaatccatacgtttaaatccgaatgactaactttaattttaacacaacttttacatctaaaagtatgacacgtgacattctaacctttcgtgcttgtgttcacaactttgcatatcgccgacttgtttacaagaactttctttttcgtacatgacaggtttgttggaagaccttggatctgctccatcgggagcggtagtgctacttcacgcttgtgcccataaccccactggtgttgatccaaccattgatcagtgggagcaaattaggagattgatgagatcaagaggattgttgcccttctttgatagtgcatatcaggtaagagatcatcaacagatgtgcagagcactttggctgttggagttgttgctgtgtgagcatttaaaagtgatgtggtttgttcagtatatgtcaattaaccttgatattcaaactttgatattctagggctttgccagtggaagcctagatacagatgcacagtctgttcgcatgtttgtggcagatggaggtgaagtacttgttgctcaaagttatgcaaagaatatggggctttatggtgaacgtgttggagctctaagcattgtacgtcttaaaggacaatggacaactgtgccttatttctgaaaatttatatctccagttggtcatttgttgcattacctttatttttctcagattgattctcatgatgcataaactgtcttactgttttcatagtggccttcttttgtgatgttaaaatttggtagttatgaactgtttaaagcttatatagcttacttccaaataaataactgtgagccttggacatcacatataaattattttatatcacggattcgagccgtggaaacaacctcttgcagaaatgtagggtaaggttgcgtataatagacccttgtcatccggcccttccccggacccctgcgcatagcgggagcttagtgcaacgggttgcctttttttcatcctgaggcataaaaagtttgtaatttctcaagaatgaataaagagcctgttataacaggcaatttgcatatcatatggtgttgtttgtcgcacagtgatgacatatttatcacacaaatgaaagaaaaatgaaggatatagttctgaaccctcagttaaactctgctgacagttataattcttcaaattttctcaaatctgtaggtctgcaggaatgctgatgtggcgagcagagttgagagccagctgaagttggtgattaggccaatgtattccaatccgcccatccatggtgcgtcaatagttgccacaatccttaaagacaggtaatatatcaaccatcaggaaattgcttcttgggaccctaaaaagccatttcctttctttctatatgatagaatccagtgtatgttcaaaaattatgtttagtcattgttctgcaaaataaatcactaattttctgcagaaacatgtaccgtgaatggacccttgagctgaaagcaatggctgatagaatcatcagaatgcgtcagcaattatttgatgctttacgtgctagaggtaaatttgctgcattattttcacgtatgtgtgctcttattacatgtttcttgttgcatcgacttcggatatttttctcatttttgataatttcggttcaagtgtcattataaatgctacatgttcgtggcatatacttctacccataaaatatgctgcaacttgttccagctcatttgtctagataatttatcaaaaggaccaatcttcaccagctgactctcctgaatgaaagcttaatttaggaaaaagattaagcaaacaaaacatggaattcgacaaattcaaacatttctccaaatcttaatagatctcgatcctccttagtgctttcatcaacttcttaggtaattcacctcttaactttggctctgactgggttctctacctttggaaaaccatccccaaagatgtcccttgcacgatccttttggggacatgaactgttggatcaggcaagaaactatcccccaataaagaaaaattgttggatcagattttttcctgataggttgcattctttcagcattccccttaaagtttgtgatttggacgttgtcctcattttggtataaaaaatgtcattggaaactttccattttggcacatcaggtgttagaatcatcatgtcttcataaattggctatagacaaagtctcatgtcgtcagctcctttcttcagtatcaggcattctttaatcaatgtaagtgtcgagcattgcatgagtaggatacttatttctatttacatgaattgatgggcaagtcgggcattttttagtcgacttaaaggtcaagcattgcatgtataagatatctatttctgttgaattcaattgattggcaggtacacctggtgactggagtcacattatcaagcagattggaatgtttactttcacgggacttaactcagagcaagttgccttcatgaccaaagagtaccacatctacatgacatcagatgggtaatatgtcatttctcagcaaaaagtactgtatatcatatcagactaccatgtctcctccacatctgatatgtgattttattacctcgtaagaatttctaccctcggatggtaaaacagaaagagggaagggagttaaaatcttttcagccatcagttagttcttttcttgcagtattcttgctaccttagctttgatgaacgctaagagaaatgtggctgtattaatgaacatttctagagcatggttctttctaagtttgtatttaattgtggcaacttcaattaagcttgggatatcagataatcccaaagcctttgacatacatcacatatttcattttgcagacgcatcagtatggcaggtctgagctccaggacagttccacatctagcagatgccatacatgctgctgtcgctcgggctcgttga
SEQ ID NO:2:如SEQ ID NO:1中列出的NtAAT2-S的推导的多肽序列
MNMSQQSPSPSADRRLSVLARHLELSSSATVESSIVAAPTSGNAGTNSVFSHIVRAPEDPILGVTIAYNKDSSPMKLNLGVGAYRTEEGKPLVLNVVRQAEQLLVNDRSRVKEYLSITGLADFNKLSAKLILGADSPAIQENRVTTVQCLSGTGSLRVGAEFLARHYHQRTIYIPQPTWGNHPKVFTLAGLSVKSYRYYDPATRGLNFQGLLEDLGSAPSGAVVLLHACAHNPTGVDPTIDQWEQIRRLMRSRGLLPFFDSAYQGFASGSLDTDAQSVRMFVADGGEVLVAQSYAKNMGLYGERVGALSIVCRNADVASRVESQLKLVIRPMYSNPPIHGASIVATILKDRNMYREWTLELKAMADRIIRMRQQLFDALRARGTPGDWSHIIKQIGMFTFTGLNSEQVAFMTKEYHIYMTSDGRISMAGLSSRTVPHLADAIHAAVARAR
SEQ ID NO:3:NtAAT2-T的核苷酸序列
atgaacatgtcacaacaatcaccgtccgctgaccggaggttgagtgttttggcgaggcaccttgaaccgtcgtcctccgccaccgtcgaaacctccatcgtcgctgctcctacctctggaaatgctggaaccaactctgtcttctctcacatcgttcgtgctcccgaagatcctattctcggggtaactttctctctctctctctctctctctcttcatccacacgcactcactcacataacatatgtataagtatttaagtatatgcgtgctcaaatgttctgtatatattcatttgttccgtatcaaatgttctcttgttataagctgaattttagaggaattgtagtgttatttgctaatcgcaagagcttgcatactcattctcttcgtattgaattaaatattccttttttcttatggatgacgaatttaagcagttttttgagtccgatcactacgaaatttcgatttcaagttgatagaagtgaaaaatgatggtgtttacatattaattgagcgaataaaaagagaaattcgagtgttgatatcttcaaaaatgttgttaaatgtagagatatactgtgatttagtttctgttataatctttgccttttttcttttgaaatttgaatattgtttgttgaagtcttcgtgacatattggtgttatgttttggttattaggttactattgcatacaataaagatagcagccccatgaagttgaatttgggagttggtgcatatcgcacagaggtgatcatcctttttggcttttgtatttgcgctattatcgtcgatggagcactattatcagtagctggataatcatcctttttgatatttccttgattgaaatccaaaaacacgaataaaaagaaatttactgatggatctgtgttttggtttcttcagatttacgcatttctgttaattgaaaaaatattatgattgtcttggtgattgtggtgttgttttggcttcatatagttaatccgacgccgtagtgtactaatgtttggctgatgtgctgccaagagaaatgtttaagattatggtctgccataactgataaaatttaatattaaaagtacttggctggatgttctgcgtttgcataacttgtaacgcatatgaaaaaattacctttgattttcataattagtgagaaaattaagtagcttccgcattcctgtcattgcactatcaaacacatacggtttatgatatatctacctagtttggaactttgtgatttctatttttcacaccttgtaataaatgataattcttggatctgtggtgtctttgttcaaaagatcacagagaagattgcacttatgttttgtagtctagttggctcagactctgtcaaacacaacttgttacatcgcattttacctgttagttaagaaacttgggtcatcaacaaatttgtcatgaggtggttatttcttggggttttgtgaattgctctcagcaatctgctagctttcttatgtggactcaaaacaatgaatctcttgagttgatgtgttgatttttcaatcgagtaaaacaagttctatatttggctgtgagagtaaagtgggagctattaaaattcctagctgaatttatgtttcttaatatcttaaatccttaaaggtagagggagaggaaggaggcttattgatgaaggactagtagttgtgtatacttagttctttctcaaatttcataagaatctcttgagggtttttctcgctgactgttgaatatggggctccacagtttgtgttgctatattgaaatgtttcagctaataatactaacgtgtttctttttctttctcccttttgtggggttatcaggaaggaaaaccgcttgttttgaatgttgtaagacaagcagagcagctactagtaaatgacaggtacttgtgttgccatttcatggagtatgaataaaatgtttccttaattctatgtgattaaacttcaagatttctgcaggtctcgcgttaaagagtacctatctattactggactggcagacttcaataaattgagtgctaagctgatacttggtgccgacaggtatacaagttcctgttctctgtatagtgttgctgataagatatgcagggagataaagcatgtattttcctgttgcataggatgatatcttccgataataaggctccgttccaagtgtttgatggcttggtagatctttgtgaagcatctattaacatttgctcacgtttttttaaaaccaacttcccatcccatccatgccattccacgtgtcagttattcatgaaaatgctgttcacttgcatacatgttactgccgtagtgttggtttctctcaactctactcataatttctgtgtggtcgcattctggtgatctgatttatgtgataatatctgtacatgttgttttgaaatttgggtagtgtctctttgattagcgtgtaaagcaggcaactcttgatgcatgtggtgaagtgtatgattgctgtctagagctgtcagatgttaaatttatcttatgcgtttgcaagatcttccagatgttctatgtaatctttttaggccagcttaaactttgacttgcttcatatacattt
atgttaaaggagagttgttaatatacttcaattttcacatttttaattcctcttttacctgtggtccttacgagctcttactttctttgcttggtacagccctgctattcaagagaacagagtaacaactgtgcagtgcttgtctggcacaggctcattgagggttggagctgaatttttggctcgacattatcatcaagtaaactgctacgtcttcttaacctacctttcactctccttcgttttcttagccttcgtgggtaaacaatcttcaaagttgaattgaccttgatgtaaccattcctgcagcgcactatttatattccccaaccaacatggggaaaccacccaaaagttttcactttagctgggttatcagtaaagagttaccgctactatgatccagcaactcgtggactcaattttcaaggtatgaaacacttcccttcaatataatgatgtaacgggatattgtcccattagatatctatggccatgctgtttcctattactctcttccaggatgatggatgttcttttagtcttattctggtatttgattacaaattatcacaagtctgaatcaagttgtggatagatggtttcacttgattgattgcattgtaatccagcaaacttgtaaatccgtcatcatctatgctttttctttataccttttttctgcgaggaaataagagcagagagatggagatataacttgataataatggaatgcaacaaacgcctaatttaacatattagggaccaactaacatcagcatttgacattagctcttaacattttgactttttaacaccttatcaaaaaaaagaaggaaaaagattgacattctaatgtcgcacggaaccaaaggtgggaatagctgataacatagaaaagtaaccaaacaagtcctggaatcttgtcaaaaaaaaattcagttgccaaaatgttcttggaaaaaattactgcaaccacaatggtcggaagaataggaggaagaaattcaataatgcgggtcaaatagaggaggtgccactaaaaggccattggagaggggccgggaaacaccatctgaaagaggcacagtggtaccagaaggattatcgaatgctgatgcatagaaacgagtcagagattgaaacagtcactggaaagaaggcttgatgttgtgacagcagtcagtcagaataaagagaagtggtgccatcagaatggtcactggaaaggctcgaattgtagaactatcataagaaagtgaattgtggctgggagactctttgaaagacaaaatctatttaggtctccacaagatcatggatgctctaatgctatgtgagaaactaagagagtggacgaaaataaatggattacttgataaaatacaatccatacgtttaaatccgaatgactaactttaattttaacacaacttttacatctaaaagtatgacacgtgacacttaacctttcatgcttgtgttcacaacttcgcatgtcgccgacttgtttacaagaactttatttttcatacatgacaggtttgttggaagaccttggatctgctccatcgggagcgatagtgctacttcatgcttgtgcccataaccccactggtgttgatccaaccattgatcagtgggagcaaattaggagattgatgagatcaagaggattgttgcccttctttgatagtgcatatcaggtaagaaatcatcaacagatgttcagagcactttggctgttggagttgttgctgtatgagcatttaaaagtgaggcggtttattcagtatatgtcaattaaccttgatattcaaactttgatattctagggctttgccagtggaagcctagatacagatgcacagtctgttcgcatgtttgtcgcagatggaggtgaagtacttgttgctcaaagttatgcaaagaatatggggctttatggtgaacgtgtcggagctctaagcatcgtatgtctcaaaggacaaaggacaactgtgccttgtttctgaaaatttatatctccagttgttcatttgttgcattacctttatttttctcagattgattctcatgatgcatgaactgtcttactgttttcatagtgttcttttgtgatcttaaaatttggtagttatgaactgttaaagcttatatagcttacttccaaatatataactgtgagccttggacatcacatataaattattttatatcacggggtcgagatgtggaaacaacctcttgcagaaatgtagggtaaggttgcgtacaatagacccttgtggtccggcccttcctcggacccctgcacatagcgggagcttagtgcactgggttgcccttgttttcatcctgaggcataaaaagtttttaatttctcaagaatgaataaagagcctgttataacaggcactttgcatgtcatatggtgttgtttgtcacacagttatgcatatagtgtagtttatcacacaaatgaaaaaaattgaaggatatagttctgaaccctcagttaaactctgctgacagatataattcttcaaaattttctcgaatctgtaggtctgcagaaatgctgatgtggcgagcagagttgagagccagctgaagttggtgattaggccaatgtattccaatccgcccatccatggtgcgtcaatagttgccacaatccttaaagacaggtaatatatcaaccatcaggaaattgcttcttgggaccccaaaaaagccatttcctttctttctatatgatagaatccagtgtatgatcaaaaattatgtttagtcattgttctgcaaaataaatcactaaatttctgcagaaacatgtaccatgaatggacccttgagctgaaagcaatggctgatagaatcatcagaatgcgtcagcaattatttgatgctttacgtgctagaggtaaatttgctgcattattttcacgtatgcgtgctcttattacatgtttcttgctgcatcgacttcggatatttttctcatttttgataatttcggttcaagtgtcattataaatgctacatgttcgtggcgtatacttctacatataaaatatgctgcaactcgttccagctcatttgtctagataattgatgaaaaggaccaatcttcacagctgactctcctgaatgaaagcttaacgaaggaaaaagattaagcaaacaaaacatggaattcgacaaattcaaacatttctccaaatcttaatacatctcgatccttcttagtgctttcatcaacttcttaggtaattcacctcttaactttggctctgactggattctctacctttggaaaaccatccccaaagatgtcccttgcacgatccttttggggacatgaactgttggatcaggcaagaaactatcccccaataaagaaaaattgttggatcagattttttcctgataggttgcattctttcagcattccccttaaagtttgtgatttggacgttgtcctcattgtgttacaaaaaaatgtcattggaaacttccattttggcacatcaggtgttagaatcatcatgtcttcataaattggcaatagacaaagtctcatgtcgtcaactcctttcttcagtgtcaggcattctttaatcaatgcaagtgtcgagcattgcatgaataggatacctattactatttacatgaattgatgggcaagtcgggcattttttagtcggcttaaaggtcaagcattgcatgaacaagatatctatttctattgacttcaattgattggcaggtacacctggtgactggagtcacattatcaagcagattggaatgtttactttcacgggacttaactcagagcaagttgccttcatgaccaaagagtaccacatctacatgacatcagatgggtaatgtgtcatttcttagcacaaagttctgtatatgtcatatcagactaccatgtcccccctacatctgatatgtgattttattacctcgtaagctcggatggtaaaacagaaagagggaagggatttaaaatcttatcagccgtcagtttgttcttttcttgtagtattcttgctaccttagctttgatgttcgctaagagaaatgtggcggtactaatgaacatttctagagcatggttctttctaagtttgtatttaattgtggcaacttcaattaagcttaggatatcagataatccaaagcctttgacatacatcacatatttcattttgcagacgcatcagtatggcaggtctgagctccaggacagttccacatctagcagatgccatacatgctgctgttgctcgagctcgttga
SEQ ID NO:4:如SEQ ID NO:3中列出的NtAAT2-T的推导的多肽序列
MNMSQQSPSADRRLSVLARHLEPSSSATVETSIVAAPTSGNAGTNSVFSHIVRAPEDPILGVTIAYNKDSSPMKLNLGVGAYRTEEGKPLVLNVVRQAEQLLVNDRSRVKEYLSITGLADFNKLSAKLILGADSPAIQENRVTTVQCLSGTGSLRVGAEFLARHYHQRTIYIPQPTWGNHPKVFTLAGLSVKSYRYYDPATRGLNFQGLLEDLGSAPSGAIVLLHACAHNPTGVDPTIDQWEQIRRLMRSRGLLPFFDSAYQGFASGSLDTDAQSVRMFVADGGEVLVAQSYAKNMGLYGERVGALSIVCRNADVASRVESQLKLVIRPMYSNPPIHGASIVATILKDRNMYHEWTLELKAMADRIIRMRQQLFDALRARGTPGDWSHIIKQIGMFTFTGLNSEQVAFMTKEYHIYMTSDGRISMAGLSSRTVPHLADAIHAAVARAR
SEQ ID NO:5:NtAAT1-S的核苷酸序列
atggcgatccgagccgcgatttccggtcgtcccctcaagtttagctcgtcggtcggagcgcgatctttgtcgtcgttgtggcgaaacgtcgagccggctcctaaagatcctatcctcggcgttaccgaagctttcctcgccgatcctactcctcataaagtcaatgttggtgttgtaagtttttttttctctttgctttgtttgattttccacttcatttcgtgtaagctaggatttagcttacttgaccatttcgctattcttcataggccatagctgtaaaaatggttttactgtgacgaatcttcgacgatctcaatcgctttgggattgggagagagtttattgatttaatttttgtatgcattccacttttttcaacttgatctatttaagaaaaaaattgaaaaagatttgaccttttttcttaaattatttcttttaaattttttatttttgtgattattatatagggagcttacagagacaacaatggaaaacccgtggtactggagtgtgttagagaagcagagcggaggatcgctggcagtttcaacatgtgagtgctctcctgatttattcaagtttttctgttattttatttgtaattaattacgattacgttaactttgatctattagaaaatagaaacttcagccagtaagattactttttttcttcgaggagtgtgagatgtaaacccaggtcggatgcactggaattcttcactagtttgtgcaaatatattcttaatatttttcaaaaacttcctgtgtacacacacacatacatgtaattaattaagtaattacctactgatctaggatttttaggtagttcggaaaaatatattttcaatatcgtttaagaattttctgggtatgcgtagtttgagtatgataaaatgggtgcatgtgcaccactgcttacgctagggaacagcctctaattagctgttggtgagtctggtgagtggtgactgttctttattttcagttacttcgcacattgttggtttttgattaagtataaataaacgaatgttttagtgagtgcttatttctatgaagcatcttttttaggtctacagaaatgggtggtacgatattttccagccgtcagctccactaaccagtttgattctttgggactttttctttgtattctcacgtttacttctagtggatggtgcagatggatttctttactaattctttcttctgcgtttgcagagctttctcccaagataaattattaatatcaaattgacctttcgatagttcaatggtgtttaactttttcaaatattgcccattttatattatgaagtttgaaagtttaactagacatgttgtaataaattttatttgacttgtgtattttattcattgtggttggagaaagtattaaaataacaagtgaaaagtctgttttacgtcaagtttgaatttgaatttttgaattgatttgcttctttaagtttatgaaaccatctatgagaatattattggcactccattgtctcattttatgtgaaggcatttgacgttgcacaaaatttaaaaatataaagaaacttatgacgtgtaagttagatatatgcagagtaccatagttatccttttaagtaagtgatagtgagagtttcacatttctttttgttctctcttcttataaaagaatgaatttttgtatcccaacaagtcatatcattaatgttaacacggggatactaagattaactaatgtctaaaaagagaaagatttcattcttcttggacgggctaaaaaggaaagtatgtcacataaaatgagacagagatatgttaggatttgtcctgaatttctaatcaattaggactctctttcttgaaggaatggaaaaagactcctaaaaggattaaatctccttaatatgtcttatccttttcttggaagacaagttttgcacatctataaattaaggatctctgcttttcacaagaacacaaaaaaaaaatatccacaatgtagttattaaagagtttgtttagggggagatttttctctcgatagtttttcttcttttatattagttttatcatatgtagatcaattgaccaaatcattataaactattatgcttagtttaatatatttttcttttgttgtctgatttatcgtccatcaagttttgtattgttagttttcgcatgcaccatgttatttcgaacccaacaagtggtatcagagccaatggttcagagtcaacggttgaacgaggttgaagaaagattcaatgcgtgtttagatcaagacgataatgaagatttattcaacatgctacatgtggagataaatttacaattacaattgtattcaacacgcctgctgttgcatctttattggaataaaaactctttctaacccatattttggccactttaaaccaatgccaattttaagtcatgcctacttgcaacacatgagttccagtgccagttttaactcacgcttctttttaatgcatgagcttcttttatcccatgtttattcttaacacgcgggctccttttaacccatacttggtttttttttaaccaataccaagattttcaatttttaatcatggcaagcagcagtgatgaagattatgtgaagaaggtgaatcaactttgtcaagaaaattcaggccaaggggagattgttaggatttgtcctgaatttctaatcaattaggactctctttcttgaaggaatggaaaaagactcctaaaaggattaaatctctttactatgtcttatcattttcttggaagacaagttttgcacatctataaattaaggatctctgcttctcacaagagcacaaaaaaaaaaatatccacaatgtagttattaaagagttttgtttagggggagatttttctttcaatagtttttcttcttttatattagttttatcatatgcagatcaattgaccaaactattatgcttagtttaatattttttttttttgtcgtctgatttatcgtccaccaagttttgtattgttagtttccgcatgcaccatgttatttcgaaccctcgtataagtttgtcaaacattttgtgacttcctaaactagaaagtgtcttgggatgggggagaactacgctatctgatctcaaaaaaagtgtgcatcatgtgatactatgtggatagtttagttcacatgttgacaattcatcatttatcagggaatatcttcctatgggaggtagtgtcaacatgatcgaggagtcactgaagttagcctatggggagaactcagacttgataaaagataagcgcattgcagcaattcaagctttatccgggactggagcatgccgaatttttgcagacttccaaaggcgcttttgtcctgattcacagatttatattcctgttcctacatggtctaagtaagtgtattcttctgcttctcggcatctctacagcatcctaattgatcttcctcaattggtttttgcactttaaaacatgagtatgcaaataccttcaaaattttctaatttcctgtcattactaatataaagttcttggcagtcatcataacatttggagagatgctcatgtccctcagaaaatgtatcattattatcatcctgaaacaaaggggttggacttcgctgcactgatggatgatataaaggtaagaaaacatatatttgaggttgtttgccatgatggttggttctcctgtttgatgatatagtgtccctcctcaagtggcaattatgtgttctatcctgacgtatttcaattttcattgacatagaatgccccaaatggatcattctttctgcttcatgcttgcgctcacaatcctactggggtggatcctacagaggaacaatggagggagatctcacaccagttcaaggtaatgatttgtatgttttgtctctcccttttcttgtcataagtcatattaaatttattacactggttccaggtgaagggacattttgctttctttgacatggcctatcaaggatttgctagtgggaatccagagaaggatgctaaggctatcaggatatttcttgaagatggtcatccgataggatgtgcccaatcatatgcaaaaaatatgggactatatggccagagagttggttgcctaaggtaaactactactcccaccatcatatcttatttgccctagttacaatctggagagtcaaacaaactttttattagaccatagttggtctatttttcaaatgatctaattccaaaagcagttactactatttcatgcaaattctagattaattaaccttttgctatacctcattatcttcatttagtaggcagtagctaattttaccatatatcatatttttcatataatcaatatgtagagttatttatttatttatatattttaaatttatttaggataaattttgttctttccggtaatttcagttcatttccacctaaaagtccaactcgaagagaaaaacagaattttgctagtcaaaacttagatccaatgaaaagcaccaaaattttggttttaaattataaaacatgtctactctaggtttttttcctaggcaagcgatgtgattttacaatcttacaataaggcatcaatcaatcccaaactagtttggttcaacaatataaatctttgttcctatttcatggcattgggcccattgcattccaataatggtaaataagacaaattagaggttatctaagattagagattccttattaaaatctcatacttatatctacattgtcacgcaagtctctgaccttaaaagaagacttctagcagacaccagacttaacgtaagtgtaacaacaacaactaagttttaatccaaactagttagtatcgcttatatgaatcccttgcttccattgtgtagcactaaacaacaacaacaacataccgagtataatctcacatagtggggtctggggagggtagtgtgtacgcagactttacccctgccttgtggagaaagagaggctatttccaatagaccctcggctcaaaaccattgtgtagcaatggaggcatgaaatagaaaacttgtcttctgattaaaatctgttattaaattaatgaggagaaaaaattggattacttgttggtaaatcttatttgttgttttaaacacacacaaagccgaaagacctctgatacttttcctgagatgcttccgcaattcactgcagtgtggtttgtgaggatgaaaaacaagcagtggcagtgaaaagtcagttgcagcagcttgctaggcccatgtatagtaatccacctgttcatggcgcgctcgttgtttctaccatccttggagatccaaacttgaaaaagctatggcttggggaagtgaaggtaatatggttagaacaagaaaagatttatgattatataactatcattggtattttgacaaaaggtaggaactaggaaccttgctattaaagatattttcttccctttattttggaaaaaaaggtattttcttgctttcttcaaatgtttgagatttggatagagccgttacatggaaatgctgtgcaattttctgctactcacatggaaaagatctttttcttttgctgatctgtttaagcacctatttgctaaagcctactatgtcagtatgttgttcaatcttttcagccacagaaacaggtctaaaccagttccaaactttaaataatcttaccatggtagtttcagcaaagataaattggtccgtgcagccattaactgttttctttgtcgggcttcttaaacttgttttctccaaggtctagttgttggtgctgtggctgctttttagctttgtgctcattatcagagcatcatatgtttaagtgtaaaggttcaatgactaagttctttttccagggcatggctgatcgcattatcgggatgagaactgctttaagagaaaaccttgagaagttggggtcacctctatcctgggagcacataaccaatcaggtattgaaatcaacaacttctgttgttttctatgctactagtatataactattaagaaaattactgtggttcacctactgcgccattaatactcgataccaccaacagattggcatgttctgttatagtgggatgacacccgaacaagtcgaccgtttgacaaaagagtatcacatctacatgactcgtaatggtcgtatcaggtataatcattaggtcaccaatttctgcttaatgctccggtgttcttgtacagagttatatctcattattttttccactatgttgtgtgttttgtacgtgcagtatggcaggagttactactggaaatgttggttacttggcaaatgctattcatgaggccaccaaatcagcttaa
SEQ ID NO:6:如SEQ ID NO:5中列出的NtAAT1-S的推导的多肽序列
MAIRAAISGRPLKFSSSVGARSLSSLWRNVEPAPKDPILGVTEAFLADPTPHKVNVGVGAYRDNNGKPVVLECVREAERRIAGSFNMEYLPMGGSVNMIEESLKLAYGENSDLIKDKRIAAIQALSGTGACRIFADFQRRFCPDSQIYIPVPTWSNHHNIWRDAHVPQKMYHYYHPETKGLDFAALMDDIKNAPNGSFFLLHACAHNPTGVDPTEEQWREISHQFKVKGHFAFFDMAYQGFASGNPEKDAKAIRIFLEDGHPIGCAQSYAKNMGLYGQRVGCLSVVCEDEKQAVAVKSQLQQLARPMYSNPPVHGALVVSTILGDPNLKKLWLGEVKGMADRIIGMRTALRENLEKLGSPLSWEHITNQIGMFCYSGMTPEQVDRLTKEYHIYMTRNGRISMAGVTTGNVGYLANAIHEATKSA
SEQ ID NO:7:NtAAT1-T的核苷酸序列
atggcgattcgagccgcgatttccggtcgttccctcaagcatattagctcgtcggtcggagcgcgatctttgtcgtcgttgtggcgaaacgtcgagccggctcctaaagatcctatccttggcgttaccgaagctttcctcgccgatcctactccccataaagtcaatgttggcgttgtgagtttttttttcctctttgttttgcttcattttccacctcatttcgtgtatgcaaggatttagcttacttgaccatttcgctatacttcccttggtaggccatagctgtaaaaaatagttttactgtgacgaatcatcgacatatggatacagagtattctaatggagtagtcaacaacataagtcgatctcaatcgctttgggattgagaaagagtttattgatttaatttttgtatgcgttccacttttttcaacttgatctatttaagaaaaaaattgaaaaagatttgaccttttttcttaaattatttcttttataaaatttgcttttgtgattattatacagggagcttacagggacgacaacggaaaacccgtggtactggagtgtgtcagagaagcagagcggaggatcgctggcagtttcaacatgtgagtgcttctcctgatttattcatttttttctgttatttatttgtaattaattacgattacgttaaatttgatctattagaaaatataaacttcagccagtaagattactttttttcttcgaggagtttgagatgtaaaacccaggtcggatgcactgggattcttaagtagtttgtacaaatatattcttaatagttttgtaaaatttgctgtatacacacacatgtaattaattacctactgatctaggatttataggtagttcggaaaaatatattttcaatatcgtttaagaatttcctgggtgtgtatagtttgagtatgagaaaatgggtgcatgtgcaccactgcttacgctagggatcagcttctaaatagctggtggtgagtctggtgagtggtgactgttctttattttcagttactgtagccacaaattgttggttattgattaagtataaataaacgaatgtattagtgagtgcttatttgtatgaagcatcttttttaagtctacagaaatgggtggtccgatattttccacccgtcagttcctctaactagtttgattctttgggactttttctttgtattctcacgtttacgcctagtggatggtgcagatggatttctttactaattctttcttctgcgcttgcagagctttctcccaagataaattattaatatcaaattgacctttcgatagttcaatggtgtttaactttttcaaatattgccccacatcccattttatattatgaagtttgaaaagtttaactagacatgttgtaataaatttttatttgagttgtgtattttattcattgtggtaggagaaactagaaagtattaaaataacaagtgaaaagtctgttttatggataaagaatattacgtcaagtttgaatttgaaattttgaattgatttgcttctttaaatttatgaaaccatctatgagaatattattagcactccatttgtctcattttatgtgaaggcatctgactttgcacaaagttaaaaaatataaagatacttacgacgtgaaagtttgatatatgccaagtaccataattatccttttaagcaagtgatagtgagagtttaacatttctttttgttctctcttcttataaaagaatgaattttgtatcaagtgggtcccaacaagtcattcattaagggtaaaacggggatgctaagattaactaatttccaaaaagagaaagatttaattcttctaggacaggctaaaaatggaaagtgtttcacataaaatgagacatagacaatataagtttgtcaaacattttgtgacgtcctaaaatagaaagtgtcctgagatggaggagaactacgttatctgttctcaaaaaagtgtgtatcatgtgatactatgtggatagtttagttcacatgttaacaattcatcatttatcagggaatatcttcctatgggaggtagtgtcaacatgatcgaggagtcactgaagttagcctatggggagaactcagacttgataaaagataagcgcattgcagcaattcaagctttatctgggactggagcatgccgaatttttgcagacttccaaaggcgcttttgtcctgattcacagatttatattcctgttcctacatggtctaagtaagtgtattcttctgcttctcggcatctctacagcatcctaattgatcttcctcaattggtttttgcacattaaaacatgagtatgcaaataccttcaaaattttctaatttcctgtcattactaatataaaattcttggcagtcatcataacatttggagagatgctcatgtccctcagaaaacgtatcattattatcatcctgaaacaaaggggttggacttcactgcactgatggatgatataaaggtaagaaaacatatatttgaggttgttttccatgatggtttgttctcctgtttgatgatatagcgtccctcctcaagtggcaattatgtgttctatcctgacgtatttcaattttcattgacatagaatgccccaaatggatcattctttctgcttcatgcttgtgctcacaatcctactggggtggatcctacagaggaacaatggagggagatctcgcaccacttcaaggtaatgattttgtatattttgtctctcctttttcttgtaccaagtcatactaaatttattacactggttccaggtgaagggacattttgctttctttgacatggcctatcaaggatttgctagtgggaatccagagaaggatgctaaggcaatcaggatatttcttgaagatggtcatccgataggatgtgcccaatcatatgcaaaaaatatgggactatatggccagagagttggttgcctaaggtaaactactactcccaccatcatatcttatttgccctagttacaatctggagagtcaaactaactttttgttagaccttagtcggtctatttttcaaatgttctaattccaaaagcagttactactatttcctgtaaattctagattaattaactttttattatacctcattatcttcatttagtagctaattttaccatatatcatatttttcatattatcaatatgtagagagaattatttatttaaatattttaagtttatttataaaaaattgagttctttccgataacttcagttcatttccacctcaaagtccaactcgacgtgaaaagcagaattttgctagtcaaaacttggatccaacaattatttagaataaattgagttctttccgataacttcagttcatttccacctcaaagtccaactcgacgagaaaaacagaattttgctagtcaaaacttggatccaatgaaaagcaccaaaattttggttttaaattacaaaataatgtatactctaggtttttgtcctatgcaagtgattttacggtcttaaaataaagcatcaatcaatcccttaaacacacacaaagccctctaatacatttgctgagatgcttccgcaattcactgcagtgtggtttgtgaggatgaaaagcaagcagtggcagtgaaaagtcagttgcagcaacttgctaggcccatgtacagtaatccacctgttcatggtgcgctcgttgtttctaccatccttggagatccaaacttgaaaaagctatggcttggggaagtgaaggtaatgtgattagaacgagataaagatttatgattgtataactatcattggtattttgacgacagataggaactaggaaccttgctattaaagatattttcttgccttaattttgaaaaaagggaattttctcgcttttttggaatgtatgagatttggatagaactatcacatggaaatgctgtaccattttctgctactcacatggaaaagatccttttcttttgctgatctgtttaagcaccaatttgccatagctttgttgtcctatattttcagccacagaaataagtctaaaccagtcccaagctttaataagctttcattgcgtggtagtgtcagccgcataaattggtcagtgcagccattaactgttttcttcatggggcctgttaaccttgtatttctccaaggtcaagttgttggtgttgtggctgctttttagctttgtactcattatcagagcatcatatgttaaacgtaaaggttcaatgactaagagttttttttccagggcatggctgatcgcatcatcgggatgagaactgctttaagagaaaaccttgagaagaagggctcacctctatcgtgggagcacataaccaatcaggtattgaaatcaatgacttctgttgcgttctatactagtatataactattagaacactatggctcacctattgccccattaatactcgatactgcctacagattggcatgttctgctatagtgggatgacacccgaacaagttgaccgtttgacaaaagagtatcacatctacatgactcgtaatggtcgtatcaggtataatcactcattcacgaatttctgcttaatgctccggtgttcttgtacgagttaatatctcattaatttttccactatgttatactgtgtgttttgtatgttgtgcagtatggcaggagttactactggaaatgttggttacttggcaaacgctattcatgaggttaccaaatcagcttaa
SEQ ID NO:8:如SEQ ID NO:7中列出的NtAAT1-T的推导的多肽序列
MAIRAAISGRSLKHISSSVGARSLSSLWRNVEPAPKDPILGVTEAFLADPTPHKVNVGVGAYRDDNGKPVVLECVREAERRIAGSFNMEYLPMGGSVNMIEESLKLAYGENSDLIKDKRIAAIQALSGTGACRIFADFQRRFCPDSQIYIPVPTWSNHHNIWRDAHVPQKTYHYYHPETKGLDFTALMDDIKNAPNGSFFLLHACAHNPTGVDPTEEQWREISHHFKVKGHFAFFDMAYQGFASGNPEKDAKAIRIFLEDGHPIGCAQSYAKNMGLYGQRVGCLSVVCEDEKQAVAVKSQLQQLARPMYSNPPVHGALVVSTILGDPNLKKLWLGEVKGMADRIIGMRTALRENLEKKGSPLSWEHITNQIGMFCYSGMTPEQVDRLTKEYHIYMTRNGRISMAGVTTGNVGYLANAIHEVTKSA
SEQ ID NO:9:NtAAT3-S的核苷酸序列
atggcaaattcctccaattctgtttttgcgcatgttgttcgtgctcctgaagatcccatcttaggagtacgtccctttccactctttctattttacatttccactgaatatgtttcttctgtggctcctttaataatcttccgtaaatatactattagtggatttgataagctacttctctctccctctctcttttattttcttattttgggttagattaaaatgaacattaattaatgatcagatgatttggttaaagatgatatctaggagatcggcataaataagttgattggaatgatcgctatagggtttcctattgtatgcattggatcatggatgtgtgcgctaattatttaatagtacttctttctttttactgtgatctggcaattccttattttattcctggtgtagttgatgaaaggtgtagatttgattctttaacttgctctattgagaaggtaatttgtgcttctcaagtgtttattaatgttgttttcttctgttgtgttacttcattaaaacaggtcacagttgcttataacaaagataccagcccagtgaagttgaatttgggtgttggcgcatatcgcactgaggtctgccacttctactttgtctcgttgttctttattattattatttttttattatagccaaaaaaagttgccccttgaatggatttggtcctgctatgtgttgaatccttggttaagtttttctttaataggctccttcacaaggatagaaaattgtagacactgatgcttacacattagtaatattttttcccctgatgcataatgaagtgaaaccacttgtgcttctaaaaaatcatactttggggcaaggtgaagtacacatttttataagtggttgtttttttcttcaatcttgagttgaatgttagtgttaagtaggagccgcaaacgggcgggtcgggtcggatttggttcagatcgaaaatgggtaatgaaaaaacaggtaaattatctgactcgacccatatttaatacggataaaaacaggttaaccggcggataatatgggtaaccatattattcatgtcttcttgcatatgatcaattatgggagaattcttagcctcaaatgggaacccccaatttgaggctttacaaatttaaaagttagacccattggttaaccattttctaaatggataatatggttcttatccatatttgacccatttttaaaaagttcattatccaacccattttttagtggataatatgggtgtttaactgatttcttttaaccattttgacacccctagtgttaagcttgaaaacgactaatgcatagtctgatgacaacttgcaggaaggaaagccccttgttcttaatgtggtgagacgggctgaacaaatgctcgtcaatgacacgtaacttgccaaattagaaactagcttacagattttcttttgagatatgatcacctgataccaagattggaatctaaggctgctatgatgcaggtctcgggtgaaggagtatctctcaattactggactagcggattttaacaaactgagtgcaaagcttatatttggtgctgacaggtttggagattttttggtgcagttgctcttgataaatgcttgagtcaattttttttaaaaaaaatgctcactatccatgtcgctctatttaaacctatcttgccaaaccacttgtataaatgaaaatgagccgtcgatattcttccttccatctagtttgatatttgaattagagattgttgctaaaagggaatgctttatctctacagcgtagagtaactgaatacctgttaaacatgttcctccgtatttcatcttattatgatgccttgcatctgaagaaaattgttctagagttaactttctctcctctttgttgtactgattatctgtgtgtggtgaacgcgatatcaggaaatatgtgtcttctgtcactattactccttgttaagtcatatgtaattgacttgttatgatatcaacagatttacttatgtttagatgtagtttaaatgctttttgtgctgttttgttgcttatacagccctgccattcaagagaacagggtgactactgttcagtgcttgtcgggcacaggttctttgagggttggggctgaatttctggctaagcattatcatgaagttagtattccttgctctctttccctttatatgtctaaatcaaatggacacttgtataagcttctactgtttgttttgttgccagcataccatatatataccacagccaacatggggaaaccatccgaaggttttcactttagccgggctttcagtaaaatattaccgttactacgacccagcaacacgaggcctggatttccaaggtactactgtaatcactgttcttaaagttctacagttgtaagtaagagccgatttctcttttttatggacaagtgaactttctcctggtcgtgtctagaaagatctatattttatgtgtagctagcacaggatctttatttatttaattttgtattctcttggtaaagatataagcatagtttatctgtggcttttcctgtatttgggtgttgcatatcaaatttaatcatgaaccctgtaggacttttggatgatcttgctgctgcacccgctggagcaatagttcttctccatgcatgtgctcataacccaactggcgttgatccaacaaatgaccagtgggagaaaatcaggcagttgatgaggtccaagggcctgttgcctttctttgacagtgcttaccaggtaaagcttatgatgggattttgaattcaagtgatacttcgttaagaatgattaccaaataatttgaagcgccaaactatgtattaatgggctgcccaacggacccttactataatgaatatttttgatattgcagggttttgccagtggcaacctagatgcagatgcacaatctgttcgcatgtttgtggctgatggtggtgaatgtcttgcagctcagagttatgccaaaaacatgggactgtatggggagcgtgttggtgcccttagcattgtaagtccttttgtcggttgtaattgctttccctttttagtaagcgataaaattggtggctgaagaactatccatggctatatcatgctatctatgtctaaagatgattttccttgaaagcataattcaggttatattccctagaaggctaaaaagaagttgttctgatggtacaatgaacacagtctctagagatattgaaagccaaatttttgaatatggcttcccctttgattgtaattggaaaacaaagagaaggacagagtggaattagtaccggattgtatgtttaggaaaaagtgtcattttgtttgagttttatcagacagacactaaaagctgactaacagtacaataaaattttgtgttgtgttataggtttgcaaagacgcagatgttgcaagcagagtcgaaagccagctaaagctggttatcaggccaatgtactctaatccaccaattcatggtgcgtctattgttgctactatactcaaggacaggtttgtgcaactatttacaagattctgttttgctgttagtagatgctataccttctacattttgatgtggtttctcatctaatggtgatagacaaatgtacgatgaatggacaattgagctgaaagcaatggccgacaggattattagcatgcgccaacaactctttgatgccttgcaagctcgaggtatttgatcttcatatttgttctttctggggaagcatactgtattctgtatgatgggtttgactgctactgcaataggagctttttcctgaaaagtaccatggtgaaacaaccacggcaactaaatcttttgacttcattgttcagtttagtgctaatgtaagttttattctgttatgcaggtacgacaggtgattggagtcatatcatcaagcaaattggaatgtttactttcacaggattaaatactgagcaagtttcattcatgactagagagcatcacatttacatgacatctgatgggtaaggacatctgactattgatattttttttatttgtttagtttgttactttgggttgcttttttctcagtagaaacttaaataattggaacttagaagtccttcgttgattatttcggcttgaattctttaataaggagaatttcagatttatagcttcagtttggagaggaagcataaacaagtctgtcatccatacttaaaatttacagaaaaaagtgcagttctgttttcccccctcccagattagactaattcccaaaagaacttaccttcaatctatggaacatttagtattctggtatcagttgaaacatctctttgttgaagttaagattttggttaaaaagatcttcatctctagtaacattttctacattccatttttagaaggaatgattttctcctttctcatttgcaggagaattagcatggcaggccttagttctcgcacaattcctcatcttgccgatgccatacatgctgctgttaccaaagcggcctaa
SEQ ID NO:10:如SEQ ID NO:9中列出的NtAAT3-S的推导的多肽序列
MANSSNSVFAHVVRAPEDPILGVTVAYNKDTSPVKLNLGVGAYRTEEGKPLVLNVVRRAEQMLVNDTSRVKEYLSITGLADFNKLSAKLIFGADSPAIQENRVTTVQCLSGTGSLRVGAEFLAKHYHEHTIYIPQPTWGNHPKVFTLAGLSVKYYRYYDPATRGLDFQGTTVITVLKVLQLYKHSLSVAFPVFGCCISNLIMNPVGLLDDLAAAPAGAIVLLHACAHNPTGVDPTNDQWEKIRQLMRSKGLLPFFDSAYQGFASGNLDADAQSVRMFVADGGECLAAQSYAKNMGLYGERVGALSIVCKDADVASRVESQLKLVIRPMYSNPPIHGASIVATILKDRQMYDEWTIELKAMADRIISMRQQLFDALQARGTTGDWSHIIKQIGMFTFTGLNTEQVSFMTREHHIYMTSDGRISMAGLSSRTIPHLADAIHAAVTKAA
SEQ ID NO:11:NtAAT3-T的核苷酸序列
atggcaaattcctccaattctgtttttgcccatgttgttcgtgctcctgaagatcccatcttaggagtacctccctttccactctttctattttacatttccactgaatatgtttcttctgtggctcctttaataatcttccgtaaatatattattagtggatttgataagctacttctctctctctctctctctctctctctctctctctctctctctctctctctcttttattttcttattttgggttagattagaatgaacattaattaatgatcagatgattaggttaaaaatgatatcttggagatcggcataaataagttgattggaatgatcgctatagggttacctattgtatgcattggatcatggatgtgtttactaattatttaatacctctttctttttactgtgatctggcaattccttattttattcctggtgtggttgatggaagggtgtagatttgattctttaacttgctctattgagaagataatttgttcttctcaagtgtttagtaatggtttttttcctgttgtgctacttcattaaaacaggtcacagttgcttataacaaagataccagcccggtgaagttgaatttgggtgttggcgcatatcgcactgaggtctgccacttctactttgtctcgttattctttattttttattttttattataaccaaaataagttgccccttgaatggatttggtcctgctatgttttgttgaatccttggttaagtttttctttaataggctccttcacaaggatacaaaattgtagacactgatgcatacacattaatattttttttccctgatgcataatgaagtgaaaccacttgattttataagtggttgtttttttcttcaatcttgagttggatgttagtgttaagcttgaaaattatgttctactaatgcatagtccgatgacaacttgcaggaaggaaagccccttgttcttaatgtggtgagacgagctgaacaaatgctcgtcaatgacacgtaacttgccaaattagaaactagcttacagattttcttttgagatatgatcacctgatgccatgattggaatctaaggctgatatgatgcaggtctcgggtgaaggagtatctctcaattactggactagcggattttaacaaactgagtgcaaagcttatatttggatctgacaggtttggagaatttttggtgcagttgctcttgataaatgcttgaatcaaaaatataaaaaaatgctcactatccatgtcgctccagttaaacctatcttgccaaaccacttgtataaaagaaaatgagccttcaatattcttccttccatctagtttgatatttgaatgagagattgttgctaaaagggaatgctttatctctacaaagtagagtaactgaatacctgttaaaacatattcctccgtatttcatcttattatgatgccttgcatcagaagaaaattgttctagagttaactttctctcctctttgttgtactgactttctgtgtaaggtgaacgtgatatcaggaaatatgtgtcttctatcactattactccttgttaagtcatatgtaagatatcagcagatttacttatctttagatgtagtttaaatgctttttgtgctgttttgttgctgatacagccctgccattcaagagaacagggtgactactgttcagtgcttgtcgggcacaggttctttgagggttggggctgagtttctggctaagcattatcatgaagttagtattccttgctctctttccctttatatgtctaaatcaaatggacacttctataagcttctactgtttgttttgttgccagcatactatatatataccacagccaacatggggaaaccatccgaaggttttcactttagctgggctttcagtaaaatattatcgttactacgacccagcaacacgaggcctggatttccaaggtactactgtaatcaatgttcttaaagttctacagttgtaagtaagaaccgatttctctttttcatggacaagtgaacttgctcctggtcgtgtctagaaagatctatatattatgtgtagctagcacaggatctttatttatttaattttgtattctgttggtaaagatataagcatagtttatctgtggcttctcctgtatttgggtgttgcgtatcaaatttaatcatgaaccctgtaggacttttggatgatcttgctgctgcacccgctggagtaatagttcttctccatgcatgtgctcataacccaactggcgttgatccaacaaatgaccagtgggagaaaatcaggcagttgatgaggtccaaggggctgttacctttctttgacagtgcttaccaggtaaagcttatgatgggattttgaattcaagtgatacttcgttaagaatgattaccaaataatttgaagccccaaactatgtattaatgggctgctcaatggacccctactataatgaatatttttgatattgcagggttttgccactggcaacctagatgcagatgcacaatctgttcgcatgtttgtggctgatggtggtgaatgtcttgcagctcagagttatgccaaaaacatgggactgtatggggagcgtgttggtgcccttagcattgtaagtccttttgtcggttgtaattgctttccctttttaataagcaataaaattgctttccctttttaataagcaatatagcatgatatccatggctatatcatgctatttatgtctaaagatgattttttctttggaagcataattcaggttatattccctaaaaggctaaaaagaggttgttctgttggtacaatgaacacagtctctagagatattgaaagccaattttttgaagatggcttccacttagattgtaattggaaaagaaagagaaggacaaagtggaattagtaccggattgtatgtttaggaaaaagtgtcgttttttttgagttttatcagacaggtactaaaagctgactaacactacaataaaattttgtgttgtgttataggtttgcaaagatgcagatgttgcaagcagagtcgaaagccagctaaagctggttatcaggccaatgtactctaatccaccaattcatggtgcgtctattgttgctactatactcaaggacaggtttgtacaactatatacaagattctgttttgttgttagtagatgctataccttctacattttgatgtggttgctcatctaatggtgatagacaaatgtacgatgaatggacaattgagctgaaagcaatggccgacaggattattagcatgcgccaacaactctttgatgccttgcaagctcgaggtatctgatcttcatatttgttctttctagggaagcatactgtattctgtatgatgggtttgactgctactgcaataggaactttttctggaaaagtgccagggtgaaagaaccacggcaactaaatcttctgacttcattgttcagtttagtgctaatgtaagttttattctgttatgcaggtacagcaggtgattggagtcatatcatcaaacaaattggcatgtttactttcacaggattgaatactgagcaagtttcattcatgactagagagcatcacatttacatgacatctgatgggtaaggacatctgactgttgatatttttttttatttgtttagtttgttactttgggttgcttttttctcagtagaaacttaaataattggaacttagaagcccttatcattgattatttcggcttgaattctttaataaggagaatttcagacttatagcttcagttttgagaggaagcataaacaagtccagctctgtcattcatacttaaaatttacagaagaaagtgcagttctgtttttcccccctcccaaattatattgattctcaaaagaacttaccttcaatctatggcacatttagtaatctggtatcagttgaaacatctctttgttgaagttaagattttggttaaaaagatcatcatctctagtgacattttctactttccatttttagaaggaatgattttctcctttctcatttgcaggagaattagcatggcaggccttagttctcgcacaattcctcatcttgccgatgccatacatgctgctgttaccaaagcggcctaa
SEQ ID NO:12:如SEQ ID NO:11中列出的NtAAT3-T的推导的多肽序列
MANSSNSVFAHVVRAPEDPILGVTVAYNKDTSPVKLNLGVGAYRTEEGKPLVLNVVRRAEQMLVNDTSRVKEYLSITGLADFNKLSAKLIFGSDSPAIQENRVTTVQCLSGTGSLRVGAEFLAKHYHEHTIYIPQPTWGNHPKVFTLAGLSVKYYRYYDPATRGLDFQGTTVINVLKVLQLYKHSLSVASPVFGCCVSNLIMNPVGLLDDLAAAPAGVIVLLHACAHNPTGVDPTNDQWEKIRQLMRSKGLLPFFDSAYQGFATGNLDADAQSVRMFVADGGECLAAQSYAKNMGLYGERVGALSIVCKDADVASRVESQLKLVIRPMYSNPPIHGASIVATILKDRQMYDEWTIELKAMADRIISMRQQLFDALQARGTAGDWSHIIKQIGMFTFTGLNTEQVSFMTREHHIYMTSDGRISMAGLSSRTIPHLADAIHAAVTKAA
SEQ ID NO:13:NtAAT4-S的核苷酸序列
atggtttccacaatgttctctctagcttctgccactccgtcagcttcattttccttgcaagataatctcaaggtaatttcatcgtcaattacattatttggaaatttgccttatcttagactattcctaatgaggtggattcatgctgttgtttgtgtttgaacagtcaaagctaaagctggggactactagccaaagtgcctttttcgggaaagacttcgtgaaggcaaaggtaggatttttgtgttgtttgtgtacatttggtgagaggtaatagctctactgctatagagaaactccctgtaggttctgtcctttagagtatagaagagaaggaaagagtttaattgggaataatggtggggatgggatgatttgcatacaattgaacatgtgtttcttgctttggtatattatgatataggatgatccaatcatgctccgtaaatcaactccagaacttattattctttcggcacttactaattataaaaatcgggttggagtcctgaaaataagtgattgcctaaccaacttacagaactaattttattatccgtatactcaaatcaaaacgacattatgccagtactggtttcttgagagggatgatattagtgtagaattatttataaagttgcagtttaacgtagggtgttttactaaccagaaaggtgtagatgattccattcagtttattagatgctaagaagtataacagtgaggcctgtgaaacttctggtagtaccaacgattggggttttatggcgtttaggaatttagacattaattggcacattttagaacgaaaaatatgacatttaacttacaacagttcttttctgaataaaatattactagtaactaatttgtttgaactttgccattgctaaaatgtggctcaagatcttcttggtacttctatttgtaatatcagagttataggggtctaattctagctcttgagtcgaaattgttattagtaaagataattctttcttgtcccccttcagtgctaacattctcatcttcacttatggtattggtttataaaaaattgtgattcagattataaagtaaaaaattatgcctcagtttgtacagcattttgggttatctgacgttcaattcaacagggttctttaatatctatttttctatcttttgtaatcattgcaacaccgagctgtttaatgtgctcaaaggctattattagtcctcccactcaccagatccttagaaaaaagcccagaagagaaaggcaaagaatacaagcccagaccgattgctcgttttataaattttgggaattgggatctcttttctcatattcttacttttttctctttctttttttccagtcaaatggccgtactactatgactgttgctgtgaacgtctctcgatttgagggaataactatggctcctcctgaccccattcttggagtttctgaagcattcaaggctgatacaaatgaactgaagcttaaccttggtgttggagcttaccgcacggaggagcttcaaccatatgtcctcaatgttgttaagaaagtaagttcttggtctcttgtttatgctcaagtagtttgtaaacttttagtcacttggccttgttcccatgggtggatacccttgtccaaggggagtcaatttattacactctgtaaataggttaattcttttttaaaatgtatgtatgtatgtatgtatgtatgtatgtatacacacacactatgttgaatcgcccctggcttcttctgtttacttctatatattttgtatccaatgggtgaaaattctggagtgactgcttgttcctaagcgttcatcattcattaactgttttaataaccttctataattttgcatctgaatgatgaggaaattgcttttctgtaggcagaaaaccttatgctagaaagaggagataacaaagaggtacttgatttactaaattcatcttttggccttgactagtgtcacttggtgccaattcttacttattttttaatctatggatatatagtatcttccaatagaaggtttggctgcattcaacaaagtcacagcagagttattgtttggagcagataacccagtgattcagcaacaaagggtaagtatttttgtttttaactcttaggaaaatatatcctggaacaaacatgtaaatttggtctctatggcctttgttgtgaacgacgttgtacctttcgtgatcaggtggctactattcaaggtctgtcaggaactgggtcattgcgtattgctgcagcactgatagagcgttacttccctggctctaaggttttaatatcatctccaacctggggtacgtagatagtgcttttggattaatttggttgaatctcatgatactgatttttacagttatgttttgcaggaaatcataagaacattttcaatgatgccagggtgccttggtctgaatatcgatattatgatcccaaaacagttggcctggattttgctgggatgatagaagatattaaggttattatcgtcctcgcatttgtaatctttgtggttgaaattgtaaagcagcagtgagcactgtctttttcctttctccacaagtcaattgatggtgcctttgtttgtggcacgtgttttgactttcagtaattgaaggagagatgcgttgttcattctagaatagcactgtatctcccaattgcattttctgtttcctgttcttcctccctatgtttgcattgatccatgtctctgctaaacatggacaatttgcgcccttggcaatgacatgtgtgttgcttgcttttcttctctttctatttcttggtaggagtgacttggttctttcaatgtgagcagtcatatttctgaaaatgaaaatcagaggaacttgggatgtggaagggattggcagaacaagtttgataatgtaatttttcttgtgaggatggaatatgcaaaaataggctgcacgcttgccttttagatctttggttcctatgtcggttgtgaatgtagatttctatttttcaacattgtctcgcaaggaaaataggattatccagtattggatgtctttcctatgtttgatatgtgtatgtgcagtcttgtttgaccgtcttgctctcttcccacgtctaaaaagagagtctgatgggaaagtttttttccttccagttcttgtgcaagtcattgacatagtttatggcattacttgtttataggctgctcctgaaggatcatttatcttgctccatggctgtgcgcacaacccaactggtattgatcccacaattgaacaatgggaaaagattgctgatgtaattcaggagaagaaccacattccattttttgatgtcgcctaccaggtaatctgtgctaaacccaattatttcatttggtgaagctgtaaaatttcaagtttcttagaagttttgatggttgtgtgtgcgtgtgaagagaatgaatgatataggaattggttttgaaatagtgaaagatctctcgtatttcatttgttcttttggtgtgaggagagtatacattgttgttttgatagatgggcaaattcgatagatgaaggtggttaagccacgtgttactttgtaatttttttttgacaccgtcatggtgtttatcaataaaatttactgatttttcagtaaagttattagaacaagataatctgaagtcatttctattcagagaattgcattgaatagctgtatactataataatcgagatgcctcatctgtctacacgctgccctacagggatttgcaagcggcagccttgacgaagatgcctcatctgtgagattgtttgctgcacgtggcatggagcttttggttgctcaatcatatagtaaaaatctgggtctgtatggagaaaggattggagctattaatgttctttgctcatccgctgatgcagcgacaaggtacagtcacccgcactagcaactacataattgtcctctgtataggaaaaatgatgcactggaaaacaatggttccatatgaaatgccaattacgagatgctgtccctttgctttgatattgtttactacaattggtatctcccatcacctgagcctatggcttgattggattttatgtgggcgaaccaatagaattatttgcttaattttctcaactaatggatgcatctctgctaactcacagggtgaaaagccagctaaaaaggcttgctcgaccaatgtactcaaatcccccaattcacggtgctagaattgttgccaatgtcgttggaattcctgagttctttgatgaatggaaacaagagatggaaatgatggcaggaaggataaagagtgtgagacagaagctatacgatagcctctccaccaaggataagagtggaaaggactggtcatacattttgaagcagattggaatgttctccttcacaggcctcaacaaagctcaggtaaatccccgtgatttaagctattgcttcatcacaatatgcttaaattcaatttgatcattcatcgcaaagcacattctgaactcagcacatattttcattaacacattctttccgtcctttctgatcaattccataagtccgatatgcaaaagatagtgcagtgagagtctcttactggagtataactagattatcgacaatgcatacatttctttccctgtacctgcacttctggtgctcatatttgatctctcttcttggccacgcagagcgagaacatgaccaacaagtggcatgtgtacatgacaaaagacgggaggatatcgttggctggattatcagctgctaaatgcgaatatcttgcagatgccataattgactcgtactacaatgtcagctaa
SEQ ID NO:14:如SEQ ID NO:13中列出的NtAAT4-S的推导的多肽序列
MVSTMFSLASATPSASFSLQDNLKSKLKLGTTSQSAFFGKDFVKAKSNGRTTMTVAVNVSRFEGITMAPPDPILGVSEAFKADTNELKLNLGVGAYRTEELQPYVLNVVKKAENLMLERGDNKEYLPIEGLAAFNKVTAELLFGADNPVIQQQRVATIQGLSGTGSLRIAAALIERYFPGSKVLISSPTWGNHKNIFNDARVPWSEYRYYDPKTVGLDFAGMIEDIKAAPEGSFILLHGCAHNPTGIDPTIEQWEKIADVIQEKNHIPFFDVAYQGFASGSLDEDASSVRLFAARGMELLVAQSYSKNLGLYGERIGAINVLCSSADAATRVKSQLKRLARPMYSNPPIHGARIVANVVGIPEFFDEWKQEMEMMAGRIKSVRQKLYDSLSTKDKSGKDWSYILKQIGMFSFTGLNKAQSENMTNKWHVYMTKDGRISLAGLSAAKCEYLADAIIDSYYNVS
SEQ ID NO:15:NtAAT4-T的核苷酸序列
atggcttccacaatgttctctctagcttctgccgctccatcagcttcattttccttgcaagataatctcaaggtaatttcattgtgaattacattatttggaaatttgccctatcttagactgttcctaatgaggtggattcatgctgttgtttgtgtttgaacagtcaaagctaaagctggggactactagccaaagtgcctttttcgggaaagacttcgcgaaggcaaaggtaggatttttgtgttgtttgtgtacatttggtgagaggtaatagctctactgatatagagcaactccctgtaggttctgtcctttagagtatagaagagaagagaagagtttaattgggaataatggtggggatggaatgatttgcatacaaatgaacatgtgtttcttgcttttggtgtatgatataggatgatccaatcatgctccgtaaatcaactccagaacttattattctttcggcacttctaattataaaaatctggttggagtaatgaatataagtgattacctaaccaacttacagaattgattttattatccatatactgaaattcaaaaacggcgttttgccagtactggtttcttgagagggatgatattaatatagaattattttataaagttgcagtttaacgtagggtattttactaactagaaaggtgatagatggttccgttcagtttattagaagtataacagtgaggcctgttaaacttttgctagtatcaatgattggggttttatggcgtttaggaatttagacatcaattggcacattttagaacgaaaaacatgacatttaagttacatcagttcttttctgaataaaatagtactagtaaataacttgtttgaactttgccatttgctaaaatgtggctcaagatcttcttggtacttctatttgtaatatcagagttataggggtctaattctaccactgttttgagtcaaaatgttattagtaaagataattctttcttgtcccccttcagtgctaacattctcatcttcaattatggtattggtttataaaaaaattgtgcttcagatcactttataaagcaaaaattatgcctcagtttgtacagcattttgggttttataacattcaattcaacagggctctttaatatctatgtttctactttttgtaatctacatcgagctgtttaatgtgctcaaaggctttaattagtcctcctactcaccagatccttagaaaaaagcccagaagagaaaggcaaagacaacgagctcggacagattgctcaatttatattgcaaaaagatccaaaccctcggggagggaggagcatgaaccaaagatgatacattgatattattttctaaatttgggaattgtgatcttatcttaaatttttacttttttctctttttctttttttatagtcaaatggtcggactactatggctgtttctgtgaacgtctctcgatttgagggaataacaatggctcctcctgaccccattcttggagtttctgaagcattcaaggctgatacaaatgaactgaagcttaaccttggagttggagcttaccgcacagaagatcttcaaccctatgtcctcaatgttgttaaaaaagtaagtcctcggtctcttgtttatgctcaacgtagtttgtaaactaagagtcacttaaccttgttcccatgtgttcgtcattaaacatagtaataactttctatagttttgcatctgaatgatgaggaaattacttttctgtaggcagaaaaccttatgctagagagaggtgacaacaaagaggtacttgatatactaaattcatcttttggcctattagtgtctcttggtgccatttcttacttattttttgtccatgaatatatagtatcttccaatagaaggtttggctgcattcaacaaagtcacagcagagttattgtttggagcagataatccagtgattcagcaacaaagggtaagtattttggtttttaactcttagcaaaaaagtatcctggaacaaacttgtagattcagtttccacggattgaatggcattgtatgtttcttgatcaggtggctactattcaaggtctatcaggaactgggtcattgcgtattgctgcagcactgatagagcgttacttccctggctctaaggttttgatatcatctccaacctggggtacgtatatagtgctttggattaatttggttgaatctcataatactgatttttgcagttatgttttgcaggaaatcataagaacattttcaatgatgccagggtgccttggtctgaatatcgatattatgatcccaaaacagttggtctagattttgctgggatgatagaagatataaaggttattatcttcctcacttttgtaatctttgtggttgaaattgtaaagcagcagtgagcagtgtctttttcctttctccacaagtccattgatggtgcctttgcatgtgggacatgctttgactttcagtcgttgaaggagagatgcgttattcattctaggatagcattgtatctcccaaatgctttttctgtttcctgctcttccttcccatttttgcatcgatcctgtctctgctaaacatggacaatttgcgcccttggcaaatggcaatgacttgtgtgttgcttttcttctctttctattttttggtaggagtgacttggttctttcagtgtgagcagtcatatttctgaaaatgaaaatcagaggaacttggtgctcacacttagagaaagtttgttatgttttgggatgtgaaaggaattgacagaacaagtttgataatatattttttcttgtgaggatggaatatgctaaaaataggctgcactctttccttttagatctttagttcctatgtcggttgtgaatgtcgatttctattttcaacattttctcacgaagaaaataggattatccagtactggatgtctctcctatgtctgatatatgtgtatgtgcagtcttgtttgcccgccttgctctctccccacgtctaaaaacagagtctgatggaaaaggctttttccttccagcttttgtgtaagtcattgacatagtttaatgaaactacttgtttataggctgctcctgaaggatcattcatcttgctccatggctgtgcacacaacccaactggtattgatcccacaattgaacaatgggaaaagattgctgatgtaattcaggagaagaaccacattccattttttgatgttgcctaccaggtaatctgtgctaaacccaattattttcatttggtgaagttgtagaattccaagtttcttagaagttttgatggctgtgtgtgcgtgtgtgaaaagaatgaaagatataggagatggtttcaaaatagtgaaagatctctcgtatttcatttgtcttttggtgtgtggagactatacattgttgtattgatagatgagcgaatttgattgatgttggtggttaagccacatgtgttactttgtccatatttttttacaccgtcttggtttttatcaatgaaatttactgatttttcagtgaaattattagaacaagatcatctgaagtcatttctgttcagagaattggattgaatagctgtatactataataatcgagatgcctcatctgtctacacgctgcactgcagggattcgcaagcggcagccttgatgaagatgcctcatctgtgagattgtttgctgcacgtggcatggagcttttggttgctcaatcatatagtaaaaatctgggtctgtatggagaaaggattggagctattaatgttctttgctcatctgctgatgcagcgacaaggtacaacggccagcactaataatctacatatttctcctctgtattggtaaaatgatgttgcactgaagattttggttaatgtatgatgccatttatttatgttatgcatgtgcagttctttccgtgtatgatttgttatacaatatagcaagatgagatgctttaatctcctttggattttatgtggttgaaccaatataacttttcttctgttaatggatgcatatctactaacttacagggtgaaaagccagctaaaaaggcttgctcgaccaatgtactcaaatccccccattcacggtgctagaattgttgccaatgtcgttggaattcctgagttctttgatgaatggaaacaagagatggaaatgatggcaggaaggataaagagtgtgagacagaagctatatgatagcctctccgccaaggataaaagtggaaaggactggtcatacattctgaagcagattggaatgttctccttcacaggcctcaacaaagctcaggtaaaaccccgtgaattaagttattgctgttgcggaagccaaatatatagagagtgattaaatcacaactactatatctaaaggtagctangtaaatgagacaataataaaatgaacaccagaaattaatgaggttcggcaaaatttgattttttgcctagttctcggacacaatcaactcaaatttatttcactccaaaaatacaaatgaaatactacaagagagaaagaagattcaaatgccttaggaaataagaaggcaagtgagagatgtttacaaatgaacaaaatccttgctatttatagaagagaaatggccttaataatgtcatgcatgacatcatattaagtgtgaacatgtaatgtaaatgcacgaaaaatgcatctaccaatttcttaaggcttcaaatgttcacactagttcacattaatcttgtcaaaattcaacaattgctgcatcacaatatgcttaaattcaatttgatttggttgacaactttctagctttgatcattcatcacaaagcgcattcttcactcagcacgtatttttattaagacattctttccttccattctgaccgatttcataagttaaatatgcaaaagatagtgcagtgagagtctccttactggattataactatggactaaagttaaatgcatacatttctttccctgtacttgcacttctcgtgctcatatttgatatctcttcttggctacacagagcgagaacatgaccaacaagtggcatgtgtacatgacaaaagacgggaggatatcgttggctggattatctgctgccaaatgtgaatatcttgcagatgccataattgactcatactacaatgtcagctaa
SEQ ID NO:16:如SEQ ID NO:15中列出的NtAAT4-T的推导的多肽序列MASTMFSLASAAPSASFSLQDNLKSKLKLGTTSQSAFFGKDFAKAKSNGRTTMAVSVNVSRFEGITMAPPDPILGVSEAFKADTNELKLNLGVGAYRTEDLQPYVLNVVKKAENLMLERGDNKEYLPIEGLAAFNKVTAELLFGADNPVIQQQRVATIQGLSGTGSLRIAAALIERYFPGSKVLISSPTWGNHKNIFNDARVPWSEYRYYDPKTVGLDFAGMIEDIKAAPEGSFILLHGCAHNPTGIDPTIEQWEKIADVIQEKNHIPFFDVAYQGFASGSLDEDASSVRLFAARGMELLVAQSYSKNLGLYGERIGAINVLCSSADAATRVKSQLKRLARPMYSNPPIHGARIVANVVGIPEFFDEWKQEMEMMAGRIKSVRQKLYDSLSAKDKSGKDWSYILKQIGMFSFTGLNKAQSENMTNKWHVYMTKDGRISLAGLSAAKCEYLADAIIDSYYNVS
SEQ ID NO:17:用于产生AAT2S/T RNAi植物的核苷酸序列
gctattcaagagaacagagtaacaactgtgcagtgcttgtctggcacaggctcattgagggttggagctgaatttttggctcgacattatcatcaacgcac
序列表
<110> Philip Morris Products S.A.
<120> 调节植物中的氨基酸含量
<130> P10499EP
<140> EP18164766.0
<141> 2018-03-28
<160> 17
<170> PatentIn 3.5版
<210> 1
<211> 6933
<212> DNA
<213> 烟草
<400> 1
atgaacatgt cacaacaatc accgtcaccg tccgctgacc ggaggttgag tgttctggcg 60
agacaccttg aactgtcgtc ctccgccacc gtcgaatcct ctatcgtcgc tgctcctacc 120
tctggaaatg ctggaaccaa ctctgtcttc tctcacatcg ttcgcgctcc cgaagatcct 180
attctcggcg taactctctc tctctctctc tctctctctc ttcatccaca cacacacgca 240
ctcactcaca taacatatta agtatatgcg tgctcaaatg ttctgtatgt attcatttgt 300
tccgtatcaa atgttctctt gttataagct gaattttaga ggaattgtag tgctatttgc 360
taatcgaaag agcttgatac tcattctctt cctattgaat taaatattcc ttttttctta 420
tggatgatga atttaagact tttttttagt ccgatcacta cgaaatttcg atttcaagtt 480
gatagaagtg aaaaatgatg gggttaacat atcaattgag cgaataaaaa gagaaattcg 540
tgtgttgata tcttcaaaag tgtatttaaa tgtagagata tattgtgatt tagtttctgt 600
tattatcttt gtcttttttc tattgaaatt tgaatattat ttgttgaagt cttcgtgaca 660
tatcttggtg ttatgttttg gttattaggt cactattgct tacaataaag atagtagccc 720
catgaagttg aatttgggag ttggtgcata tcgcacagag gtgatcatcc tttttggatt 780
ttgtatttgc gctattatgg tcaatggagc actattatca gttgctggat aatcatcctt 840
tttgatattt ccttgattga aatctaaaaa cacgaataaa aagatattta ctgatggatc 900
tgtgttttgg tttcttcaga ttgacgcatt tctgttaatt gaaaagaatt gtgattgttt 960
tggtgattgt ggtgttattt tagcttcata cagttaatcc gacgccgtag tgtactagtg 1020
tttggctgat gtgctgccaa gagataatgt ttaagattat ggtttgccat aattgataaa 1080
atttaatatt aaaagtactt ggctggatgt tctgcgtttg cataacttgt aatgcatatg 1140
aaaaagttac ctttgatttt cataattagt gagaaaactc aagtagcttc cgcattcctg 1200
tcattgcact atcaaacaca ttaaacggtt tccgacatat ctacctagtt tggaacttca 1260
tgatttctat ttttcacacc ttgtaataaa tgataattct tggatctgtg gtgtctttgt 1320
tcaaaagatc acagagaaga ttgcatttat tttttgtagt ctagttggct cagagtctgt 1380
caaacacaac ttgttacatc gcattttacc tgttagttaa gaaacttggg tcatcaacaa 1440
atttgtcatg aggtggttat ttcttggggc tttgtgaatt gctctcagca atctgctagc 1500
tttcttatgt ggactcaaaa caatgaagct cttgagttga tgtgttgatt tttcaatcag 1560
agtaaaacaa gttctatatt tggctgtgag agtaaagtgg gagctattaa aattcctagc 1620
tgaatttatg tttcttaata tcttaaatcc ttaaaggtag agggagagga aggaggttta 1680
ttgatgaagg gctagtagtt gtgtatactt agttcttttt caaatttcat aagtatctct 1740
tgatggtttt tctcgctgac tgttgaatat ggggctccac agtttgtgtt gctatattga 1800
aatgtttcag ctaataaaac taacgtgttt ctttttcttt ctcccttttt tggggttatc 1860
aggaaggaaa acctcttgtt ttgaatgttg taagacaagc agagcagcta ctagtaaatg 1920
acaggtactt gcattgccat ttcatggagt atgaataaaa tgtttcctta attctatgtg 1980
attaaacttc aagatttctg caggtctcgc gttaaagagt acctatctat tacgggactg 2040
gcagacttca ataaattgag tgctaagctg atacttggcg ccgacaggta taaaagttcc 2100
tgttctctgt atagtgttgc cgataagata tgcagggaga taaagcatgt attttcctgt 2160
tgcataggat gatatcttca gataataagg ctccattcca agtgtttgat ggcttggtag 2220
atctttgtga agcatctatt aacatttggt cacatttttt taaaaccaac ttcccatccc 2280
atccatgcca ttccacgtgt cagttattca tgaaaatgct gttcacttgc atacatgtta 2340
ctgccgttgt gttgatttcc tcaactctac tcataatttc tctgtgtggt cgcattctgg 2400
tgatctgatt tatctgataa tatctgtaca tgttttgaaa tttgggtagt gtctctttga 2460
ttagcgtgta aagcaagcaa ctcttgatgc gtgtgatcaa gtgtattgct gtctagagct 2520
gacagatgtt aaatttatct tatgcgtttc caagatcttc cagatgttct atgtaatctt 2580
tttaggccag cttaaacttt gacttgcttc atatacattt atgttaaagg agagttgtta 2640
atatacttca atttttcaca tttttaattc ctctttttac ctgtggtcct cacgagctct 2700
tactttcttt gcttggtaca gccccgctat tcaagagaac agagtaacaa ctgtgcagtg 2760
cttgtctggc acaggctcat tgagggttgg agctgaattt ttggctcgac attatcatca 2820
agtaaactgc tacatcttcc taacctacct ttcattttcc ttcgttttct tagccttcgt 2880
gggtaaacaa tcttcaaagt tgaattaacc ttgatgtaac cattcctgca gcgcacaatt 2940
tatattcccc aaccaacatg gggaaaccac ccaaaagttt tcactttagc tggattatcg 3000
gtaaagagtt accgctacta tgatccagca actcgtggac tcaattttca aggtatgaaa 3060
cacttcccta caatataatg atgtaacagg atattgtccc attagatatc tatggctatg 3120
ctgtttacta ttactctctt ccaggatgat ggatgttctt ttagtcttat tctggtattt 3180
gattacaaat tatcacaagt ctgaatcaag ttgtggatgg atggtttcac ttgtttgatt 3240
gcattgtaat ccagcaaact tgtaaagtca tcgtcatcta tgctttttct ttataccttt 3300
ttctgcgagg aaataagcga agagagatgg agatataact tgataataat ggaatgcaac 3360
aaacgcctaa tttaacatat tagggaccaa ctaacgtcta catttgacat tagctcttaa 3420
cattttgact ttttaatacc ttaccaaaaa taaaaaagat tgacattcta atgtcgcacg 3480
gaaccaaagg tgggaatagc tgataacata gaaaagtaac caaacaagtc ctggaatctt 3540
gtcaaaaaag aaattcagtt gtcgaaatgt tcttgaaaaa agttactgca accgcaatgg 3600
tcggaagaat aggaggaaga aattcaataa tgcgggtcaa atagaggagg tgccactaaa 3660
aggccattgg agaggggccg ggaaacacca tctgaaagag gtacagtggt accagaagga 3720
ttatcgaatg ctgatgcata gaaacgagtc agagattgaa acagtcactg gaaagaggtt 3780
tgatgttgtg acagcagtca caataaagaa aagtggtgca atcagaatga tcactggaaa 3840
ggctagaatt gtagaactat cataagaaag tgaattgtgg agggaaatct ctgtgaaaag 3900
acaaaatcta tttaggtcca caagatcata gaggctctaa tgccatgtga gaaactgaga 3960
gagtggacgg aaataaatag attacttgat aaaatacaat ccatacgttt aaatccgaat 4020
gactaacttt aattttaaca caacttttac atctaaaagt atgacacgtg acattctaac 4080
ctttcgtgct tgtgttcaca actttgcata tcgccgactt gtttacaaga actttctttt 4140
tcgtacatga caggtttgtt ggaagacctt ggatctgctc catcgggagc ggtagtgcta 4200
cttcacgctt gtgcccataa ccccactggt gttgatccaa ccattgatca gtgggagcaa 4260
attaggagat tgatgagatc aagaggattg ttgcccttct ttgatagtgc atatcaggta 4320
agagatcatc aacagatgtg cagagcactt tggctgttgg agttgttgct gtgtgagcat 4380
ttaaaagtga tgtggtttgt tcagtatatg tcaattaacc ttgatattca aactttgata 4440
ttctagggct ttgccagtgg aagcctagat acagatgcac agtctgttcg catgtttgtg 4500
gcagatggag gtgaagtact tgttgctcaa agttatgcaa agaatatggg gctttatggt 4560
gaacgtgttg gagctctaag cattgtacgt cttaaaggac aatggacaac tgtgccttat 4620
ttctgaaaat ttatatctcc agttggtcat ttgttgcatt acctttattt ttctcagatt 4680
gattctcatg atgcataaac tgtcttactg ttttcatagt ggccttcttt tgtgatgtta 4740
aaatttggta gttatgaact gtttaaagct tatatagctt acttccaaat aaataactgt 4800
gagccttgga catcacatat aaattatttt atatcacgga ttcgagccgt ggaaacaacc 4860
tcttgcagaa atgtagggta aggttgcgta taatagaccc ttgtcatccg gcccttcccc 4920
ggacccctgc gcatagcggg agcttagtgc aacgggttgc ctttttttca tcctgaggca 4980
taaaaagttt gtaatttctc aagaatgaat aaagagcctg ttataacagg caatttgcat 5040
atcatatggt gttgtttgtc gcacagtgat gacatattta tcacacaaat gaaagaaaaa 5100
tgaaggatat agttctgaac cctcagttaa actctgctga cagttataat tcttcaaatt 5160
ttctcaaatc tgtaggtctg caggaatgct gatgtggcga gcagagttga gagccagctg 5220
aagttggtga ttaggccaat gtattccaat ccgcccatcc atggtgcgtc aatagttgcc 5280
acaatcctta aagacaggta atatatcaac catcaggaaa ttgcttcttg ggaccctaaa 5340
aagccatttc ctttctttct atatgataga atccagtgta tgttcaaaaa ttatgtttag 5400
tcattgttct gcaaaataaa tcactaattt tctgcagaaa catgtaccgt gaatggaccc 5460
ttgagctgaa agcaatggct gatagaatca tcagaatgcg tcagcaatta tttgatgctt 5520
tacgtgctag aggtaaattt gctgcattat tttcacgtat gtgtgctctt attacatgtt 5580
tcttgttgca tcgacttcgg atatttttct catttttgat aatttcggtt caagtgtcat 5640
tataaatgct acatgttcgt ggcatatact tctacccata aaatatgctg caacttgttc 5700
cagctcattt gtctagataa tttatcaaaa ggaccaatct tcaccagctg actctcctga 5760
atgaaagctt aatttaggaa aaagattaag caaacaaaac atggaattcg acaaattcaa 5820
acatttctcc aaatcttaat agatctcgat cctccttagt gctttcatca acttcttagg 5880
taattcacct cttaactttg gctctgactg ggttctctac ctttggaaaa ccatccccaa 5940
agatgtccct tgcacgatcc ttttggggac atgaactgtt ggatcaggca agaaactatc 6000
ccccaataaa gaaaaattgt tggatcagat tttttcctga taggttgcat tctttcagca 6060
ttccccttaa agtttgtgat ttggacgttg tcctcatttt ggtataaaaa atgtcattgg 6120
aaactttcca ttttggcaca tcaggtgtta gaatcatcat gtcttcataa attggctata 6180
gacaaagtct catgtcgtca gctcctttct tcagtatcag gcattcttta atcaatgtaa 6240
gtgtcgagca ttgcatgagt aggatactta tttctattta catgaattga tgggcaagtc 6300
gggcattttt tagtcgactt aaaggtcaag cattgcatgt ataagatatc tatttctgtt 6360
gaattcaatt gattggcagg tacacctggt gactggagtc acattatcaa gcagattgga 6420
atgtttactt tcacgggact taactcagag caagttgcct tcatgaccaa agagtaccac 6480
atctacatga catcagatgg gtaatatgtc atttctcagc aaaaagtact gtatatcata 6540
tcagactacc atgtctcctc cacatctgat atgtgatttt attacctcgt aagaatttct 6600
accctcggat ggtaaaacag aaagagggaa gggagttaaa atcttttcag ccatcagtta 6660
gttcttttct tgcagtattc ttgctacctt agctttgatg aacgctaaga gaaatgtggc 6720
tgtattaatg aacatttcta gagcatggtt ctttctaagt ttgtatttaa ttgtggcaac 6780
ttcaattaag cttgggatat cagataatcc caaagccttt gacatacatc acatatttca 6840
ttttgcagac gcatcagtat ggcaggtctg agctccagga cagttccaca tctagcagat 6900
gccatacatg ctgctgtcgc tcgggctcgt tga 6933
<210> 2
<211> 450
<212> PRT
<213> 烟草
<400> 2
Met Asn Met Ser Gln Gln Ser Pro Ser Pro Ser Ala Asp Arg Arg Leu
1 5 10 15
Ser Val Leu Ala Arg His Leu Glu Leu Ser Ser Ser Ala Thr Val Glu
20 25 30
Ser Ser Ile Val Ala Ala Pro Thr Ser Gly Asn Ala Gly Thr Asn Ser
35 40 45
Val Phe Ser His Ile Val Arg Ala Pro Glu Asp Pro Ile Leu Gly Val
50 55 60
Thr Ile Ala Tyr Asn Lys Asp Ser Ser Pro Met Lys Leu Asn Leu Gly
65 70 75 80
Val Gly Ala Tyr Arg Thr Glu Glu Gly Lys Pro Leu Val Leu Asn Val
85 90 95
Val Arg Gln Ala Glu Gln Leu Leu Val Asn Asp Arg Ser Arg Val Lys
100 105 110
Glu Tyr Leu Ser Ile Thr Gly Leu Ala Asp Phe Asn Lys Leu Ser Ala
115 120 125
Lys Leu Ile Leu Gly Ala Asp Ser Pro Ala Ile Gln Glu Asn Arg Val
130 135 140
Thr Thr Val Gln Cys Leu Ser Gly Thr Gly Ser Leu Arg Val Gly Ala
145 150 155 160
Glu Phe Leu Ala Arg His Tyr His Gln Arg Thr Ile Tyr Ile Pro Gln
165 170 175
Pro Thr Trp Gly Asn His Pro Lys Val Phe Thr Leu Ala Gly Leu Ser
180 185 190
Val Lys Ser Tyr Arg Tyr Tyr Asp Pro Ala Thr Arg Gly Leu Asn Phe
195 200 205
Gln Gly Leu Leu Glu Asp Leu Gly Ser Ala Pro Ser Gly Ala Val Val
210 215 220
Leu Leu His Ala Cys Ala His Asn Pro Thr Gly Val Asp Pro Thr Ile
225 230 235 240
Asp Gln Trp Glu Gln Ile Arg Arg Leu Met Arg Ser Arg Gly Leu Leu
245 250 255
Pro Phe Phe Asp Ser Ala Tyr Gln Gly Phe Ala Ser Gly Ser Leu Asp
260 265 270
Thr Asp Ala Gln Ser Val Arg Met Phe Val Ala Asp Gly Gly Glu Val
275 280 285
Leu Val Ala Gln Ser Tyr Ala Lys Asn Met Gly Leu Tyr Gly Glu Arg
290 295 300
Val Gly Ala Leu Ser Ile Val Cys Arg Asn Ala Asp Val Ala Ser Arg
305 310 315 320
Val Glu Ser Gln Leu Lys Leu Val Ile Arg Pro Met Tyr Ser Asn Pro
325 330 335
Pro Ile His Gly Ala Ser Ile Val Ala Thr Ile Leu Lys Asp Arg Asn
340 345 350
Met Tyr Arg Glu Trp Thr Leu Glu Leu Lys Ala Met Ala Asp Arg Ile
355 360 365
Ile Arg Met Arg Gln Gln Leu Phe Asp Ala Leu Arg Ala Arg Gly Thr
370 375 380
Pro Gly Asp Trp Ser His Ile Ile Lys Gln Ile Gly Met Phe Thr Phe
385 390 395 400
Thr Gly Leu Asn Ser Glu Gln Val Ala Phe Met Thr Lys Glu Tyr His
405 410 415
Ile Tyr Met Thr Ser Asp Gly Arg Ile Ser Met Ala Gly Leu Ser Ser
420 425 430
Arg Thr Val Pro His Leu Ala Asp Ala Ile His Ala Ala Val Ala Arg
435 440 445
Ala Arg
450
<210> 3
<211> 6935
<212> DNA
<213> 烟草
<400> 3
atgaacatgt cacaacaatc accgtccgct gaccggaggt tgagtgtttt ggcgaggcac 60
cttgaaccgt cgtcctccgc caccgtcgaa acctccatcg tcgctgctcc tacctctgga 120
aatgctggaa ccaactctgt cttctctcac atcgttcgtg ctcccgaaga tcctattctc 180
ggggtaactt tctctctctc tctctctctc tctcttcatc cacacgcact cactcacata 240
acatatgtat aagtatttaa gtatatgcgt gctcaaatgt tctgtatata ttcatttgtt 300
ccgtatcaaa tgttctcttg ttataagctg aattttagag gaattgtagt gttatttgct 360
aatcgcaaga gcttgcatac tcattctctt cgtattgaat taaatattcc ttttttctta 420
tggatgacga atttaagcag ttttttgagt ccgatcacta cgaaatttcg atttcaagtt 480
gatagaagtg aaaaatgatg gtgtttacat attaattgag cgaataaaaa gagaaattcg 540
agtgttgata tcttcaaaaa tgttgttaaa tgtagagata tactgtgatt tagtttctgt 600
tataatcttt gccttttttc ttttgaaatt tgaatattgt ttgttgaagt cttcgtgaca 660
tattggtgtt atgttttggt tattaggtta ctattgcata caataaagat agcagcccca 720
tgaagttgaa tttgggagtt ggtgcatatc gcacagaggt gatcatcctt tttggctttt 780
gtatttgcgc tattatcgtc gatggagcac tattatcagt agctggataa tcatcctttt 840
tgatatttcc ttgattgaaa tccaaaaaca cgaataaaaa gaaatttact gatggatctg 900
tgttttggtt tcttcagatt tacgcatttc tgttaattga aaaaatatta tgattgtctt 960
ggtgattgtg gtgttgtttt ggcttcatat agttaatccg acgccgtagt gtactaatgt 1020
ttggctgatg tgctgccaag agaaatgttt aagattatgg tctgccataa ctgataaaat 1080
ttaatattaa aagtacttgg ctggatgttc tgcgtttgca taacttgtaa cgcatatgaa 1140
aaaattacct ttgattttca taattagtga gaaaattaag tagcttccgc attcctgtca 1200
ttgcactatc aaacacatac ggtttatgat atatctacct agtttggaac tttgtgattt 1260
ctatttttca caccttgtaa taaatgataa ttcttggatc tgtggtgtct ttgttcaaaa 1320
gatcacagag aagattgcac ttatgttttg tagtctagtt ggctcagact ctgtcaaaca 1380
caacttgtta catcgcattt tacctgttag ttaagaaact tgggtcatca acaaatttgt 1440
catgaggtgg ttatttcttg gggttttgtg aattgctctc agcaatctgc tagctttctt 1500
atgtggactc aaaacaatga atctcttgag ttgatgtgtt gatttttcaa tcgagtaaaa 1560
caagttctat atttggctgt gagagtaaag tgggagctat taaaattcct agctgaattt 1620
atgtttctta atatcttaaa tccttaaagg tagagggaga ggaaggaggc ttattgatga 1680
aggactagta gttgtgtata cttagttctt tctcaaattt cataagaatc tcttgagggt 1740
ttttctcgct gactgttgaa tatggggctc cacagtttgt gttgctatat tgaaatgttt 1800
cagctaataa tactaacgtg tttctttttc tttctccctt ttgtggggtt atcaggaagg 1860
aaaaccgctt gttttgaatg ttgtaagaca agcagagcag ctactagtaa atgacaggta 1920
cttgtgttgc catttcatgg agtatgaata aaatgtttcc ttaattctat gtgattaaac 1980
ttcaagattt ctgcaggtct cgcgttaaag agtacctatc tattactgga ctggcagact 2040
tcaataaatt gagtgctaag ctgatacttg gtgccgacag gtatacaagt tcctgttctc 2100
tgtatagtgt tgctgataag atatgcaggg agataaagca tgtattttcc tgttgcatag 2160
gatgatatct tccgataata aggctccgtt ccaagtgttt gatggcttgg tagatctttg 2220
tgaagcatct attaacattt gctcacgttt ttttaaaacc aacttcccat cccatccatg 2280
ccattccacg tgtcagttat tcatgaaaat gctgttcact tgcatacatg ttactgccgt 2340
agtgttggtt tctctcaact ctactcataa tttctgtgtg gtcgcattct ggtgatctga 2400
tttatgtgat aatatctgta catgttgttt tgaaatttgg gtagtgtctc tttgattagc 2460
gtgtaaagca ggcaactctt gatgcatgtg gtgaagtgta tgattgctgt ctagagctgt 2520
cagatgttaa atttatctta tgcgtttgca agatcttcca gatgttctat gtaatctttt 2580
taggccagct taaactttga cttgcttcat atacatttat gttaaaggag agttgttaat 2640
atacttcaat tttcacattt ttaattcctc ttttacctgt ggtccttacg agctcttact 2700
ttctttgctt ggtacagccc tgctattcaa gagaacagag taacaactgt gcagtgcttg 2760
tctggcacag gctcattgag ggttggagct gaatttttgg ctcgacatta tcatcaagta 2820
aactgctacg tcttcttaac ctacctttca ctctccttcg ttttcttagc cttcgtgggt 2880
aaacaatctt caaagttgaa ttgaccttga tgtaaccatt cctgcagcgc actatttata 2940
ttccccaacc aacatgggga aaccacccaa aagttttcac tttagctggg ttatcagtaa 3000
agagttaccg ctactatgat ccagcaactc gtggactcaa ttttcaaggt atgaaacact 3060
tcccttcaat ataatgatgt aacgggatat tgtcccatta gatatctatg gccatgctgt 3120
ttcctattac tctcttccag gatgatggat gttcttttag tcttattctg gtatttgatt 3180
acaaattatc acaagtctga atcaagttgt ggatagatgg tttcacttga ttgattgcat 3240
tgtaatccag caaacttgta aatccgtcat catctatgct ttttctttat accttttttc 3300
tgcgaggaaa taagagcaga gagatggaga tataacttga taataatgga atgcaacaaa 3360
cgcctaattt aacatattag ggaccaacta acatcagcat ttgacattag ctcttaacat 3420
tttgactttt taacacctta tcaaaaaaaa gaaggaaaaa gattgacatt ctaatgtcgc 3480
acggaaccaa aggtgggaat agctgataac atagaaaagt aaccaaacaa gtcctggaat 3540
cttgtcaaaa aaaaattcag ttgccaaaat gttcttggaa aaaattactg caaccacaat 3600
ggtcggaaga ataggaggaa gaaattcaat aatgcgggtc aaatagagga ggtgccacta 3660
aaaggccatt ggagaggggc cgggaaacac catctgaaag aggcacagtg gtaccagaag 3720
gattatcgaa tgctgatgca tagaaacgag tcagagattg aaacagtcac tggaaagaag 3780
gcttgatgtt gtgacagcag tcagtcagaa taaagagaag tggtgccatc agaatggtca 3840
ctggaaaggc tcgaattgta gaactatcat aagaaagtga attgtggctg ggagactctt 3900
tgaaagacaa aatctattta ggtctccaca agatcatgga tgctctaatg ctatgtgaga 3960
aactaagaga gtggacgaaa ataaatggat tacttgataa aatacaatcc atacgtttaa 4020
atccgaatga ctaactttaa ttttaacaca acttttacat ctaaaagtat gacacgtgac 4080
acttaacctt tcatgcttgt gttcacaact tcgcatgtcg ccgacttgtt tacaagaact 4140
ttatttttca tacatgacag gtttgttgga agaccttgga tctgctccat cgggagcgat 4200
agtgctactt catgcttgtg cccataaccc cactggtgtt gatccaacca ttgatcagtg 4260
ggagcaaatt aggagattga tgagatcaag aggattgttg cccttctttg atagtgcata 4320
tcaggtaaga aatcatcaac agatgttcag agcactttgg ctgttggagt tgttgctgta 4380
tgagcattta aaagtgaggc ggtttattca gtatatgtca attaaccttg atattcaaac 4440
tttgatattc tagggctttg ccagtggaag cctagataca gatgcacagt ctgttcgcat 4500
gtttgtcgca gatggaggtg aagtacttgt tgctcaaagt tatgcaaaga atatggggct 4560
ttatggtgaa cgtgtcggag ctctaagcat cgtatgtctc aaaggacaaa ggacaactgt 4620
gccttgtttc tgaaaattta tatctccagt tgttcatttg ttgcattacc tttatttttc 4680
tcagattgat tctcatgatg catgaactgt cttactgttt tcatagtgtt cttttgtgat 4740
cttaaaattt ggtagttatg aactgttaaa gcttatatag cttacttcca aatatataac 4800
tgtgagcctt ggacatcaca tataaattat tttatatcac ggggtcgaga tgtggaaaca 4860
acctcttgca gaaatgtagg gtaaggttgc gtacaataga cccttgtggt ccggcccttc 4920
ctcggacccc tgcacatagc gggagcttag tgcactgggt tgcccttgtt ttcatcctga 4980
ggcataaaaa gtttttaatt tctcaagaat gaataaagag cctgttataa caggcacttt 5040
gcatgtcata tggtgttgtt tgtcacacag ttatgcatat agtgtagttt atcacacaaa 5100
tgaaaaaaat tgaaggatat agttctgaac cctcagttaa actctgctga cagatataat 5160
tcttcaaaat tttctcgaat ctgtaggtct gcagaaatgc tgatgtggcg agcagagttg 5220
agagccagct gaagttggtg attaggccaa tgtattccaa tccgcccatc catggtgcgt 5280
caatagttgc cacaatcctt aaagacaggt aatatatcaa ccatcaggaa attgcttctt 5340
gggaccccaa aaaagccatt tcctttcttt ctatatgata gaatccagtg tatgatcaaa 5400
aattatgttt agtcattgtt ctgcaaaata aatcactaaa tttctgcaga aacatgtacc 5460
atgaatggac ccttgagctg aaagcaatgg ctgatagaat catcagaatg cgtcagcaat 5520
tatttgatgc tttacgtgct agaggtaaat ttgctgcatt attttcacgt atgcgtgctc 5580
ttattacatg tttcttgctg catcgacttc ggatattttt ctcatttttg ataatttcgg 5640
ttcaagtgtc attataaatg ctacatgttc gtggcgtata cttctacata taaaatatgc 5700
tgcaactcgt tccagctcat ttgtctagat aattgatgaa aaggaccaat cttcacagct 5760
gactctcctg aatgaaagct taacgaagga aaaagattaa gcaaacaaaa catggaattc 5820
gacaaattca aacatttctc caaatcttaa tacatctcga tccttcttag tgctttcatc 5880
aacttcttag gtaattcacc tcttaacttt ggctctgact ggattctcta cctttggaaa 5940
accatcccca aagatgtccc ttgcacgatc cttttgggga catgaactgt tggatcaggc 6000
aagaaactat cccccaataa agaaaaattg ttggatcaga ttttttcctg ataggttgca 6060
ttctttcagc attcccctta aagtttgtga tttggacgtt gtcctcattg tgttacaaaa 6120
aaatgtcatt ggaaacttcc attttggcac atcaggtgtt agaatcatca tgtcttcata 6180
aattggcaat agacaaagtc tcatgtcgtc aactcctttc ttcagtgtca ggcattcttt 6240
aatcaatgca agtgtcgagc attgcatgaa taggatacct attactattt acatgaattg 6300
atgggcaagt cgggcatttt ttagtcggct taaaggtcaa gcattgcatg aacaagatat 6360
ctatttctat tgacttcaat tgattggcag gtacacctgg tgactggagt cacattatca 6420
agcagattgg aatgtttact ttcacgggac ttaactcaga gcaagttgcc ttcatgacca 6480
aagagtacca catctacatg acatcagatg ggtaatgtgt catttcttag cacaaagttc 6540
tgtatatgtc atatcagact accatgtccc ccctacatct gatatgtgat tttattacct 6600
cgtaagctcg gatggtaaaa cagaaagagg gaagggattt aaaatcttat cagccgtcag 6660
tttgttcttt tcttgtagta ttcttgctac cttagctttg atgttcgcta agagaaatgt 6720
ggcggtacta atgaacattt ctagagcatg gttctttcta agtttgtatt taattgtggc 6780
aacttcaatt aagcttagga tatcagataa tccaaagcct ttgacataca tcacatattt 6840
cattttgcag acgcatcagt atggcaggtc tgagctccag gacagttcca catctagcag 6900
atgccataca tgctgctgtt gctcgagctc gttga 6935
<210> 4
<211> 448
<212> PRT
<213> 烟草
<400> 4
Met Asn Met Ser Gln Gln Ser Pro Ser Ala Asp Arg Arg Leu Ser Val
1 5 10 15
Leu Ala Arg His Leu Glu Pro Ser Ser Ser Ala Thr Val Glu Thr Ser
20 25 30
Ile Val Ala Ala Pro Thr Ser Gly Asn Ala Gly Thr Asn Ser Val Phe
35 40 45
Ser His Ile Val Arg Ala Pro Glu Asp Pro Ile Leu Gly Val Thr Ile
50 55 60
Ala Tyr Asn Lys Asp Ser Ser Pro Met Lys Leu Asn Leu Gly Val Gly
65 70 75 80
Ala Tyr Arg Thr Glu Glu Gly Lys Pro Leu Val Leu Asn Val Val Arg
85 90 95
Gln Ala Glu Gln Leu Leu Val Asn Asp Arg Ser Arg Val Lys Glu Tyr
100 105 110
Leu Ser Ile Thr Gly Leu Ala Asp Phe Asn Lys Leu Ser Ala Lys Leu
115 120 125
Ile Leu Gly Ala Asp Ser Pro Ala Ile Gln Glu Asn Arg Val Thr Thr
130 135 140
Val Gln Cys Leu Ser Gly Thr Gly Ser Leu Arg Val Gly Ala Glu Phe
145 150 155 160
Leu Ala Arg His Tyr His Gln Arg Thr Ile Tyr Ile Pro Gln Pro Thr
165 170 175
Trp Gly Asn His Pro Lys Val Phe Thr Leu Ala Gly Leu Ser Val Lys
180 185 190
Ser Tyr Arg Tyr Tyr Asp Pro Ala Thr Arg Gly Leu Asn Phe Gln Gly
195 200 205
Leu Leu Glu Asp Leu Gly Ser Ala Pro Ser Gly Ala Ile Val Leu Leu
210 215 220
His Ala Cys Ala His Asn Pro Thr Gly Val Asp Pro Thr Ile Asp Gln
225 230 235 240
Trp Glu Gln Ile Arg Arg Leu Met Arg Ser Arg Gly Leu Leu Pro Phe
245 250 255
Phe Asp Ser Ala Tyr Gln Gly Phe Ala Ser Gly Ser Leu Asp Thr Asp
260 265 270
Ala Gln Ser Val Arg Met Phe Val Ala Asp Gly Gly Glu Val Leu Val
275 280 285
Ala Gln Ser Tyr Ala Lys Asn Met Gly Leu Tyr Gly Glu Arg Val Gly
290 295 300
Ala Leu Ser Ile Val Cys Arg Asn Ala Asp Val Ala Ser Arg Val Glu
305 310 315 320
Ser Gln Leu Lys Leu Val Ile Arg Pro Met Tyr Ser Asn Pro Pro Ile
325 330 335
His Gly Ala Ser Ile Val Ala Thr Ile Leu Lys Asp Arg Asn Met Tyr
340 345 350
His Glu Trp Thr Leu Glu Leu Lys Ala Met Ala Asp Arg Ile Ile Arg
355 360 365
Met Arg Gln Gln Leu Phe Asp Ala Leu Arg Ala Arg Gly Thr Pro Gly
370 375 380
Asp Trp Ser His Ile Ile Lys Gln Ile Gly Met Phe Thr Phe Thr Gly
385 390 395 400
Leu Asn Ser Glu Gln Val Ala Phe Met Thr Lys Glu Tyr His Ile Tyr
405 410 415
Met Thr Ser Asp Gly Arg Ile Ser Met Ala Gly Leu Ser Ser Arg Thr
420 425 430
Val Pro His Leu Ala Asp Ala Ile His Ala Ala Val Ala Arg Ala Arg
435 440 445
<210> 5
<211> 6388
<212> DNA
<213> 烟草
<400> 5
atggcgatcc gagccgcgat ttccggtcgt cccctcaagt ttagctcgtc ggtcggagcg 60
cgatctttgt cgtcgttgtg gcgaaacgtc gagccggctc ctaaagatcc tatcctcggc 120
gttaccgaag ctttcctcgc cgatcctact cctcataaag tcaatgttgg tgttgtaagt 180
ttttttttct ctttgctttg tttgattttc cacttcattt cgtgtaagct aggatttagc 240
ttacttgacc atttcgctat tcttcatagg ccatagctgt aaaaatggtt ttactgtgac 300
gaatcttcga cgatctcaat cgctttggga ttgggagaga gtttattgat ttaatttttg 360
tatgcattcc acttttttca acttgatcta tttaagaaaa aaattgaaaa agatttgacc 420
ttttttctta aattatttct tttaaatttt ttatttttgt gattattata tagggagctt 480
acagagacaa caatggaaaa cccgtggtac tggagtgtgt tagagaagca gagcggagga 540
tcgctggcag tttcaacatg tgagtgctct cctgatttat tcaagttttt ctgttatttt 600
atttgtaatt aattacgatt acgttaactt tgatctatta gaaaatagaa acttcagcca 660
gtaagattac tttttttctt cgaggagtgt gagatgtaaa cccaggtcgg atgcactgga 720
attcttcact agtttgtgca aatatattct taatattttt caaaaacttc ctgtgtacac 780
acacacatac atgtaattaa ttaagtaatt acctactgat ctaggatttt taggtagttc 840
ggaaaaatat attttcaata tcgtttaaga attttctggg tatgcgtagt ttgagtatga 900
taaaatgggt gcatgtgcac cactgcttac gctagggaac agcctctaat tagctgttgg 960
tgagtctggt gagtggtgac tgttctttat tttcagttac ttcgcacatt gttggttttt 1020
gattaagtat aaataaacga atgttttagt gagtgcttat ttctatgaag catctttttt 1080
aggtctacag aaatgggtgg tacgatattt tccagccgtc agctccacta accagtttga 1140
ttctttggga ctttttcttt gtattctcac gtttacttct agtggatggt gcagatggat 1200
ttctttacta attctttctt ctgcgtttgc agagctttct cccaagataa attattaata 1260
tcaaattgac ctttcgatag ttcaatggtg tttaactttt tcaaatattg cccattttat 1320
attatgaagt ttgaaagttt aactagacat gttgtaataa attttatttg acttgtgtat 1380
tttattcatt gtggttggag aaagtattaa aataacaagt gaaaagtctg ttttacgtca 1440
agtttgaatt tgaatttttg aattgatttg cttctttaag tttatgaaac catctatgag 1500
aatattattg gcactccatt gtctcatttt atgtgaaggc atttgacgtt gcacaaaatt 1560
taaaaatata aagaaactta tgacgtgtaa gttagatata tgcagagtac catagttatc 1620
cttttaagta agtgatagtg agagtttcac atttcttttt gttctctctt cttataaaag 1680
aatgaatttt tgtatcccaa caagtcatat cattaatgtt aacacgggga tactaagatt 1740
aactaatgtc taaaaagaga aagatttcat tcttcttgga cgggctaaaa aggaaagtat 1800
gtcacataaa atgagacaga gatatgttag gatttgtcct gaatttctaa tcaattagga 1860
ctctctttct tgaaggaatg gaaaaagact cctaaaagga ttaaatctcc ttaatatgtc 1920
ttatcctttt cttggaagac aagttttgca catctataaa ttaaggatct ctgcttttca 1980
caagaacaca aaaaaaaaat atccacaatg tagttattaa agagtttgtt tagggggaga 2040
tttttctctc gatagttttt cttcttttat attagtttta tcatatgtag atcaattgac 2100
caaatcatta taaactatta tgcttagttt aatatatttt tcttttgttg tctgatttat 2160
cgtccatcaa gttttgtatt gttagttttc gcatgcacca tgttatttcg aacccaacaa 2220
gtggtatcag agccaatggt tcagagtcaa cggttgaacg aggttgaaga aagattcaat 2280
gcgtgtttag atcaagacga taatgaagat ttattcaaca tgctacatgt ggagataaat 2340
ttacaattac aattgtattc aacacgcctg ctgttgcatc tttattggaa taaaaactct 2400
ttctaaccca tattttggcc actttaaacc aatgccaatt ttaagtcatg cctacttgca 2460
acacatgagt tccagtgcca gttttaactc acgcttcttt ttaatgcatg agcttctttt 2520
atcccatgtt tattcttaac acgcgggctc cttttaaccc atacttggtt tttttttaac 2580
caataccaag attttcaatt tttaatcatg gcaagcagca gtgatgaaga ttatgtgaag 2640
aaggtgaatc aactttgtca agaaaattca ggccaagggg agattgttag gatttgtcct 2700
gaatttctaa tcaattagga ctctctttct tgaaggaatg gaaaaagact cctaaaagga 2760
ttaaatctct ttactatgtc ttatcatttt cttggaagac aagttttgca catctataaa 2820
ttaaggatct ctgcttctca caagagcaca aaaaaaaaaa tatccacaat gtagttatta 2880
aagagttttg tttaggggga gatttttctt tcaatagttt ttcttctttt atattagttt 2940
tatcatatgc agatcaattg accaaactat tatgcttagt ttaatatttt ttttttttgt 3000
cgtctgattt atcgtccacc aagttttgta ttgttagttt ccgcatgcac catgttattt 3060
cgaaccctcg tataagtttg tcaaacattt tgtgacttcc taaactagaa agtgtcttgg 3120
gatgggggag aactacgcta tctgatctca aaaaaagtgt gcatcatgtg atactatgtg 3180
gatagtttag ttcacatgtt gacaattcat catttatcag ggaatatctt cctatgggag 3240
gtagtgtcaa catgatcgag gagtcactga agttagccta tggggagaac tcagacttga 3300
taaaagataa gcgcattgca gcaattcaag ctttatccgg gactggagca tgccgaattt 3360
ttgcagactt ccaaaggcgc ttttgtcctg attcacagat ttatattcct gttcctacat 3420
ggtctaagta agtgtattct tctgcttctc ggcatctcta cagcatccta attgatcttc 3480
ctcaattggt ttttgcactt taaaacatga gtatgcaaat accttcaaaa ttttctaatt 3540
tcctgtcatt actaatataa agttcttggc agtcatcata acatttggag agatgctcat 3600
gtccctcaga aaatgtatca ttattatcat cctgaaacaa aggggttgga cttcgctgca 3660
ctgatggatg atataaaggt aagaaaacat atatttgagg ttgtttgcca tgatggttgg 3720
ttctcctgtt tgatgatata gtgtccctcc tcaagtggca attatgtgtt ctatcctgac 3780
gtatttcaat tttcattgac atagaatgcc ccaaatggat cattctttct gcttcatgct 3840
tgcgctcaca atcctactgg ggtggatcct acagaggaac aatggaggga gatctcacac 3900
cagttcaagg taatgatttg tatgttttgt ctctcccttt tcttgtcata agtcatatta 3960
aatttattac actggttcca ggtgaaggga cattttgctt tctttgacat ggcctatcaa 4020
ggatttgcta gtgggaatcc agagaaggat gctaaggcta tcaggatatt tcttgaagat 4080
ggtcatccga taggatgtgc ccaatcatat gcaaaaaata tgggactata tggccagaga 4140
gttggttgcc taaggtaaac tactactccc accatcatat cttatttgcc ctagttacaa 4200
tctggagagt caaacaaact ttttattaga ccatagttgg tctatttttc aaatgatcta 4260
attccaaaag cagttactac tatttcatgc aaattctaga ttaattaacc ttttgctata 4320
cctcattatc ttcatttagt aggcagtagc taattttacc atatatcata tttttcatat 4380
aatcaatatg tagagttatt tatttattta tatattttaa atttatttag gataaatttt 4440
gttctttccg gtaatttcag ttcatttcca cctaaaagtc caactcgaag agaaaaacag 4500
aattttgcta gtcaaaactt agatccaatg aaaagcacca aaattttggt tttaaattat 4560
aaaacatgtc tactctaggt ttttttccta ggcaagcgat gtgattttac aatcttacaa 4620
taaggcatca atcaatccca aactagtttg gttcaacaat ataaatcttt gttcctattt 4680
catggcattg ggcccattgc attccaataa tggtaaataa gacaaattag aggttatcta 4740
agattagaga ttccttatta aaatctcata cttatatcta cattgtcacg caagtctctg 4800
accttaaaag aagacttcta gcagacacca gacttaacgt aagtgtaaca acaacaacta 4860
agttttaatc caaactagtt agtatcgctt atatgaatcc cttgcttcca ttgtgtagca 4920
ctaaacaaca acaacaacat accgagtata atctcacata gtggggtctg gggagggtag 4980
tgtgtacgca gactttaccc ctgccttgtg gagaaagaga ggctatttcc aatagaccct 5040
cggctcaaaa ccattgtgta gcaatggagg catgaaatag aaaacttgtc ttctgattaa 5100
aatctgttat taaattaatg aggagaaaaa attggattac ttgttggtaa atcttatttg 5160
ttgttttaaa cacacacaaa gccgaaagac ctctgatact tttcctgaga tgcttccgca 5220
attcactgca gtgtggtttg tgaggatgaa aaacaagcag tggcagtgaa aagtcagttg 5280
cagcagcttg ctaggcccat gtatagtaat ccacctgttc atggcgcgct cgttgtttct 5340
accatccttg gagatccaaa cttgaaaaag ctatggcttg gggaagtgaa ggtaatatgg 5400
ttagaacaag aaaagattta tgattatata actatcattg gtattttgac aaaaggtagg 5460
aactaggaac cttgctatta aagatatttt cttcccttta ttttggaaaa aaaggtattt 5520
tcttgctttc ttcaaatgtt tgagatttgg atagagccgt tacatggaaa tgctgtgcaa 5580
ttttctgcta ctcacatgga aaagatcttt ttcttttgct gatctgttta agcacctatt 5640
tgctaaagcc tactatgtca gtatgttgtt caatcttttc agccacagaa acaggtctaa 5700
accagttcca aactttaaat aatcttacca tggtagtttc agcaaagata aattggtccg 5760
tgcagccatt aactgttttc tttgtcgggc ttcttaaact tgttttctcc aaggtctagt 5820
tgttggtgct gtggctgctt tttagctttg tgctcattat cagagcatca tatgtttaag 5880
tgtaaaggtt caatgactaa gttctttttc cagggcatgg ctgatcgcat tatcgggatg 5940
agaactgctt taagagaaaa ccttgagaag ttggggtcac ctctatcctg ggagcacata 6000
accaatcagg tattgaaatc aacaacttct gttgttttct atgctactag tatataacta 6060
ttaagaaaat tactgtggtt cacctactgc gccattaata ctcgatacca ccaacagatt 6120
ggcatgttct gttatagtgg gatgacaccc gaacaagtcg accgtttgac aaaagagtat 6180
cacatctaca tgactcgtaa tggtcgtatc aggtataatc attaggtcac caatttctgc 6240
ttaatgctcc ggtgttcttg tacagagtta tatctcatta ttttttccac tatgttgtgt 6300
gttttgtacg tgcagtatgg caggagttac tactggaaat gttggttact tggcaaatgc 6360
tattcatgag gccaccaaat cagcttaa 6388
<210> 6
<211> 424
<212> PRT
<213> 烟草
<400> 6
Met Ala Ile Arg Ala Ala Ile Ser Gly Arg Pro Leu Lys Phe Ser Ser
1 5 10 15
Ser Val Gly Ala Arg Ser Leu Ser Ser Leu Trp Arg Asn Val Glu Pro
20 25 30
Ala Pro Lys Asp Pro Ile Leu Gly Val Thr Glu Ala Phe Leu Ala Asp
35 40 45
Pro Thr Pro His Lys Val Asn Val Gly Val Gly Ala Tyr Arg Asp Asn
50 55 60
Asn Gly Lys Pro Val Val Leu Glu Cys Val Arg Glu Ala Glu Arg Arg
65 70 75 80
Ile Ala Gly Ser Phe Asn Met Glu Tyr Leu Pro Met Gly Gly Ser Val
85 90 95
Asn Met Ile Glu Glu Ser Leu Lys Leu Ala Tyr Gly Glu Asn Ser Asp
100 105 110
Leu Ile Lys Asp Lys Arg Ile Ala Ala Ile Gln Ala Leu Ser Gly Thr
115 120 125
Gly Ala Cys Arg Ile Phe Ala Asp Phe Gln Arg Arg Phe Cys Pro Asp
130 135 140
Ser Gln Ile Tyr Ile Pro Val Pro Thr Trp Ser Asn His His Asn Ile
145 150 155 160
Trp Arg Asp Ala His Val Pro Gln Lys Met Tyr His Tyr Tyr His Pro
165 170 175
Glu Thr Lys Gly Leu Asp Phe Ala Ala Leu Met Asp Asp Ile Lys Asn
180 185 190
Ala Pro Asn Gly Ser Phe Phe Leu Leu His Ala Cys Ala His Asn Pro
195 200 205
Thr Gly Val Asp Pro Thr Glu Glu Gln Trp Arg Glu Ile Ser His Gln
210 215 220
Phe Lys Val Lys Gly His Phe Ala Phe Phe Asp Met Ala Tyr Gln Gly
225 230 235 240
Phe Ala Ser Gly Asn Pro Glu Lys Asp Ala Lys Ala Ile Arg Ile Phe
245 250 255
Leu Glu Asp Gly His Pro Ile Gly Cys Ala Gln Ser Tyr Ala Lys Asn
260 265 270
Met Gly Leu Tyr Gly Gln Arg Val Gly Cys Leu Ser Val Val Cys Glu
275 280 285
Asp Glu Lys Gln Ala Val Ala Val Lys Ser Gln Leu Gln Gln Leu Ala
290 295 300
Arg Pro Met Tyr Ser Asn Pro Pro Val His Gly Ala Leu Val Val Ser
305 310 315 320
Thr Ile Leu Gly Asp Pro Asn Leu Lys Lys Leu Trp Leu Gly Glu Val
325 330 335
Lys Gly Met Ala Asp Arg Ile Ile Gly Met Arg Thr Ala Leu Arg Glu
340 345 350
Asn Leu Glu Lys Leu Gly Ser Pro Leu Ser Trp Glu His Ile Thr Asn
355 360 365
Gln Ile Gly Met Phe Cys Tyr Ser Gly Met Thr Pro Glu Gln Val Asp
370 375 380
Arg Leu Thr Lys Glu Tyr His Ile Tyr Met Thr Arg Asn Gly Arg Ile
385 390 395 400
Ser Met Ala Gly Val Thr Thr Gly Asn Val Gly Tyr Leu Ala Asn Ala
405 410 415
Ile His Glu Ala Thr Lys Ser Ala
420
<210> 7
<211> 4789
<212> DNA
<213> 烟草
<400> 7
atggcgattc gagccgcgat ttccggtcgt tccctcaagc atattagctc gtcggtcgga 60
gcgcgatctt tgtcgtcgtt gtggcgaaac gtcgagccgg ctcctaaaga tcctatcctt 120
ggcgttaccg aagctttcct cgccgatcct actccccata aagtcaatgt tggcgttgtg 180
agtttttttt tcctctttgt tttgcttcat tttccacctc atttcgtgta tgcaaggatt 240
tagcttactt gaccatttcg ctatacttcc cttggtaggc catagctgta aaaaatagtt 300
ttactgtgac gaatcatcga catatggata cagagtattc taatggagta gtcaacaaca 360
taagtcgatc tcaatcgctt tgggattgag aaagagttta ttgatttaat ttttgtatgc 420
gttccacttt tttcaacttg atctatttaa gaaaaaaatt gaaaaagatt tgaccttttt 480
tcttaaatta tttcttttat aaaatttgct tttgtgatta ttatacaggg agcttacagg 540
gacgacaacg gaaaacccgt ggtactggag tgtgtcagag aagcagagcg gaggatcgct 600
ggcagtttca acatgtgagt gcttctcctg atttattcat ttttttctgt tatttatttg 660
taattaatta cgattacgtt aaatttgatc tattagaaaa tataaacttc agccagtaag 720
attacttttt ttcttcgagg agtttgagat gtaaaaccca ggtcggatgc actgggattc 780
ttaagtagtt tgtacaaata tattcttaat agttttgtaa aatttgctgt atacacacac 840
atgtaattaa ttacctactg atctaggatt tataggtagt tcggaaaaat atattttcaa 900
tatcgtttaa gaatttcctg ggtgtgtata gtttgagtat gagaaaatgg gtgcatgtgc 960
accactgctt acgctaggga tcagcttcta aatagctggt ggtgagtctg gtgagtggtg 1020
actgttcttt attttcagtt actgtagcca caaattgttg gttattgatt aagtataaat 1080
aaacgaatgt attagtgagt gcttatttgt atgaagcatc ttttttaagt ctacagaaat 1140
gggtggtccg atattttcca cccgtcagtt cctctaacta gtttgattct ttgggacttt 1200
ttctttgtat tctcacgttt acgcctagtg gatggtgcag atggatttct ttactaattc 1260
tttcttctgc gcttgcagag ctttctccca agataaatta ttaatatcaa attgaccttt 1320
cgatagttca atggtgttta actttttcaa atattgcccc acatcccatt ttatattatg 1380
aagtttgaaa agtttaacta gacatgttgt aataaatttt tatttgagtt gtgtatttta 1440
ttcattgtgg taggagaaac tagaaagtat taaaataaca agtgaaaagt ctgttttatg 1500
gataaagaat attacgtcaa gtttgaattt gaaattttga attgatttgc ttctttaaat 1560
ttatgaaacc atctatgaga atattattag cactccattt gtctcatttt atgtgaaggc 1620
atctgacttt gcacaaagtt aaaaaatata aagatactta cgacgtgaaa gtttgatata 1680
tgccaagtac cataattatc cttttaagca agtgatagtg agagtttaac atttcttttt 1740
gttctctctt cttataaaag aatgaatttt gtatcaagtg ggtcccaaca agtcattcat 1800
taagggtaaa acggggatgc taagattaac taatttccaa aaagagaaag atttaattct 1860
tctaggacag gctaaaaatg gaaagtgttt cacataaaat gagacataga caatataagt 1920
ttgtcaaaca ttttgtgacg tcctaaaata gaaagtgtcc tgagatggag gagaactacg 1980
ttatctgttc tcaaaaaagt gtgtatcatg tgatactatg tggatagttt agttcacatg 2040
ttaacaattc atcatttatc agggaatatc ttcctatggg aggtagtgtc aacatgatcg 2100
aggagtcact gaagttagcc tatggggaga actcagactt gataaaagat aagcgcattg 2160
cagcaattca agctttatct gggactggag catgccgaat ttttgcagac ttccaaaggc 2220
gcttttgtcc tgattcacag atttatattc ctgttcctac atggtctaag taagtgtatt 2280
cttctgcttc tcggcatctc tacagcatcc taattgatct tcctcaattg gtttttgcac 2340
attaaaacat gagtatgcaa ataccttcaa aattttctaa tttcctgtca ttactaatat 2400
aaaattcttg gcagtcatca taacatttgg agagatgctc atgtccctca gaaaacgtat 2460
cattattatc atcctgaaac aaaggggttg gacttcactg cactgatgga tgatataaag 2520
gtaagaaaac atatatttga ggttgttttc catgatggtt tgttctcctg tttgatgata 2580
tagcgtccct cctcaagtgg caattatgtg ttctatcctg acgtatttca attttcattg 2640
acatagaatg ccccaaatgg atcattcttt ctgcttcatg cttgtgctca caatcctact 2700
ggggtggatc ctacagagga acaatggagg gagatctcgc accacttcaa ggtaatgatt 2760
ttgtatattt tgtctctcct ttttcttgta ccaagtcata ctaaatttat tacactggtt 2820
ccaggtgaag ggacattttg ctttctttga catggcctat caaggatttg ctagtgggaa 2880
tccagagaag gatgctaagg caatcaggat atttcttgaa gatggtcatc cgataggatg 2940
tgcccaatca tatgcaaaaa atatgggact atatggccag agagttggtt gcctaaggta 3000
aactactact cccaccatca tatcttattt gccctagtta caatctggag agtcaaacta 3060
actttttgtt agaccttagt cggtctattt ttcaaatgtt ctaattccaa aagcagttac 3120
tactatttcc tgtaaattct agattaatta actttttatt atacctcatt atcttcattt 3180
agtagctaat tttaccatat atcatatttt tcatattatc aatatgtaga gagaattatt 3240
tatttaaata ttttaagttt atttataaaa aattgagttc tttccgataa cttcagttca 3300
tttccacctc aaagtccaac tcgacgtgaa aagcagaatt ttgctagtca aaacttggat 3360
ccaacaatta tttagaataa attgagttct ttccgataac ttcagttcat ttccacctca 3420
aagtccaact cgacgagaaa aacagaattt tgctagtcaa aacttggatc caatgaaaag 3480
caccaaaatt ttggttttaa attacaaaat aatgtatact ctaggttttt gtcctatgca 3540
agtgatttta cggtcttaaa ataaagcatc aatcaatccc ttaaacacac acaaagccct 3600
ctaatacatt tgctgagatg cttccgcaat tcactgcagt gtggtttgtg aggatgaaaa 3660
gcaagcagtg gcagtgaaaa gtcagttgca gcaacttgct aggcccatgt acagtaatcc 3720
acctgttcat ggtgcgctcg ttgtttctac catccttgga gatccaaact tgaaaaagct 3780
atggcttggg gaagtgaagg taatgtgatt agaacgagat aaagatttat gattgtataa 3840
ctatcattgg tattttgacg acagatagga actaggaacc ttgctattaa agatattttc 3900
ttgccttaat tttgaaaaaa gggaattttc tcgctttttt ggaatgtatg agatttggat 3960
agaactatca catggaaatg ctgtaccatt ttctgctact cacatggaaa agatcctttt 4020
cttttgctga tctgtttaag caccaatttg ccatagcttt gttgtcctat attttcagcc 4080
acagaaataa gtctaaacca gtcccaagct ttaataagct ttcattgcgt ggtagtgtca 4140
gccgcataaa ttggtcagtg cagccattaa ctgttttctt catggggcct gttaaccttg 4200
tatttctcca aggtcaagtt gttggtgttg tggctgcttt ttagctttgt actcattatc 4260
agagcatcat atgttaaacg taaaggttca atgactaaga gttttttttc cagggcatgg 4320
ctgatcgcat catcgggatg agaactgctt taagagaaaa ccttgagaag aagggctcac 4380
ctctatcgtg ggagcacata accaatcagg tattgaaatc aatgacttct gttgcgttct 4440
atactagtat ataactatta gaacactatg gctcacctat tgccccatta atactcgata 4500
ctgcctacag attggcatgt tctgctatag tgggatgaca cccgaacaag ttgaccgttt 4560
gacaaaagag tatcacatct acatgactcg taatggtcgt atcaggtata atcactcatt 4620
cacgaatttc tgcttaatgc tccggtgttc ttgtacgagt taatatctca ttaatttttc 4680
cactatgtta tactgtgtgt tttgtatgtt gtgcagtatg gcaggagtta ctactggaaa 4740
tgttggttac ttggcaaacg ctattcatga ggttaccaaa tcagcttaa 4789
<210> 8
<211> 425
<212> PRT
<213> 烟草
<400> 8
Met Ala Ile Arg Ala Ala Ile Ser Gly Arg Ser Leu Lys His Ile Ser
1 5 10 15
Ser Ser Val Gly Ala Arg Ser Leu Ser Ser Leu Trp Arg Asn Val Glu
20 25 30
Pro Ala Pro Lys Asp Pro Ile Leu Gly Val Thr Glu Ala Phe Leu Ala
35 40 45
Asp Pro Thr Pro His Lys Val Asn Val Gly Val Gly Ala Tyr Arg Asp
50 55 60
Asp Asn Gly Lys Pro Val Val Leu Glu Cys Val Arg Glu Ala Glu Arg
65 70 75 80
Arg Ile Ala Gly Ser Phe Asn Met Glu Tyr Leu Pro Met Gly Gly Ser
85 90 95
Val Asn Met Ile Glu Glu Ser Leu Lys Leu Ala Tyr Gly Glu Asn Ser
100 105 110
Asp Leu Ile Lys Asp Lys Arg Ile Ala Ala Ile Gln Ala Leu Ser Gly
115 120 125
Thr Gly Ala Cys Arg Ile Phe Ala Asp Phe Gln Arg Arg Phe Cys Pro
130 135 140
Asp Ser Gln Ile Tyr Ile Pro Val Pro Thr Trp Ser Asn His His Asn
145 150 155 160
Ile Trp Arg Asp Ala His Val Pro Gln Lys Thr Tyr His Tyr Tyr His
165 170 175
Pro Glu Thr Lys Gly Leu Asp Phe Thr Ala Leu Met Asp Asp Ile Lys
180 185 190
Asn Ala Pro Asn Gly Ser Phe Phe Leu Leu His Ala Cys Ala His Asn
195 200 205
Pro Thr Gly Val Asp Pro Thr Glu Glu Gln Trp Arg Glu Ile Ser His
210 215 220
His Phe Lys Val Lys Gly His Phe Ala Phe Phe Asp Met Ala Tyr Gln
225 230 235 240
Gly Phe Ala Ser Gly Asn Pro Glu Lys Asp Ala Lys Ala Ile Arg Ile
245 250 255
Phe Leu Glu Asp Gly His Pro Ile Gly Cys Ala Gln Ser Tyr Ala Lys
260 265 270
Asn Met Gly Leu Tyr Gly Gln Arg Val Gly Cys Leu Ser Val Val Cys
275 280 285
Glu Asp Glu Lys Gln Ala Val Ala Val Lys Ser Gln Leu Gln Gln Leu
290 295 300
Ala Arg Pro Met Tyr Ser Asn Pro Pro Val His Gly Ala Leu Val Val
305 310 315 320
Ser Thr Ile Leu Gly Asp Pro Asn Leu Lys Lys Leu Trp Leu Gly Glu
325 330 335
Val Lys Gly Met Ala Asp Arg Ile Ile Gly Met Arg Thr Ala Leu Arg
340 345 350
Glu Asn Leu Glu Lys Lys Gly Ser Pro Leu Ser Trp Glu His Ile Thr
355 360 365
Asn Gln Ile Gly Met Phe Cys Tyr Ser Gly Met Thr Pro Glu Gln Val
370 375 380
Asp Arg Leu Thr Lys Glu Tyr His Ile Tyr Met Thr Arg Asn Gly Arg
385 390 395 400
Ile Ser Met Ala Gly Val Thr Thr Gly Asn Val Gly Tyr Leu Ala Asn
405 410 415
Ala Ile His Glu Val Thr Lys Ser Ala
420 425
<210> 9
<211> 4551
<212> DNA
<213> 烟草
<400> 9
atggcaaatt cctccaattc tgtttttgcg catgttgttc gtgctcctga agatcccatc 60
ttaggagtac gtccctttcc actctttcta ttttacattt ccactgaata tgtttcttct 120
gtggctcctt taataatctt ccgtaaatat actattagtg gatttgataa gctacttctc 180
tctccctctc tcttttattt tcttattttg ggttagatta aaatgaacat taattaatga 240
tcagatgatt tggttaaaga tgatatctag gagatcggca taaataagtt gattggaatg 300
atcgctatag ggtttcctat tgtatgcatt ggatcatgga tgtgtgcgct aattatttaa 360
tagtacttct ttctttttac tgtgatctgg caattcctta ttttattcct ggtgtagttg 420
atgaaaggtg tagatttgat tctttaactt gctctattga gaaggtaatt tgtgcttctc 480
aagtgtttat taatgttgtt ttcttctgtt gtgttacttc attaaaacag gtcacagttg 540
cttataacaa agataccagc ccagtgaagt tgaatttggg tgttggcgca tatcgcactg 600
aggtctgcca cttctacttt gtctcgttgt tctttattat tattattttt ttattatagc 660
caaaaaaagt tgccccttga atggatttgg tcctgctatg tgttgaatcc ttggttaagt 720
ttttctttaa taggctcctt cacaaggata gaaaattgta gacactgatg cttacacatt 780
agtaatattt tttcccctga tgcataatga agtgaaacca cttgtgcttc taaaaaatca 840
tactttgggg caaggtgaag tacacatttt tataagtggt tgtttttttc ttcaatcttg 900
agttgaatgt tagtgttaag taggagccgc aaacgggcgg gtcgggtcgg atttggttca 960
gatcgaaaat gggtaatgaa aaaacaggta aattatctga ctcgacccat atttaatacg 1020
gataaaaaca ggttaaccgg cggataatat gggtaaccat attattcatg tcttcttgca 1080
tatgatcaat tatgggagaa ttcttagcct caaatgggaa cccccaattt gaggctttac 1140
aaatttaaaa gttagaccca ttggttaacc attttctaaa tggataatat ggttcttatc 1200
catatttgac ccatttttaa aaagttcatt atccaaccca ttttttagtg gataatatgg 1260
gtgtttaact gatttctttt aaccattttg acacccctag tgttaagctt gaaaacgact 1320
aatgcatagt ctgatgacaa cttgcaggaa ggaaagcccc ttgttcttaa tgtggtgaga 1380
cgggctgaac aaatgctcgt caatgacacg taacttgcca aattagaaac tagcttacag 1440
attttctttt gagatatgat cacctgatac caagattgga atctaaggct gctatgatgc 1500
aggtctcggg tgaaggagta tctctcaatt actggactag cggattttaa caaactgagt 1560
gcaaagctta tatttggtgc tgacaggttt ggagattttt tggtgcagtt gctcttgata 1620
aatgcttgag tcaatttttt ttaaaaaaaa tgctcactat ccatgtcgct ctatttaaac 1680
ctatcttgcc aaaccacttg tataaatgaa aatgagccgt cgatattctt ccttccatct 1740
agtttgatat ttgaattaga gattgttgct aaaagggaat gctttatctc tacagcgtag 1800
agtaactgaa tacctgttaa acatgttcct ccgtatttca tcttattatg atgccttgca 1860
tctgaagaaa attgttctag agttaacttt ctctcctctt tgttgtactg attatctgtg 1920
tgtggtgaac gcgatatcag gaaatatgtg tcttctgtca ctattactcc ttgttaagtc 1980
atatgtaatt gacttgttat gatatcaaca gatttactta tgtttagatg tagtttaaat 2040
gctttttgtg ctgttttgtt gcttatacag ccctgccatt caagagaaca gggtgactac 2100
tgttcagtgc ttgtcgggca caggttcttt gagggttggg gctgaatttc tggctaagca 2160
ttatcatgaa gttagtattc cttgctctct ttccctttat atgtctaaat caaatggaca 2220
cttgtataag cttctactgt ttgttttgtt gccagcatac catatatata ccacagccaa 2280
catggggaaa ccatccgaag gttttcactt tagccgggct ttcagtaaaa tattaccgtt 2340
actacgaccc agcaacacga ggcctggatt tccaaggtac tactgtaatc actgttctta 2400
aagttctaca gttgtaagta agagccgatt tctctttttt atggacaagt gaactttctc 2460
ctggtcgtgt ctagaaagat ctatatttta tgtgtagcta gcacaggatc tttatttatt 2520
taattttgta ttctcttggt aaagatataa gcatagttta tctgtggctt ttcctgtatt 2580
tgggtgttgc atatcaaatt taatcatgaa ccctgtagga cttttggatg atcttgctgc 2640
tgcacccgct ggagcaatag ttcttctcca tgcatgtgct cataacccaa ctggcgttga 2700
tccaacaaat gaccagtggg agaaaatcag gcagttgatg aggtccaagg gcctgttgcc 2760
tttctttgac agtgcttacc aggtaaagct tatgatggga ttttgaattc aagtgatact 2820
tcgttaagaa tgattaccaa ataatttgaa gcgccaaact atgtattaat gggctgccca 2880
acggaccctt actataatga atatttttga tattgcaggg ttttgccagt ggcaacctag 2940
atgcagatgc acaatctgtt cgcatgtttg tggctgatgg tggtgaatgt cttgcagctc 3000
agagttatgc caaaaacatg ggactgtatg gggagcgtgt tggtgccctt agcattgtaa 3060
gtccttttgt cggttgtaat tgctttccct ttttagtaag cgataaaatt ggtggctgaa 3120
gaactatcca tggctatatc atgctatcta tgtctaaaga tgattttcct tgaaagcata 3180
attcaggtta tattccctag aaggctaaaa agaagttgtt ctgatggtac aatgaacaca 3240
gtctctagag atattgaaag ccaaattttt gaatatggct tcccctttga ttgtaattgg 3300
aaaacaaaga gaaggacaga gtggaattag taccggattg tatgtttagg aaaaagtgtc 3360
attttgtttg agttttatca gacagacact aaaagctgac taacagtaca ataaaatttt 3420
gtgttgtgtt ataggtttgc aaagacgcag atgttgcaag cagagtcgaa agccagctaa 3480
agctggttat caggccaatg tactctaatc caccaattca tggtgcgtct attgttgcta 3540
ctatactcaa ggacaggttt gtgcaactat ttacaagatt ctgttttgct gttagtagat 3600
gctatacctt ctacattttg atgtggtttc tcatctaatg gtgatagaca aatgtacgat 3660
gaatggacaa ttgagctgaa agcaatggcc gacaggatta ttagcatgcg ccaacaactc 3720
tttgatgcct tgcaagctcg aggtatttga tcttcatatt tgttctttct ggggaagcat 3780
actgtattct gtatgatggg tttgactgct actgcaatag gagctttttc ctgaaaagta 3840
ccatggtgaa acaaccacgg caactaaatc ttttgacttc attgttcagt ttagtgctaa 3900
tgtaagtttt attctgttat gcaggtacga caggtgattg gagtcatatc atcaagcaaa 3960
ttggaatgtt tactttcaca ggattaaata ctgagcaagt ttcattcatg actagagagc 4020
atcacattta catgacatct gatgggtaag gacatctgac tattgatatt ttttttattt 4080
gtttagtttg ttactttggg ttgctttttt ctcagtagaa acttaaataa ttggaactta 4140
gaagtccttc gttgattatt tcggcttgaa ttctttaata aggagaattt cagatttata 4200
gcttcagttt ggagaggaag cataaacaag tctgtcatcc atacttaaaa tttacagaaa 4260
aaagtgcagt tctgttttcc cccctcccag attagactaa ttcccaaaag aacttacctt 4320
caatctatgg aacatttagt attctggtat cagttgaaac atctctttgt tgaagttaag 4380
attttggtta aaaagatctt catctctagt aacattttct acattccatt tttagaagga 4440
atgattttct cctttctcat ttgcaggaga attagcatgg caggccttag ttctcgcaca 4500
attcctcatc ttgccgatgc catacatgct gctgttacca aagcggccta a 4551
<210> 10
<211> 446
<212> PRT
<213> 烟草
<400> 10
Met Ala Asn Ser Ser Asn Ser Val Phe Ala His Val Val Arg Ala Pro
1 5 10 15
Glu Asp Pro Ile Leu Gly Val Thr Val Ala Tyr Asn Lys Asp Thr Ser
20 25 30
Pro Val Lys Leu Asn Leu Gly Val Gly Ala Tyr Arg Thr Glu Glu Gly
35 40 45
Lys Pro Leu Val Leu Asn Val Val Arg Arg Ala Glu Gln Met Leu Val
50 55 60
Asn Asp Thr Ser Arg Val Lys Glu Tyr Leu Ser Ile Thr Gly Leu Ala
65 70 75 80
Asp Phe Asn Lys Leu Ser Ala Lys Leu Ile Phe Gly Ala Asp Ser Pro
85 90 95
Ala Ile Gln Glu Asn Arg Val Thr Thr Val Gln Cys Leu Ser Gly Thr
100 105 110
Gly Ser Leu Arg Val Gly Ala Glu Phe Leu Ala Lys His Tyr His Glu
115 120 125
His Thr Ile Tyr Ile Pro Gln Pro Thr Trp Gly Asn His Pro Lys Val
130 135 140
Phe Thr Leu Ala Gly Leu Ser Val Lys Tyr Tyr Arg Tyr Tyr Asp Pro
145 150 155 160
Ala Thr Arg Gly Leu Asp Phe Gln Gly Thr Thr Val Ile Thr Val Leu
165 170 175
Lys Val Leu Gln Leu Tyr Lys His Ser Leu Ser Val Ala Phe Pro Val
180 185 190
Phe Gly Cys Cys Ile Ser Asn Leu Ile Met Asn Pro Val Gly Leu Leu
195 200 205
Asp Asp Leu Ala Ala Ala Pro Ala Gly Ala Ile Val Leu Leu His Ala
210 215 220
Cys Ala His Asn Pro Thr Gly Val Asp Pro Thr Asn Asp Gln Trp Glu
225 230 235 240
Lys Ile Arg Gln Leu Met Arg Ser Lys Gly Leu Leu Pro Phe Phe Asp
245 250 255
Ser Ala Tyr Gln Gly Phe Ala Ser Gly Asn Leu Asp Ala Asp Ala Gln
260 265 270
Ser Val Arg Met Phe Val Ala Asp Gly Gly Glu Cys Leu Ala Ala Gln
275 280 285
Ser Tyr Ala Lys Asn Met Gly Leu Tyr Gly Glu Arg Val Gly Ala Leu
290 295 300
Ser Ile Val Cys Lys Asp Ala Asp Val Ala Ser Arg Val Glu Ser Gln
305 310 315 320
Leu Lys Leu Val Ile Arg Pro Met Tyr Ser Asn Pro Pro Ile His Gly
325 330 335
Ala Ser Ile Val Ala Thr Ile Leu Lys Asp Arg Gln Met Tyr Asp Glu
340 345 350
Trp Thr Ile Glu Leu Lys Ala Met Ala Asp Arg Ile Ile Ser Met Arg
355 360 365
Gln Gln Leu Phe Asp Ala Leu Gln Ala Arg Gly Thr Thr Gly Asp Trp
370 375 380
Ser His Ile Ile Lys Gln Ile Gly Met Phe Thr Phe Thr Gly Leu Asn
385 390 395 400
Thr Glu Gln Val Ser Phe Met Thr Arg Glu His His Ile Tyr Met Thr
405 410 415
Ser Asp Gly Arg Ile Ser Met Ala Gly Leu Ser Ser Arg Thr Ile Pro
420 425 430
His Leu Ala Asp Ala Ile His Ala Ala Val Thr Lys Ala Ala
435 440 445
<210> 11
<211> 4176
<212> DNA
<213> 烟草
<400> 11
atggcaaatt cctccaattc tgtttttgcc catgttgttc gtgctcctga agatcccatc 60
ttaggagtac ctccctttcc actctttcta ttttacattt ccactgaata tgtttcttct 120
gtggctcctt taataatctt ccgtaaatat attattagtg gatttgataa gctacttctc 180
tctctctctc tctctctctc tctctctctc tctctctctc tctctctctt ttattttctt 240
attttgggtt agattagaat gaacattaat taatgatcag atgattaggt taaaaatgat 300
atcttggaga tcggcataaa taagttgatt ggaatgatcg ctatagggtt acctattgta 360
tgcattggat catggatgtg tttactaatt atttaatacc tctttctttt tactgtgatc 420
tggcaattcc ttattttatt cctggtgtgg ttgatggaag ggtgtagatt tgattcttta 480
acttgctcta ttgagaagat aatttgttct tctcaagtgt ttagtaatgg tttttttcct 540
gttgtgctac ttcattaaaa caggtcacag ttgcttataa caaagatacc agcccggtga 600
agttgaattt gggtgttggc gcatatcgca ctgaggtctg ccacttctac tttgtctcgt 660
tattctttat tttttatttt ttattataac caaaataagt tgccccttga atggatttgg 720
tcctgctatg ttttgttgaa tccttggtta agtttttctt taataggctc cttcacaagg 780
atacaaaatt gtagacactg atgcatacac attaatattt tttttccctg atgcataatg 840
aagtgaaacc acttgatttt ataagtggtt gtttttttct tcaatcttga gttggatgtt 900
agtgttaagc ttgaaaatta tgttctacta atgcatagtc cgatgacaac ttgcaggaag 960
gaaagcccct tgttcttaat gtggtgagac gagctgaaca aatgctcgtc aatgacacgt 1020
aacttgccaa attagaaact agcttacaga ttttcttttg agatatgatc acctgatgcc 1080
atgattggaa tctaaggctg atatgatgca ggtctcgggt gaaggagtat ctctcaatta 1140
ctggactagc ggattttaac aaactgagtg caaagcttat atttggatct gacaggtttg 1200
gagaattttt ggtgcagttg ctcttgataa atgcttgaat caaaaatata aaaaaatgct 1260
cactatccat gtcgctccag ttaaacctat cttgccaaac cacttgtata aaagaaaatg 1320
agccttcaat attcttcctt ccatctagtt tgatatttga atgagagatt gttgctaaaa 1380
gggaatgctt tatctctaca aagtagagta actgaatacc tgttaaaaca tattcctccg 1440
tatttcatct tattatgatg ccttgcatca gaagaaaatt gttctagagt taactttctc 1500
tcctctttgt tgtactgact ttctgtgtaa ggtgaacgtg atatcaggaa atatgtgtct 1560
tctatcacta ttactccttg ttaagtcata tgtaagatat cagcagattt acttatcttt 1620
agatgtagtt taaatgcttt ttgtgctgtt ttgttgctga tacagccctg ccattcaaga 1680
gaacagggtg actactgttc agtgcttgtc gggcacaggt tctttgaggg ttggggctga 1740
gtttctggct aagcattatc atgaagttag tattccttgc tctctttccc tttatatgtc 1800
taaatcaaat ggacacttct ataagcttct actgtttgtt ttgttgccag catactatat 1860
atataccaca gccaacatgg ggaaaccatc cgaaggtttt cactttagct gggctttcag 1920
taaaatatta tcgttactac gacccagcaa cacgaggcct ggatttccaa ggtactactg 1980
taatcaatgt tcttaaagtt ctacagttgt aagtaagaac cgatttctct ttttcatgga 2040
caagtgaact tgctcctggt cgtgtctaga aagatctata tattatgtgt agctagcaca 2100
ggatctttat ttatttaatt ttgtattctg ttggtaaaga tataagcata gtttatctgt 2160
ggcttctcct gtatttgggt gttgcgtatc aaatttaatc atgaaccctg taggactttt 2220
ggatgatctt gctgctgcac ccgctggagt aatagttctt ctccatgcat gtgctcataa 2280
cccaactggc gttgatccaa caaatgacca gtgggagaaa atcaggcagt tgatgaggtc 2340
caaggggctg ttacctttct ttgacagtgc ttaccaggta aagcttatga tgggattttg 2400
aattcaagtg atacttcgtt aagaatgatt accaaataat ttgaagcccc aaactatgta 2460
ttaatgggct gctcaatgga cccctactat aatgaatatt tttgatattg cagggttttg 2520
ccactggcaa cctagatgca gatgcacaat ctgttcgcat gtttgtggct gatggtggtg 2580
aatgtcttgc agctcagagt tatgccaaaa acatgggact gtatggggag cgtgttggtg 2640
cccttagcat tgtaagtcct tttgtcggtt gtaattgctt tcccttttta ataagcaata 2700
aaattgcttt ccctttttaa taagcaatat agcatgatat ccatggctat atcatgctat 2760
ttatgtctaa agatgatttt ttctttggaa gcataattca ggttatattc cctaaaaggc 2820
taaaaagagg ttgttctgtt ggtacaatga acacagtctc tagagatatt gaaagccaat 2880
tttttgaaga tggcttccac ttagattgta attggaaaag aaagagaagg acaaagtgga 2940
attagtaccg gattgtatgt ttaggaaaaa gtgtcgtttt ttttgagttt tatcagacag 3000
gtactaaaag ctgactaaca ctacaataaa attttgtgtt gtgttatagg tttgcaaaga 3060
tgcagatgtt gcaagcagag tcgaaagcca gctaaagctg gttatcaggc caatgtactc 3120
taatccacca attcatggtg cgtctattgt tgctactata ctcaaggaca ggtttgtaca 3180
actatataca agattctgtt ttgttgttag tagatgctat accttctaca ttttgatgtg 3240
gttgctcatc taatggtgat agacaaatgt acgatgaatg gacaattgag ctgaaagcaa 3300
tggccgacag gattattagc atgcgccaac aactctttga tgccttgcaa gctcgaggta 3360
tctgatcttc atatttgttc tttctaggga agcatactgt attctgtatg atgggtttga 3420
ctgctactgc aataggaact ttttctggaa aagtgccagg gtgaaagaac cacggcaact 3480
aaatcttctg acttcattgt tcagtttagt gctaatgtaa gttttattct gttatgcagg 3540
tacagcaggt gattggagtc atatcatcaa acaaattggc atgtttactt tcacaggatt 3600
gaatactgag caagtttcat tcatgactag agagcatcac atttacatga catctgatgg 3660
gtaaggacat ctgactgttg atattttttt ttatttgttt agtttgttac tttgggttgc 3720
ttttttctca gtagaaactt aaataattgg aacttagaag cccttatcat tgattatttc 3780
ggcttgaatt ctttaataag gagaatttca gacttatagc ttcagttttg agaggaagca 3840
taaacaagtc cagctctgtc attcatactt aaaatttaca gaagaaagtg cagttctgtt 3900
tttcccccct cccaaattat attgattctc aaaagaactt accttcaatc tatggcacat 3960
ttagtaatct ggtatcagtt gaaacatctc tttgttgaag ttaagatttt ggttaaaaag 4020
atcatcatct ctagtgacat tttctacttt ccatttttag aaggaatgat tttctccttt 4080
ctcatttgca ggagaattag catggcaggc cttagttctc gcacaattcc tcatcttgcc 4140
gatgccatac atgctgctgt taccaaagcg gcctaa 4176
<210> 12
<211> 446
<212> PRT
<213> 烟草
<400> 12
Met Ala Asn Ser Ser Asn Ser Val Phe Ala His Val Val Arg Ala Pro
1 5 10 15
Glu Asp Pro Ile Leu Gly Val Thr Val Ala Tyr Asn Lys Asp Thr Ser
20 25 30
Pro Val Lys Leu Asn Leu Gly Val Gly Ala Tyr Arg Thr Glu Glu Gly
35 40 45
Lys Pro Leu Val Leu Asn Val Val Arg Arg Ala Glu Gln Met Leu Val
50 55 60
Asn Asp Thr Ser Arg Val Lys Glu Tyr Leu Ser Ile Thr Gly Leu Ala
65 70 75 80
Asp Phe Asn Lys Leu Ser Ala Lys Leu Ile Phe Gly Ser Asp Ser Pro
85 90 95
Ala Ile Gln Glu Asn Arg Val Thr Thr Val Gln Cys Leu Ser Gly Thr
100 105 110
Gly Ser Leu Arg Val Gly Ala Glu Phe Leu Ala Lys His Tyr His Glu
115 120 125
His Thr Ile Tyr Ile Pro Gln Pro Thr Trp Gly Asn His Pro Lys Val
130 135 140
Phe Thr Leu Ala Gly Leu Ser Val Lys Tyr Tyr Arg Tyr Tyr Asp Pro
145 150 155 160
Ala Thr Arg Gly Leu Asp Phe Gln Gly Thr Thr Val Ile Asn Val Leu
165 170 175
Lys Val Leu Gln Leu Tyr Lys His Ser Leu Ser Val Ala Ser Pro Val
180 185 190
Phe Gly Cys Cys Val Ser Asn Leu Ile Met Asn Pro Val Gly Leu Leu
195 200 205
Asp Asp Leu Ala Ala Ala Pro Ala Gly Val Ile Val Leu Leu His Ala
210 215 220
Cys Ala His Asn Pro Thr Gly Val Asp Pro Thr Asn Asp Gln Trp Glu
225 230 235 240
Lys Ile Arg Gln Leu Met Arg Ser Lys Gly Leu Leu Pro Phe Phe Asp
245 250 255
Ser Ala Tyr Gln Gly Phe Ala Thr Gly Asn Leu Asp Ala Asp Ala Gln
260 265 270
Ser Val Arg Met Phe Val Ala Asp Gly Gly Glu Cys Leu Ala Ala Gln
275 280 285
Ser Tyr Ala Lys Asn Met Gly Leu Tyr Gly Glu Arg Val Gly Ala Leu
290 295 300
Ser Ile Val Cys Lys Asp Ala Asp Val Ala Ser Arg Val Glu Ser Gln
305 310 315 320
Leu Lys Leu Val Ile Arg Pro Met Tyr Ser Asn Pro Pro Ile His Gly
325 330 335
Ala Ser Ile Val Ala Thr Ile Leu Lys Asp Arg Gln Met Tyr Asp Glu
340 345 350
Trp Thr Ile Glu Leu Lys Ala Met Ala Asp Arg Ile Ile Ser Met Arg
355 360 365
Gln Gln Leu Phe Asp Ala Leu Gln Ala Arg Gly Thr Ala Gly Asp Trp
370 375 380
Ser His Ile Ile Lys Gln Ile Gly Met Phe Thr Phe Thr Gly Leu Asn
385 390 395 400
Thr Glu Gln Val Ser Phe Met Thr Arg Glu His His Ile Tyr Met Thr
405 410 415
Ser Asp Gly Arg Ile Ser Met Ala Gly Leu Ser Ser Arg Thr Ile Pro
420 425 430
His Leu Ala Asp Ala Ile His Ala Ala Val Thr Lys Ala Ala
435 440 445
<210> 13
<211> 4857
<212> DNA
<213> 烟草
<400> 13
atggtttcca caatgttctc tctagcttct gccactccgt cagcttcatt ttccttgcaa 60
gataatctca aggtaatttc atcgtcaatt acattatttg gaaatttgcc ttatcttaga 120
ctattcctaa tgaggtggat tcatgctgtt gtttgtgttt gaacagtcaa agctaaagct 180
ggggactact agccaaagtg cctttttcgg gaaagacttc gtgaaggcaa aggtaggatt 240
tttgtgttgt ttgtgtacat ttggtgagag gtaatagctc tactgctata gagaaactcc 300
ctgtaggttc tgtcctttag agtatagaag agaaggaaag agtttaattg ggaataatgg 360
tggggatggg atgatttgca tacaattgaa catgtgtttc ttgctttggt atattatgat 420
ataggatgat ccaatcatgc tccgtaaatc aactccagaa cttattattc tttcggcact 480
tactaattat aaaaatcggg ttggagtcct gaaaataagt gattgcctaa ccaacttaca 540
gaactaattt tattatccgt atactcaaat caaaacgaca ttatgccagt actggtttct 600
tgagagggat gatattagtg tagaattatt tataaagttg cagtttaacg tagggtgttt 660
tactaaccag aaaggtgtag atgattccat tcagtttatt agatgctaag aagtataaca 720
gtgaggcctg tgaaacttct ggtagtacca acgattgggg ttttatggcg tttaggaatt 780
tagacattaa ttggcacatt ttagaacgaa aaatatgaca tttaacttac aacagttctt 840
ttctgaataa aatattacta gtaactaatt tgtttgaact ttgccattgc taaaatgtgg 900
ctcaagatct tcttggtact tctatttgta atatcagagt tataggggtc taattctagc 960
tcttgagtcg aaattgttat tagtaaagat aattctttct tgtccccctt cagtgctaac 1020
attctcatct tcacttatgg tattggttta taaaaaattg tgattcagat tataaagtaa 1080
aaaattatgc ctcagtttgt acagcatttt gggttatctg acgttcaatt caacagggtt 1140
ctttaatatc tatttttcta tcttttgtaa tcattgcaac accgagctgt ttaatgtgct 1200
caaaggctat tattagtcct cccactcacc agatccttag aaaaaagccc agaagagaaa 1260
ggcaaagaat acaagcccag accgattgct cgttttataa attttgggaa ttgggatctc 1320
ttttctcata ttcttacttt tttctctttc tttttttcca gtcaaatggc cgtactacta 1380
tgactgttgc tgtgaacgtc tctcgatttg agggaataac tatggctcct cctgacccca 1440
ttcttggagt ttctgaagca ttcaaggctg atacaaatga actgaagctt aaccttggtg 1500
ttggagctta ccgcacggag gagcttcaac catatgtcct caatgttgtt aagaaagtaa 1560
gttcttggtc tcttgtttat gctcaagtag tttgtaaact tttagtcact tggccttgtt 1620
cccatgggtg gatacccttg tccaagggga gtcaatttat tacactctgt aaataggtta 1680
attctttttt aaaatgtatg tatgtatgta tgtatgtatg tatgtataca cacacactat 1740
gttgaatcgc ccctggcttc ttctgtttac ttctatatat tttgtatcca atgggtgaaa 1800
attctggagt gactgcttgt tcctaagcgt tcatcattca ttaactgttt taataacctt 1860
ctataatttt gcatctgaat gatgaggaaa ttgcttttct gtaggcagaa aaccttatgc 1920
tagaaagagg agataacaaa gaggtacttg atttactaaa ttcatctttt ggccttgact 1980
agtgtcactt ggtgccaatt cttacttatt ttttaatcta tggatatata gtatcttcca 2040
atagaaggtt tggctgcatt caacaaagtc acagcagagt tattgtttgg agcagataac 2100
ccagtgattc agcaacaaag ggtaagtatt tttgttttta actcttagga aaatatatcc 2160
tggaacaaac atgtaaattt ggtctctatg gcctttgttg tgaacgacgt tgtacctttc 2220
gtgatcaggt ggctactatt caaggtctgt caggaactgg gtcattgcgt attgctgcag 2280
cactgataga gcgttacttc cctggctcta aggttttaat atcatctcca acctggggta 2340
cgtagatagt gcttttggat taatttggtt gaatctcatg atactgattt ttacagttat 2400
gttttgcagg aaatcataag aacattttca atgatgccag ggtgccttgg tctgaatatc 2460
gatattatga tcccaaaaca gttggcctgg attttgctgg gatgatagaa gatattaagg 2520
ttattatcgt cctcgcattt gtaatctttg tggttgaaat tgtaaagcag cagtgagcac 2580
tgtctttttc ctttctccac aagtcaattg atggtgcctt tgtttgtggc acgtgttttg 2640
actttcagta attgaaggag agatgcgttg ttcattctag aatagcactg tatctcccaa 2700
ttgcattttc tgtttcctgt tcttcctccc tatgtttgca ttgatccatg tctctgctaa 2760
acatggacaa tttgcgccct tggcaatgac atgtgtgttg cttgcttttc ttctctttct 2820
atttcttggt aggagtgact tggttctttc aatgtgagca gtcatatttc tgaaaatgaa 2880
aatcagagga acttgggatg tggaagggat tggcagaaca agtttgataa tgtaattttt 2940
cttgtgagga tggaatatgc aaaaataggc tgcacgcttg ccttttagat ctttggttcc 3000
tatgtcggtt gtgaatgtag atttctattt ttcaacattg tctcgcaagg aaaataggat 3060
tatccagtat tggatgtctt tcctatgttt gatatgtgta tgtgcagtct tgtttgaccg 3120
tcttgctctc ttcccacgtc taaaaagaga gtctgatggg aaagtttttt tccttccagt 3180
tcttgtgcaa gtcattgaca tagtttatgg cattacttgt ttataggctg ctcctgaagg 3240
atcatttatc ttgctccatg gctgtgcgca caacccaact ggtattgatc ccacaattga 3300
acaatgggaa aagattgctg atgtaattca ggagaagaac cacattccat tttttgatgt 3360
cgcctaccag gtaatctgtg ctaaacccaa ttatttcatt tggtgaagct gtaaaatttc 3420
aagtttctta gaagttttga tggttgtgtg tgcgtgtgaa gagaatgaat gatataggaa 3480
ttggttttga aatagtgaaa gatctctcgt atttcatttg ttcttttggt gtgaggagag 3540
tatacattgt tgttttgata gatgggcaaa ttcgatagat gaaggtggtt aagccacgtg 3600
ttactttgta attttttttt gacaccgtca tggtgtttat caataaaatt tactgatttt 3660
tcagtaaagt tattagaaca agataatctg aagtcatttc tattcagaga attgcattga 3720
atagctgtat actataataa tcgagatgcc tcatctgtct acacgctgcc ctacagggat 3780
ttgcaagcgg cagccttgac gaagatgcct catctgtgag attgtttgct gcacgtggca 3840
tggagctttt ggttgctcaa tcatatagta aaaatctggg tctgtatgga gaaaggattg 3900
gagctattaa tgttctttgc tcatccgctg atgcagcgac aaggtacagt cacccgcact 3960
agcaactaca taattgtcct ctgtatagga aaaatgatgc actggaaaac aatggttcca 4020
tatgaaatgc caattacgag atgctgtccc tttgctttga tattgtttac tacaattggt 4080
atctcccatc acctgagcct atggcttgat tggattttat gtgggcgaac caatagaatt 4140
atttgcttaa ttttctcaac taatggatgc atctctgcta actcacaggg tgaaaagcca 4200
gctaaaaagg cttgctcgac caatgtactc aaatccccca attcacggtg ctagaattgt 4260
tgccaatgtc gttggaattc ctgagttctt tgatgaatgg aaacaagaga tggaaatgat 4320
ggcaggaagg ataaagagtg tgagacagaa gctatacgat agcctctcca ccaaggataa 4380
gagtggaaag gactggtcat acattttgaa gcagattgga atgttctcct tcacaggcct 4440
caacaaagct caggtaaatc cccgtgattt aagctattgc ttcatcacaa tatgcttaaa 4500
ttcaatttga tcattcatcg caaagcacat tctgaactca gcacatattt tcattaacac 4560
attctttccg tcctttctga tcaattccat aagtccgata tgcaaaagat agtgcagtga 4620
gagtctctta ctggagtata actagattat cgacaatgca tacatttctt tccctgtacc 4680
tgcacttctg gtgctcatat ttgatctctc ttcttggcca cgcagagcga gaacatgacc 4740
aacaagtggc atgtgtacat gacaaaagac gggaggatat cgttggctgg attatcagct 4800
gctaaatgcg aatatcttgc agatgccata attgactcgt actacaatgt cagctaa 4857
<210> 14
<211> 462
<212> PRT
<213> 烟草
<400> 14
Met Val Ser Thr Met Phe Ser Leu Ala Ser Ala Thr Pro Ser Ala Ser
1 5 10 15
Phe Ser Leu Gln Asp Asn Leu Lys Ser Lys Leu Lys Leu Gly Thr Thr
20 25 30
Ser Gln Ser Ala Phe Phe Gly Lys Asp Phe Val Lys Ala Lys Ser Asn
35 40 45
Gly Arg Thr Thr Met Thr Val Ala Val Asn Val Ser Arg Phe Glu Gly
50 55 60
Ile Thr Met Ala Pro Pro Asp Pro Ile Leu Gly Val Ser Glu Ala Phe
65 70 75 80
Lys Ala Asp Thr Asn Glu Leu Lys Leu Asn Leu Gly Val Gly Ala Tyr
85 90 95
Arg Thr Glu Glu Leu Gln Pro Tyr Val Leu Asn Val Val Lys Lys Ala
100 105 110
Glu Asn Leu Met Leu Glu Arg Gly Asp Asn Lys Glu Tyr Leu Pro Ile
115 120 125
Glu Gly Leu Ala Ala Phe Asn Lys Val Thr Ala Glu Leu Leu Phe Gly
130 135 140
Ala Asp Asn Pro Val Ile Gln Gln Gln Arg Val Ala Thr Ile Gln Gly
145 150 155 160
Leu Ser Gly Thr Gly Ser Leu Arg Ile Ala Ala Ala Leu Ile Glu Arg
165 170 175
Tyr Phe Pro Gly Ser Lys Val Leu Ile Ser Ser Pro Thr Trp Gly Asn
180 185 190
His Lys Asn Ile Phe Asn Asp Ala Arg Val Pro Trp Ser Glu Tyr Arg
195 200 205
Tyr Tyr Asp Pro Lys Thr Val Gly Leu Asp Phe Ala Gly Met Ile Glu
210 215 220
Asp Ile Lys Ala Ala Pro Glu Gly Ser Phe Ile Leu Leu His Gly Cys
225 230 235 240
Ala His Asn Pro Thr Gly Ile Asp Pro Thr Ile Glu Gln Trp Glu Lys
245 250 255
Ile Ala Asp Val Ile Gln Glu Lys Asn His Ile Pro Phe Phe Asp Val
260 265 270
Ala Tyr Gln Gly Phe Ala Ser Gly Ser Leu Asp Glu Asp Ala Ser Ser
275 280 285
Val Arg Leu Phe Ala Ala Arg Gly Met Glu Leu Leu Val Ala Gln Ser
290 295 300
Tyr Ser Lys Asn Leu Gly Leu Tyr Gly Glu Arg Ile Gly Ala Ile Asn
305 310 315 320
Val Leu Cys Ser Ser Ala Asp Ala Ala Thr Arg Val Lys Ser Gln Leu
325 330 335
Lys Arg Leu Ala Arg Pro Met Tyr Ser Asn Pro Pro Ile His Gly Ala
340 345 350
Arg Ile Val Ala Asn Val Val Gly Ile Pro Glu Phe Phe Asp Glu Trp
355 360 365
Lys Gln Glu Met Glu Met Met Ala Gly Arg Ile Lys Ser Val Arg Gln
370 375 380
Lys Leu Tyr Asp Ser Leu Ser Thr Lys Asp Lys Ser Gly Lys Asp Trp
385 390 395 400
Ser Tyr Ile Leu Lys Gln Ile Gly Met Phe Ser Phe Thr Gly Leu Asn
405 410 415
Lys Ala Gln Ser Glu Asn Met Thr Asn Lys Trp His Val Tyr Met Thr
420 425 430
Lys Asp Gly Arg Ile Ser Leu Ala Gly Leu Ser Ala Ala Lys Cys Glu
435 440 445
Tyr Leu Ala Asp Ala Ile Ile Asp Ser Tyr Tyr Asn Val Ser
450 455 460
<210> 15
<211> 5206
<212> DNA
<213> 烟草
<220>
<221> misc_feature
<222> (4436)..(4436)
<223> n为a、c、g或t
<400> 15
atggcttcca caatgttctc tctagcttct gccgctccat cagcttcatt ttccttgcaa 60
gataatctca aggtaatttc attgtgaatt acattatttg gaaatttgcc ctatcttaga 120
ctgttcctaa tgaggtggat tcatgctgtt gtttgtgttt gaacagtcaa agctaaagct 180
ggggactact agccaaagtg cctttttcgg gaaagacttc gcgaaggcaa aggtaggatt 240
tttgtgttgt ttgtgtacat ttggtgagag gtaatagctc tactgatata gagcaactcc 300
ctgtaggttc tgtcctttag agtatagaag agaagagaag agtttaattg ggaataatgg 360
tggggatgga atgatttgca tacaaatgaa catgtgtttc ttgcttttgg tgtatgatat 420
aggatgatcc aatcatgctc cgtaaatcaa ctccagaact tattattctt tcggcacttc 480
taattataaa aatctggttg gagtaatgaa tataagtgat tacctaacca acttacagaa 540
ttgattttat tatccatata ctgaaattca aaaacggcgt tttgccagta ctggtttctt 600
gagagggatg atattaatat agaattattt tataaagttg cagtttaacg tagggtattt 660
tactaactag aaaggtgata gatggttccg ttcagtttat tagaagtata acagtgaggc 720
ctgttaaact tttgctagta tcaatgattg gggttttatg gcgtttagga atttagacat 780
caattggcac attttagaac gaaaaacatg acatttaagt tacatcagtt cttttctgaa 840
taaaatagta ctagtaaata acttgtttga actttgccat ttgctaaaat gtggctcaag 900
atcttcttgg tacttctatt tgtaatatca gagttatagg ggtctaattc taccactgtt 960
ttgagtcaaa atgttattag taaagataat tctttcttgt cccccttcag tgctaacatt 1020
ctcatcttca attatggtat tggtttataa aaaaattgtg cttcagatca ctttataaag 1080
caaaaattat gcctcagttt gtacagcatt ttgggtttta taacattcaa ttcaacaggg 1140
ctctttaata tctatgtttc tactttttgt aatctacatc gagctgttta atgtgctcaa 1200
aggctttaat tagtcctcct actcaccaga tccttagaaa aaagcccaga agagaaaggc 1260
aaagacaacg agctcggaca gattgctcaa tttatattgc aaaaagatcc aaaccctcgg 1320
ggagggagga gcatgaacca aagatgatac attgatatta ttttctaaat ttgggaattg 1380
tgatcttatc ttaaattttt acttttttct ctttttcttt ttttatagtc aaatggtcgg 1440
actactatgg ctgtttctgt gaacgtctct cgatttgagg gaataacaat ggctcctcct 1500
gaccccattc ttggagtttc tgaagcattc aaggctgata caaatgaact gaagcttaac 1560
cttggagttg gagcttaccg cacagaagat cttcaaccct atgtcctcaa tgttgttaaa 1620
aaagtaagtc ctcggtctct tgtttatgct caacgtagtt tgtaaactaa gagtcactta 1680
accttgttcc catgtgttcg tcattaaaca tagtaataac tttctatagt tttgcatctg 1740
aatgatgagg aaattacttt tctgtaggca gaaaacctta tgctagagag aggtgacaac 1800
aaagaggtac ttgatatact aaattcatct tttggcctat tagtgtctct tggtgccatt 1860
tcttacttat tttttgtcca tgaatatata gtatcttcca atagaaggtt tggctgcatt 1920
caacaaagtc acagcagagt tattgtttgg agcagataat ccagtgattc agcaacaaag 1980
ggtaagtatt ttggttttta actcttagca aaaaagtatc ctggaacaaa cttgtagatt 2040
cagtttccac ggattgaatg gcattgtatg tttcttgatc aggtggctac tattcaaggt 2100
ctatcaggaa ctgggtcatt gcgtattgct gcagcactga tagagcgtta cttccctggc 2160
tctaaggttt tgatatcatc tccaacctgg ggtacgtata tagtgctttg gattaatttg 2220
gttgaatctc ataatactga tttttgcagt tatgttttgc aggaaatcat aagaacattt 2280
tcaatgatgc cagggtgcct tggtctgaat atcgatatta tgatcccaaa acagttggtc 2340
tagattttgc tgggatgata gaagatataa aggttattat cttcctcact tttgtaatct 2400
ttgtggttga aattgtaaag cagcagtgag cagtgtcttt ttcctttctc cacaagtcca 2460
ttgatggtgc ctttgcatgt gggacatgct ttgactttca gtcgttgaag gagagatgcg 2520
ttattcattc taggatagca ttgtatctcc caaatgcttt ttctgtttcc tgctcttcct 2580
tcccattttt gcatcgatcc tgtctctgct aaacatggac aatttgcgcc cttggcaaat 2640
ggcaatgact tgtgtgttgc ttttcttctc tttctatttt ttggtaggag tgacttggtt 2700
ctttcagtgt gagcagtcat atttctgaaa atgaaaatca gaggaacttg gtgctcacac 2760
ttagagaaag tttgttatgt tttgggatgt gaaaggaatt gacagaacaa gtttgataat 2820
atattttttc ttgtgaggat ggaatatgct aaaaataggc tgcactcttt ccttttagat 2880
ctttagttcc tatgtcggtt gtgaatgtcg atttctattt tcaacatttt ctcacgaaga 2940
aaataggatt atccagtact ggatgtctct cctatgtctg atatatgtgt atgtgcagtc 3000
ttgtttgccc gccttgctct ctccccacgt ctaaaaacag agtctgatgg aaaaggcttt 3060
ttccttccag cttttgtgta agtcattgac atagtttaat gaaactactt gtttataggc 3120
tgctcctgaa ggatcattca tcttgctcca tggctgtgca cacaacccaa ctggtattga 3180
tcccacaatt gaacaatggg aaaagattgc tgatgtaatt caggagaaga accacattcc 3240
attttttgat gttgcctacc aggtaatctg tgctaaaccc aattattttc atttggtgaa 3300
gttgtagaat tccaagtttc ttagaagttt tgatggctgt gtgtgcgtgt gtgaaaagaa 3360
tgaaagatat aggagatggt ttcaaaatag tgaaagatct ctcgtatttc atttgtcttt 3420
tggtgtgtgg agactataca ttgttgtatt gatagatgag cgaatttgat tgatgttggt 3480
ggttaagcca catgtgttac tttgtccata tttttttaca ccgtcttggt ttttatcaat 3540
gaaatttact gatttttcag tgaaattatt agaacaagat catctgaagt catttctgtt 3600
cagagaattg gattgaatag ctgtatacta taataatcga gatgcctcat ctgtctacac 3660
gctgcactgc agggattcgc aagcggcagc cttgatgaag atgcctcatc tgtgagattg 3720
tttgctgcac gtggcatgga gcttttggtt gctcaatcat atagtaaaaa tctgggtctg 3780
tatggagaaa ggattggagc tattaatgtt ctttgctcat ctgctgatgc agcgacaagg 3840
tacaacggcc agcactaata atctacatat ttctcctctg tattggtaaa atgatgttgc 3900
actgaagatt ttggttaatg tatgatgcca tttatttatg ttatgcatgt gcagttcttt 3960
ccgtgtatga tttgttatac aatatagcaa gatgagatgc tttaatctcc tttggatttt 4020
atgtggttga accaatataa cttttcttct gttaatggat gcatatctac taacttacag 4080
ggtgaaaagc cagctaaaaa ggcttgctcg accaatgtac tcaaatcccc ccattcacgg 4140
tgctagaatt gttgccaatg tcgttggaat tcctgagttc tttgatgaat ggaaacaaga 4200
gatggaaatg atggcaggaa ggataaagag tgtgagacag aagctatatg atagcctctc 4260
cgccaaggat aaaagtggaa aggactggtc atacattctg aagcagattg gaatgttctc 4320
cttcacaggc ctcaacaaag ctcaggtaaa accccgtgaa ttaagttatt gctgttgcgg 4380
aagccaaata tatagagagt gattaaatca caactactat atctaaaggt agctangtaa 4440
atgagacaat aataaaatga acaccagaaa ttaatgaggt tcggcaaaat ttgatttttt 4500
gcctagttct cggacacaat caactcaaat ttatttcact ccaaaaatac aaatgaaata 4560
ctacaagaga gaaagaagat tcaaatgcct taggaaataa gaaggcaagt gagagatgtt 4620
tacaaatgaa caaaatcctt gctatttata gaagagaaat ggccttaata atgtcatgca 4680
tgacatcata ttaagtgtga acatgtaatg taaatgcacg aaaaatgcat ctaccaattt 4740
cttaaggctt caaatgttca cactagttca cattaatctt gtcaaaattc aacaattgct 4800
gcatcacaat atgcttaaat tcaatttgat ttggttgaca actttctagc tttgatcatt 4860
catcacaaag cgcattcttc actcagcacg tatttttatt aagacattct ttccttccat 4920
tctgaccgat ttcataagtt aaatatgcaa aagatagtgc agtgagagtc tccttactgg 4980
attataacta tggactaaag ttaaatgcat acatttcttt ccctgtactt gcacttctcg 5040
tgctcatatt tgatatctct tcttggctac acagagcgag aacatgacca acaagtggca 5100
tgtgtacatg acaaaagacg ggaggatatc gttggctgga ttatctgctg ccaaatgtga 5160
atatcttgca gatgccataa ttgactcata ctacaatgtc agctaa 5206
<210> 16
<211> 462
<212> PRT
<213> 烟草
<400> 16
Met Ala Ser Thr Met Phe Ser Leu Ala Ser Ala Ala Pro Ser Ala Ser
1 5 10 15
Phe Ser Leu Gln Asp Asn Leu Lys Ser Lys Leu Lys Leu Gly Thr Thr
20 25 30
Ser Gln Ser Ala Phe Phe Gly Lys Asp Phe Ala Lys Ala Lys Ser Asn
35 40 45
Gly Arg Thr Thr Met Ala Val Ser Val Asn Val Ser Arg Phe Glu Gly
50 55 60
Ile Thr Met Ala Pro Pro Asp Pro Ile Leu Gly Val Ser Glu Ala Phe
65 70 75 80
Lys Ala Asp Thr Asn Glu Leu Lys Leu Asn Leu Gly Val Gly Ala Tyr
85 90 95
Arg Thr Glu Asp Leu Gln Pro Tyr Val Leu Asn Val Val Lys Lys Ala
100 105 110
Glu Asn Leu Met Leu Glu Arg Gly Asp Asn Lys Glu Tyr Leu Pro Ile
115 120 125
Glu Gly Leu Ala Ala Phe Asn Lys Val Thr Ala Glu Leu Leu Phe Gly
130 135 140
Ala Asp Asn Pro Val Ile Gln Gln Gln Arg Val Ala Thr Ile Gln Gly
145 150 155 160
Leu Ser Gly Thr Gly Ser Leu Arg Ile Ala Ala Ala Leu Ile Glu Arg
165 170 175
Tyr Phe Pro Gly Ser Lys Val Leu Ile Ser Ser Pro Thr Trp Gly Asn
180 185 190
His Lys Asn Ile Phe Asn Asp Ala Arg Val Pro Trp Ser Glu Tyr Arg
195 200 205
Tyr Tyr Asp Pro Lys Thr Val Gly Leu Asp Phe Ala Gly Met Ile Glu
210 215 220
Asp Ile Lys Ala Ala Pro Glu Gly Ser Phe Ile Leu Leu His Gly Cys
225 230 235 240
Ala His Asn Pro Thr Gly Ile Asp Pro Thr Ile Glu Gln Trp Glu Lys
245 250 255
Ile Ala Asp Val Ile Gln Glu Lys Asn His Ile Pro Phe Phe Asp Val
260 265 270
Ala Tyr Gln Gly Phe Ala Ser Gly Ser Leu Asp Glu Asp Ala Ser Ser
275 280 285
Val Arg Leu Phe Ala Ala Arg Gly Met Glu Leu Leu Val Ala Gln Ser
290 295 300
Tyr Ser Lys Asn Leu Gly Leu Tyr Gly Glu Arg Ile Gly Ala Ile Asn
305 310 315 320
Val Leu Cys Ser Ser Ala Asp Ala Ala Thr Arg Val Lys Ser Gln Leu
325 330 335
Lys Arg Leu Ala Arg Pro Met Tyr Ser Asn Pro Pro Ile His Gly Ala
340 345 350
Arg Ile Val Ala Asn Val Val Gly Ile Pro Glu Phe Phe Asp Glu Trp
355 360 365
Lys Gln Glu Met Glu Met Met Ala Gly Arg Ile Lys Ser Val Arg Gln
370 375 380
Lys Leu Tyr Asp Ser Leu Ser Ala Lys Asp Lys Ser Gly Lys Asp Trp
385 390 395 400
Ser Tyr Ile Leu Lys Gln Ile Gly Met Phe Ser Phe Thr Gly Leu Asn
405 410 415
Lys Ala Gln Ser Glu Asn Met Thr Asn Lys Trp His Val Tyr Met Thr
420 425 430
Lys Asp Gly Arg Ile Ser Leu Ala Gly Leu Ser Ala Ala Lys Cys Glu
435 440 445
Tyr Leu Ala Asp Ala Ile Ile Asp Ser Tyr Tyr Asn Val Ser
450 455 460
<210> 17
<211> 101
<212> DNA
<213> 人工序列
<220>
<223> 用于生成AAT2S/T RNAi植物的核苷酸序列
<400> 17
gctattcaag agaacagagt aacaactgtg cagtgcttgt ctggcacagg ctcattgagg 60
gttggagctg aatttttggc tcgacattat catcaacgca c 101

Claims (12)

1.一种植物细胞,包含:
(i)多核苷酸,所述多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15具有至少80%的序列同一性的序列,由其组成或基本上由其组成;
(ii)多肽,所述多肽由(i)中所示的所述多核苷酸编码;
(iii)多肽,所述多肽包含与SEQ ID NO:6或SEQ ID NO:8具有至少95%的序列同一性、与SEQ ID NO:2或SEQ ID NO:10或SEQ ID NO:12具有至少93%的序列同一性、或与SEQ IDNO:4或SEQ ID NO:14或SEQ ID NO:16具有至少94%的序列同一性的序列,由其组成或基本上由其组成;或者
(iv)构建体、载体或表达载体,其包含(i)中所示的经分离的多核苷酸,
其中与所述多核苷酸或多肽的表达或活性未被修饰的对照植物细胞相比,所述植物细胞包含至少一种修饰,所述至少一种修饰调节所述多核苷酸或所述多肽的表达或活性。
2.根据权利要求1所述的植物细胞,其中所述植物细胞包含多核苷酸,所述多核苷酸包含与SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:1或SEQ ID NO:3具有至少80%的序列同一性的序列,由其组成或基本上由其组成,合适地,其中所述植物细胞包含多核苷酸,所述多核苷酸包含与SEQ ID NO:1或SEQ ID NO:3具有至少80%的序列同一性的序列,由其组成或基本上由其组成;或者
其中所述植物细胞包含多肽,所述多肽包含与SEQ ID NO:6或SEQ ID NO:8具有至少95%的序列同一性或与SEQ ID NO:2具有至少93%的序列同一性或与SEQ ID NO:4具有至少94%的序列同一性的序列,由其组成或基本上由其组成,合适地,其中所述植物细胞包含多肽,所述多肽包含与SEQ ID NO:2具有至少93%的序列同一性或与SEQ ID NO:4具有至少94%的序列同一性的序列,由其组成或基本上由其组成。
3.根据前述权利要求中任一项所述的植物细胞,其中所述至少一种修饰是所述植物细胞基因组的修饰,或者是所述构建体、载体或表达载体的修饰,或者是转基因修饰;优选地,
其中所述植物细胞基因组的所述修饰或所述构建体、载体或表达载体的所述修饰是突变或编辑。
4.根据任一项前述权利要求所述的植物细胞,其中与所述对照植物细胞相比,所述修饰降低所述多核苷酸或所述多肽的表达或活性;优选地,
其中所述植物细胞包含干扰多核苷酸,所述干扰多核苷酸包含与从根据权利要求1(i)所述的多核苷酸转录的RNA的至少19个核苷酸至少80%互补的序列。
5.根据前述权利要求中任一项所述的植物细胞,其中与来源于对照植物的干制或干燥叶子中的氨基酸水平相比,所述多核苷酸或所述多肽的经调节的表达或活性调节来源于所述植物细胞的干制或干燥叶子中的氨基酸水平,合适地其中所述氨基酸是天冬氨酸或来源于所述天冬氨酸的代谢物;和/或
其中来自所述植物细胞的干制或干燥叶子中的尼古丁水平与对照植物细胞的干制或干燥叶子中的尼古丁水平基本上相同;和/或
其中与来源于对照植物的干制或干燥叶子中的丙烯酰胺水平相比,来源于所述植物细胞的干制或干燥叶子中的丙烯酰胺水平降低;和/或
其中与来源于对照植物的干制或干燥叶子中的氨基酸水平相比,来源于所述植物细胞的干制或干燥叶子中的氨水平降低。
6.一种植物或其部分,包含根据任一项前述权利要求所述的植物细胞;优选地,
其中与对照植物或其部分相比,在所述植物的至少一部分中天冬氨酸或来源于所述天冬氨酸的代谢物和/或氨的量被改变。
7.一种植物材料、干制植物材料或均质植物材料,来源于根据权利要求6所述的植物或其部分,优选地,
其中所述干制植物材料是晾干或晒干或烟道干制的植物材料;优选地,
其中所述植物材料、干制植物材料或均质植物材料包含来自根据权利要求6所述的植物或其部分的生物质、种子、茎、花或叶子。
8.一种烟草产品,包含根据权利要求1至5中任一项所述的植物细胞、根据权利要求6所述的植物的一部分或根据权利要求7所述的植物材料。
9.一种用于产生根据权利要求6所述的植物的方法,包括以下步骤:
(a)提供植物细胞,所述植物细胞包含多核苷酸,所述多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13或SEQ ID NO:15具有至少80%的序列同一性的序列,由其组成或基本上由其组成;
(b)与对照植物细胞相比,修饰所述植物细胞以调节所述多核苷酸的表达;以及
(c)将所述植物细胞繁殖到植物中。
10.根据权利要求16所述的方法,其中步骤(c)包括从包含所述植物细胞的插条或幼苗培养所述植物;和/或
其中修饰所述植物细胞的步骤包括通过基因组编辑或基因组工程修饰所述细胞的所述基因组;优选地,
其中所述基因组编辑或基因组工程选自CRISPR/Cas技术、锌指核酸酶介导的诱变、化学或放射诱变、同源重组、寡核苷酸定向诱变和大范围核酸酶介导的诱变。
11.根据权利要求9或权利要求10所述的方法,其中修饰所述植物细胞的步骤包括用构建体转染所述细胞,所述构建体包含可操作地连接到组成型启动子的多核苷酸,所述多核苷酸包含与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ IDNO:11、SEQ ID NO:13或SEQ ID NO:15具有至少80%的序列同一性的序列,由其组成或基本上由其组成;和/或
其中修饰所述植物细胞的步骤包括将干扰多核苷酸引入细胞中,所述干扰多核苷酸包含与从根据权利要求1(i)所述的多核苷酸转录的RNA至少80%互补的序列;优选地,
其中所述植物细胞用表达干扰多核苷酸的构建体转染,所述干扰多核苷酸包含与从根据权利要求1(i)所述的多核苷酸转录的RNA的至少19个核苷酸至少80%互补的序列。
12.一种用于制备干制植物材料的方法,与对照植物材料相比,所述干制植物材料具有改变量的天冬氨酸或来源于所述天冬氨酸的代谢物或改变量的氨,所述方法包括以下步骤:
(a)提供根据权利要求6所述的植物或其部分或根据权利要求7所述的植物材料;
(b)任选地自其收获所述植物材料;及
(c)干制所述植物材料;优选地,
其中所述植物材料包括干制叶子、干制茎或干制花或它们的混合物;和/或
其中所述干制方法选自由晾干、火烤干制、烟熏干制和烟道干制组成的组。
CN201980016695.3A 2018-03-28 2019-03-27 调节植物中的氨基酸含量 Pending CN111801423A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18164766.0 2018-03-28
EP18164766 2018-03-28
PCT/EP2019/057707 WO2019185703A1 (en) 2018-03-28 2019-03-27 Modulating amino acid content in a plant

Publications (1)

Publication Number Publication Date
CN111801423A true CN111801423A (zh) 2020-10-20

Family

ID=61837593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980016695.3A Pending CN111801423A (zh) 2018-03-28 2019-03-27 调节植物中的氨基酸含量

Country Status (8)

Country Link
US (1) US20210115461A1 (zh)
EP (1) EP3775224A1 (zh)
JP (1) JP7463284B2 (zh)
KR (1) KR20200136921A (zh)
CN (1) CN111801423A (zh)
AR (1) AR115022A1 (zh)
BR (1) BR112020017500A2 (zh)
WO (1) WO2019185703A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004763B (zh) * 2019-12-26 2022-06-03 中国科学院青岛生物能源与过程研究所 一种生产β-石竹烯的工程菌及其构建方法与应用
BR112022013529A2 (pt) * 2020-01-08 2022-09-06 Univ North Carolina State Abordagem genética para alcançar um teor ultrabaixo de nicotina no tabaco
WO2024160860A1 (en) 2023-02-02 2024-08-08 Philip Morris Products S.A. Modulation of genes coding for lysine ketoglutarate reductase
WO2024160864A1 (en) 2023-02-02 2024-08-08 Philip Morris Products S.A. Modulation of sugar transporters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090123626A1 (en) * 2007-09-28 2009-05-14 J.R. Simplot Company Reduced acrylamide plants and foods
WO2010034681A1 (en) * 2008-09-24 2010-04-01 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1327692A (en) * 1919-05-08 1920-01-13 Ernest G Beinhart Process of curing tobacco
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
US5879918A (en) 1989-05-12 1999-03-09 Pioneer Hi-Bred International, Inc. Pretreatment of microprojectiles prior to using in a particle gun
US5932782A (en) 1990-11-14 1999-08-03 Pioneer Hi-Bred International, Inc. Plant transformation method using agrobacterium species adhered to microprojectiles
AU670316B2 (en) 1992-07-27 1996-07-11 Pioneer Hi-Bred International, Inc. An improved method of (agrobacterium)-mediated transformation of cultured soybean cells
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
WO2006091194A1 (en) 2005-02-23 2006-08-31 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome p450 genes
BRPI0717355B1 (pt) 2006-10-13 2018-01-16 North Carolina State University Método para obtenção de uma planta transgênica de nicotina, método para obtenção de uma semente; construto de ácido nucléico recombinante; método de redução da conversão de nicotina em nornicotina em uma planta de nicotina
EP2573177B1 (en) 2007-11-12 2022-12-28 North Carolina State University Alteration of tobacco alkaloid content through modification of specific cytochrome P450 genes
EP2231861B1 (en) 2007-12-13 2014-10-29 Philip Morris Products S.A. Transgenic plants modified for reduced cadmium transport, derivative products, and related methods
AR080636A1 (es) 2010-01-15 2012-04-25 Univ North Carolina State Composiciones y metodos para minimizar la sintesis de nornicotina en tabaco
CA2794037A1 (en) 2010-03-22 2011-09-29 Philip Morris Products S.A. Modifying enzyme activity in plants
JP6388474B2 (ja) 2010-09-03 2018-09-12 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 植物中の重金属の削減
EP2565265A1 (en) 2011-09-02 2013-03-06 Philip Morris Products S.A. Isopropylmalate synthase from Nicotiana tabacum and methods and uses thereof
EP2565271A1 (en) 2011-09-02 2013-03-06 Philip Morris Products S.A. Threonine synthase from Nicotiana tabacum and methods and uses thereof
CA2853320A1 (en) 2011-10-31 2013-05-10 Philip Morris Products S.A. Modulating beta-damascenone in plants
US9485953B2 (en) * 2012-07-19 2016-11-08 R.J. Reynolds Tobacco Company Method for treating tobacco plants with enzymes
US10563215B2 (en) 2012-12-21 2020-02-18 Philip Morris Products S.A. Tobacco specific nitrosamine reduction in plants
CA2944965A1 (en) 2014-05-08 2015-11-12 Philip Morris Products S.A. Reduction of nicotine to nornicotine conversion in plants
US11584936B2 (en) 2014-06-12 2023-02-21 King Abdullah University Of Science And Technology Targeted viral-mediated plant genome editing using CRISPR /Cas9
BR112016029591A2 (pt) 2014-06-25 2017-10-24 Philip Morris Products Sa modulação do teor de nitrato em plantas
US11666082B2 (en) 2014-09-26 2023-06-06 Philip Morris Products S.A. Reducing tobacco specific nitrosamines through alteration of the nitrate assimilation pathway
AU2016318423B2 (en) 2015-09-09 2022-01-20 Philip Morris Products S.A. Plants with reduced asparagine content
KR20180107123A (ko) 2016-01-29 2018-10-01 필립모리스 프로덕츠 에스.에이. 경지 재배된 담배 식물에서의 카드뮴 축적 감소
EP3597744A4 (en) * 2017-03-16 2021-01-20 Japan Tobacco Inc. TOBACCO PLAN AND ITS PRODUCTION PROCESS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090123626A1 (en) * 2007-09-28 2009-05-14 J.R. Simplot Company Reduced acrylamide plants and foods
WO2010034681A1 (en) * 2008-09-24 2010-04-01 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
无: "登录号:XM_009785460", GENBANK *

Also Published As

Publication number Publication date
EP3775224A1 (en) 2021-02-17
BR112020017500A2 (pt) 2020-12-22
WO2019185703A1 (en) 2019-10-03
JP7463284B2 (ja) 2024-04-08
US20210115461A1 (en) 2021-04-22
AR115022A1 (es) 2020-11-18
RU2020135059A (ru) 2022-04-28
KR20200136921A (ko) 2020-12-08
JP2021519098A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6871158B2 (ja) 植物体におけるニコチンからノルニコチンへの変換の低減
US10883114B2 (en) Plants with reduced asparagine content
JP6225108B2 (ja) ニコチアナ・タバカムからのトレオニン合成酵素ならびにその方法および使用
CN109996879B (zh) 具有缩短的到开花时间的植物
JP6302407B2 (ja) 植物におけるβ−ダマセノンの調節
EP3169149B1 (en) Tobacco protease genes
JP2018186820A (ja) ニコチアナ・タバカムからのイソプロピルリンゴ酸シンターゼならびにその方法および使用
JP2016508032A (ja) 植物体中のたばこ特異的ニトロソアミンの低減
EP3480314A1 (en) Regulation of alkaloid content
JP7463284B2 (ja) 植物におけるアミノ酸含有量の調節
JP2017520249A (ja) 植物体中の硝酸塩含有量の調節
US11591609B2 (en) Modulating reducing sugar content in a plant
WO2023117701A1 (en) Modulation of nicotine production by alteration of nicotinamidase expression or function in plants
RU2799785C2 (ru) Модулирование содержания аминокислот в растении
RU2801948C2 (ru) Модулирование содержания редуцирующих сахаров в растении
RU2792235C2 (ru) Растения с сокращенным периодом времени до наступления цветения
WO2024079137A1 (en) Increasing leaf biomass and nitrogen use efficiency by regulating ntp2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination