CN111800173A - Fmcw雷达与通信系统的集成 - Google Patents

Fmcw雷达与通信系统的集成 Download PDF

Info

Publication number
CN111800173A
CN111800173A CN202010266769.3A CN202010266769A CN111800173A CN 111800173 A CN111800173 A CN 111800173A CN 202010266769 A CN202010266769 A CN 202010266769A CN 111800173 A CN111800173 A CN 111800173A
Authority
CN
China
Prior art keywords
millimeter
wave system
radar
communication
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010266769.3A
Other languages
English (en)
Other versions
CN111800173B (zh
Inventor
I·斯威尔克
A·巴赫蒂
A·桑特拉
S·维霍维克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN111800173A publication Critical patent/CN111800173A/zh
Application granted granted Critical
Publication of CN111800173B publication Critical patent/CN111800173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. P.S.K. signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4454Monopulse radar, i.e. simultaneous lobing phase comparisons monopulse, i.e. comparing the echo signals received by an interferometric antenna arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4463Monopulse radar, i.e. simultaneous lobing using phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • G01S7/025Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects involving the transmission of linearly polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • G01S2013/0254Active array antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9316Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及FMCW雷达与通信系统的集成。在一个实施例中,一种毫米波系统包括具有M个信道的第一电路、耦合到第一电路的一个或多个天线、以及包括资源调度器模块的控制器。控制器被配置为基于资源调度器模块的输出来将毫米波系统作为雷达设备和作为通信设备进行操作。

Description

FMCW雷达与通信系统的集成
技术领域
本发明总体上涉及一种电子系统和方法,并且在特定实施例中涉及一种调频连续波(FMCW)雷达与通信系统的集成。
背景技术
在过去几年中,由于低成本半导体技术(诸如硅锗(SiGe)和精细几何形状互补金属氧化物半导体CMOS)工艺)的飞速发展,毫米波(mmWave)频率领域的应用引起了人们极大的兴趣。高速双极和金属氧化物半导体(MOS)晶体管的可用性导致对24GHz、60GHz、77GHz和80GHz以及超过100GHz的毫米波应用的集成电路的需求不断增长。这样的应用包括例如汽车雷达系统和多千兆位通信系统。
在一些雷达系统中,雷达与目标之间的距离是通过以下方式来确定的:发射调频信号,接收调频信号的反射(也称为回波),并且基于调频信号的发射与接收之间的时间延迟和/或频率差来确定距离。因此,一些雷达系统包括:用于发射射频(RF)信号的发射天线、用于接收反射的RF信号的接收天线、以及用于生成发射信号和用于接收RF信号的相关联的RF电路系统。在一些情况下,可以使用相控阵技术来将多个天线用于实现定向波束。具有多个芯片组的多输入多输出(MIMO)配置也可以用于执行相干和非相干信号处理。
发明内容
根据一个实施例,一种毫米波系统包括具有M个信道的第一电路、耦合到第一电路的一个或多个天线、以及包括资源调度器模块的控制器。控制器被配置为基于资源调度器模块的输出来将毫米波系统作为雷达设备和作为通信设备进行操作。
根据一个实施例,一种毫米波系统包括第一电路和控制器,第一电路具有被配置为耦合到天线阵列的多个射频(RF)信道。第一电路被配置为通过天线阵列发射和接收RF信号。控制器被配置为使用第一电路执行雷达操作和通信操作。控制器可操作以基于调度器模块的输出来将毫米波系统动态地重新配置为在执行雷达操作与执行通信操作之间进行多路复用。
根据一个实施例,一种操作毫米波系统的方法包括:接收雷达请求;接收通信请求;基于雷达请求和通信请求将毫米波系统的硬件资源分配用于雷达操作和用于通信操作;利用被分配用于雷达操作的毫米波系统的硬件资源执行雷达操作;以及利用被分配用于通信操作的毫米波系统的硬件资源执行通信操作。
附图说明
为了更完整地理解本发明及其优点,现在参考以下结合附图给出的描述,在附图中:
图1示出了根据本发明的实施例的可配置毫米波系统的示意图;
图2A示出了根据本发明的实施例的图1的毫米波系统的RFIC的布置;
图2B、图2C、图2D和图2E示出了根据本发明的实施例的同时作为雷达设备和通信设备进行操作的图2A的毫米波系统;
图2F和图2G示出了根据本发明的实施例的顺序地作为雷达设备和通信设备进行操作的图2A的毫米波系统;
图3A示出了根据本发明的实施例的毫米波系统的示意图;
图3B和图3C示出了根据本发明的实施例的FMCW雷达操作与5G通信操作之间的转换;
图4示出了根据本发明的实施例的图3的毫米波系统的控制器的架构的一部分的示意图;
图5示出了根据本发明的实施例的重新配置图3A的毫米波雷达的实施例方法;
图6示出了根据本发明的实施例的作为雷达系统进行操作的图3A的毫米波系统;
图7示出了根据本发明的实施例的街道级基站;
图8A-图8D示出了根据本发明的实施例的无人机系统;以及
图9A-图9C示出了根据本发明的实施例的自主车辆系统。
除非另外指出,否则不同附图中的相应数字和符号通常指代相应的部分。绘制附图以清楚地示出优选实施例的相关方面,而不一定按比例绘制。
具体实施方式
下面详细讨论所公开的实施例的制造和使用。然而,应当理解,本发明提供了可以在各种各样的特定上下文中体现的很多可应用的发明构思。所讨论的特定实施例仅说明制造和使用本发明的特定方式,而不限制本发明的范围。
以下描述示出了各种具体细节以提供对根据本说明书的几个示例实施例的深入理解。实施例可以在没有一个或多个特定细节的情况下或者通过其他方法、组件、材料等获取。在其他情况下,未示出或详细描述已知的结构、材料或操作,以免混淆实施例的不同方面。在本说明书中对“一个实施例”的引用指示关于该实施例描述的特定配置、结构或特征被包括在至少一个实施例中。因此,可能出现在本说明书的不同位置的诸如“在一个实施例中”等短语不一定准确地指代相同的实施例。此外,在一个或多个实施例中,特定的形式、结构或特征可以以任何适当的方式进行组合。
将在特定上下文中关于实施例来描述本发明,毫米波系统作为FMCW雷达和作为5G通信系统进行操作。本发明的实施例可以与其他频率范围以及不同的硬件实现一起使用。
在本发明的一个实施例中,一种毫米波系统可配置为作为毫米波通信设备和/或毫米波雷达设备进行操作。在一些实施例中,毫米波系统可以同时作为通信设备和作为雷达设备进行操作。在一些实施例中,在特定的毫米波频段中建立通信链路(例如,由特定的5G标准或预标准建立),并且在(多个)相邻的工业、科学和医学(ISM)频段中执行雷达操作。在相邻的ISM频段中执行雷达功能有利地引入了频率上的分离,该频率分离允许同时执行雷达功能和通信功能,而不会由于雷达与通信辐射之间的干扰而导致雷达或通信操作的性能显著恶化。一些实施例还可以使用空间分离(例如,通过将雷达波束和通信波束引导向不同的方向)和/或时间分离(例如,通过将毫米波系统在不同的时间作为通信设备和作为雷达设备进行操作,诸如通过使用时分复用或时分双工)。
图1示出了根据本发明的实施例的可配置毫米波系统100的示意图。毫米波系统100包括L个调制器/解调器(调制解调器)102、L个变频器104、L个波束形成器电路110,其中每个波束形成器电路110包括M个波束形成信道,并且向N个天线116馈电,其中L可以为1或更大,M可以为1或更大,并且N可以为L乘以M。毫米波系统100可以作为用于发射和/或接收信息的5G通信系统进行操作,和/或作为雷达系统进行操作。如图1所示,调制解调器102、变频器104和波束形成器电路110是双向电路(例如,I/O代表输入/输出)。
在作为5G通信系统的正常操作期间,可配置毫米波系统100可以发射或接收信息。为了发射信息,可配置毫米波系统100例如从控制器120或从另一电路或设备经由I/O端子接收要发射的信息。(多个)调制解调器102对要发射的信息进行调制以生成(多个)中频(IF)信号。使用(多个)变频器104将(多个)IF信号上变频为毫米波范围内的(多个)RF信号。然后将(多个)RF信号馈送通过(多个)波束形成器电路110并且通过(多个)天线116进行发射。
在一些实施例中,经由I/O端子接收的要发射的信息是数字的。在这样的实施例中,基带到IF的转换可以以数字方式进行,并且数模转换器(DAC)可以被用来生成(多个)IF信号。在其他实施例中,经由I/O端子接收的要发射的信息是模拟的。在这样的实施例中,由调制解调器102使用正交(IQ)调制器/解调器来调制模拟基带信号。
为了接收信息,可配置毫米波系统100经由(多个)天线116和(多个)波束形成器电路110接收(多个)RF信号。使用(多个)变频器104将所接收的(多个)RF信号下变频为(多个)IF信号。然后,使用(多个)调制解调器102对(多个)IF信号进行解调,并且将其发送到例如控制器120或另一电路或设备以进行进一步的通信处理。
在一些实施例中,进一步的通信处理包括对分组进行解包(例如,从一个或多个通信帧中提取信息),处理控制帧,确定通信链路质量和强度,以及其他已知的通信处理。在一些实施例中,通信处理还包括使用已知技术来确定用户设备(UE)的位置,诸如通过使用例如功率强度(通常称为接收信号强度或RSS)、飞行时间(ToF)和到达角(AoA)。在一些实施例中,通信处理还包括例如当UE移动时以本领域已知的方式从波束到波束以及从基站到基站的通信链路的越区切换(hand-off)。在一些实施例中,可配置毫米波系统100可以例如基于经由接收到的分组接收的信息来调节(多个)波束形成电路110,例如以修改波束的形状和方向。
当作为通信系统进行操作时,可配置毫米波系统100可以例如根据5G标准或预标准(诸如5G标准版本15(5G NR标准)、5GTF和5G-SIG)和计划于2019年12月发布的未来版本(诸如5G标准版本16)发射和接收分组。本领域技术人员将认识到,除了本公开中提到的标准和预标准,本文中公开的教导也适用于毫米波通信协议。
在作为雷达系统的正常操作期间,可配置毫米波系统100使用(多个)调制解调器102调制雷达波形(诸如线性调频线性调频信号(chirps))(例如,来自控制器120或其他电路或设备)以作为FMCW雷达进行操作,以生成(多个)中频(IF)信号。使用(多个)变频器104将(多个)IF信号上变频为毫米波范围内的(多个)RF信号。然后将(多个)RF信号馈送通过(多个)波束形成器电路110并且经由一个或多个波束通过(多个)天线116进行发射。
在雷达操作期间由(多个)天线116发射的RF信号在一个或多个波束的视场中被物体反射,并且由(多个)天线116和(多个)波束形成器电路110接收。使用(多个)变频器104将所接收的(多个)RF信号下变频为(多个)IF信号。然后,使用(多个)调制解调器102对(多个)IF信号进行解调,并且将其发送到例如控制器120或另一电路或设备以进行进一步的雷达处理。
在一些实施例中,进一步的雷达处理包括执行范围FFT,使用例如单脉冲算法确定到达角,在(多个)波束的视场中标识静态和运动物体,确定运动物体的速度,检测被检测物体的手势,跟踪已标识的静态或运动物体,执行雷达成像,以及其他已知的雷达处理。
在一些实施例中,用于发射雷达波形的相同的天线被用于接收反射的雷达波形。在其他实施例中,不同的天线用于经由不同的RF/IF路径发射和接收雷达波形。
每个调制解调器102包括用于将基带信号调制为IF信号的调制器电路和用于将IF信号解调为基带信号的解调器电路。调制器电路和解调器电路可以以本领域中已知的任何方式实现。根据流经I/O端子的信号是数字信号还是模拟信号,实现可以有所不同。在一些实施例中,调制电路可以包括DAC、数字和/或模拟滤波器以及数字信号处理(DSP)引擎。解调器可以包括模数转换器(ADC)、数字和/或模拟滤波器以及数字信号处理(DSP)引擎。在一些实施例中,相同的DSP引擎可以用于调制器电路和解调器电路。DSP引擎可以例如在调制解调器102或控制器120中实现。一些实施例可以独立于控制器120和调制解调器102来实现DSP引擎。
调制解调器102可以使用任何已知的调制/解调方法和技术,诸如正交频分复用(OFDM)、相移键控(PSK)、正交幅度调制(QAM)、幅度PSK(APSK)、幅移键控(ASK)、频移键控(FSK)和用于雷达的调频连续波形(FMCW)。在一些实施例中,控制器120可以动态地改变所使用的特定调制/解调方案。例如,用于雷达操作的调制方案可以不同于用于通信操作的调制方案。
每个变频器104包括以链连接的混频器电路106和可变增益放大器(VGA)108。在一些实施例中,每个变频器104包括多个混频器电路106和多个VGA 108(例如,串联连接)的链。
在发射模式下(用于通信或雷达操作),混频器电路106将输入IF信号与参考信号混频,并且VGA 108然后放大该混频的信号以生成输出RF信号。在接收模式下(用于通信或雷达操作),VGA 108放大输入RF信号,并且混频器电路106将放大的RF信号与参考信号混频以产生输出IF信号。在一些实施例中,用于发射和用于接收的参考信号可以是不同的。在一些实施例中,控制器120可以动态地改变(多个)参考信号的频率。例如,用于雷达操作的参考信号的频率可以与用于通信操作的参考信号的频率不同(例如,更高或更低)。
在一些实施例中,IF信号可以例如在3GHz至9GHz的频率范围内,而RF信号可以在毫米波范围内,诸如在24.25GHz至52.6GHz之间。也可以使用其他频率范围内的其他频率。
如图1所示,混频器电路106和VGA 108是双向电路。混频器电路106和VGA 108可以以本领域中已知的任何方式实现。例如,VGA 108可以被实现为两个单独的VGA(例如,发射VGA和接收VGA)。VGA 108的放大增益可以例如由控制器120动态地调节。VGA 108的放大增益可以高于1(放大)或低于1(衰减),例如以优化动态范围,同时使失真最小。
每个波束形成器电路110包括M个波束形成信道,其中每个波束形成信道包括移相器电路112和VGA 114。可以例如通过对信道功率电平的模拟控制来执行波束形成功能,该模拟控制可以例如通过控制VGA 114以及通过控制移相器电路112的相移(例如,通过数字接口控制(诸如串行外围接口(SPI))经由对应的寄存器编程)来实现。在一些实施例中,每个波束形成器电路110具有对应的且独立的调制解调器102,其中波束形成功能部分地通过经由VGA 114和移相器112对信道功率电平的模拟控制来执行,并且部分地通过控制每个调制解调器102中的数字域中的分离的数字流之间的相移和电平来执行。在一些实施例中,仅在第一时间期间通过模拟控制,仅在第二时间期间通过数字控制,以及在第三时间期间通过混合的模拟/数字控制来执行波束形成功能。在一些实施例中,仅利用模拟控制来控制第一波束形成器(例如,波束形成器1101),而同时仅利用数字控制来控制第二波束形成器(例如,波束形成器110L),其他实现也是可能的。
在一些实施例中,波束是固定的。换言之,不执行动态波束形成。在这样的实施例中,可以省略动态波束形成能力。
在发射模式(用于通信或雷达操作)下,控制器120将M个移相器电路112和VGA 114中的每个配置为使用例如模拟波束形成来将(发射)波束引导向目标方向。对于通信操作,可以将波束指向优化通信质量(例如,通过使信号强度最大)的方向。对于雷达操作,可以将波束指向要被扫描以例如获取移动或静态物体的空间位置。
在接收模式(用于通信或雷达操作)下,控制器120将M个移相器电路112和VGA 114中的每个配置为使用例如模拟波束形成来将(接收)波束引导向目标方向。例如,对于通信操作,可以将波束指向通信信号的到达方向(DoA)。对于雷达操作,可以将波束指向要监测物体的方向。控制器120还可以使用波束形成配置(例如,移相器电路112和VGA 114的状态)来确定雷达参数(诸如到达角(AoA))和测距。
在一些实施例中,控制器120通过动态地调节M个波束形成信道中的一个或多个波束形成信道的相位和幅度来动态地修改波束的方向,以优化毫米波系统100的操作。例如,可以通过朝向UE(如果毫米波系统100在基站上实现)或朝向基站(如果毫米波系统100在UE上实现)动态地调节波束来优化通信操作。例如,具有较高增益的较窄波束可以用于扩展波束的范围。作为另一示例,可以通过动态地改变波束的形状和方向以监测毫米波系统100周围的特定空间区域来优化雷达操作。
在一些实施例中,用于5G通信的频率不同于用于雷达操作的频率。例如,在一些实施例中,用于雷达操作的频率在与用于5G通信的频率范围相邻的频率范围内。例如,在一些实施例中,用于5G通信的频率在5G通信频段n258(从24.25GHz到27.5GHz)中,并且用于雷达操作的频率在从24GHz到24.25GHz的相邻ISM频段中。在一些实施例中,用于5G通信的频率在FR2频段(52.6GHz)的上端附近,如5G标准版本15中所述,并且用于雷达操作的频率在从61GHz到61.5GHz的相邻ISM频段中。也可以使用其他频率范围,诸如在E频段(60-90GHz)中的5G通信频率和在61GHz至61.5GHz范围中的雷达操作频率。
毫米波系统100可以用一个或多个天线116实现。在一些实施例中,毫米波系统100包括数十个天线。在一些实施例中,例如,毫米波系统100可以包括超过100个天线,诸如256个或更多个天线。天线116可以例如以本领域中已知的方式布置成行和列的天线阵列118(行和列为了清楚起见而在图1中未示出)。例如,天线116可以以第一距离间隔开,其中第一距离基于RF信号的波长。在一些实施例中,天线阵列118包括多个天线子阵列,其中每个天线子阵列对应于调制解调器102。
在一些实施例中,第一距离可以等于或小于用于5G通信的RF信号的波长的0.6倍。将相邻频带用于5G通信和雷达操作有利地允许将同一天线阵列用于5G通信和雷达操作,而不会显著降低雷达或通信性能(因为天线116之间的第一距离可以小于RF信号的波长,例如小于用于5G通信或雷达操作的RF频率的波长的1倍)。
控制器120可以使用有线或无线协议来配置电路102、104和110中的一个或多个。例如,在一些实施例中,控制器120例如通过写入对应的寄存器来使用SPI来配置调制解调器102、变频器104和/或波束形成器电路110。其他实施例可以使用内部集成电路(I2C)、通用异步接收器发射器(UART)或其他协议。其他实施例可以使用专用的数字或模拟信号来配置调制解调器102、变频器104和/或波束形成器电路110的一个或多个方面。
控制器120可以被实现为包括例如耦合到存储器的组合电路的通用处理器、控制器或数字信号处理器(DSP)。在一些实施例中,例如,DSP可以用ARM或x86架构来实现。在一些实施例中,控制器120可以被实现为定制专用集成电路(ASIC)。在一些实施例中,控制器120包括多个处理器,其中每个处理器具有一个或多个处理核。在其他实施例中,控制器120包括具有一个或多个处理核的单个处理器。其他实现也是可能的。一些实施例可以将控制器120实现为硬件加速器和在DSP或通用微控制器上运行的软件的组合。
毫米波系统100可以在集成电路(IC)中的单片半导体衬底中实现。在一些实施例中,毫米波系统100可以在封装在例如几个IC的单个封装或模块中的多个半导体衬底中实现。在其他实施例中,毫米波系统100可以在多个封装中实现。例如,在一些实施例中,(多个)变频器104被集成在第一封装中,(多个)波束形成电路110被集成在第二封装中,并且(多个)天线116在第一封装和第二封装外部。在其他实施例中,(多个)变频器104和(多个)波束形成器电路110在第一封装中,而(多个)天线116在第一封装外部。控制器120可以在与(多个)变频器104、(多个)波束形成电路110和(多个)天线116分开的封装中实现。在一些实施例中,(多个)调制解调器102与控制器120一起在同一封装中实现。在其他实施例中,(多个)调制解调器102与控制器120分开实现。其他实现也是可能的。
在一些实施例中,毫米波系统100可以用L个RFIC来实现,其中L是调制解调器102的数目,并且其中每个RFIC包括调制解调器电路102、变频器104、具有M个信道的波束形成器电路110、以及以行和列的阵列布置的M个天线116,并且其中每个RFIC被封装在单个封装中。在其他实施例中,毫米波系统100可以用N个RFIC来实现,其中每个RFIC包括一个移相器112(例如,单个移相器112)、一个VGA 114(例如,单个VGA 114)、和一个对应的天线116(例如,单个天线116)。在这样的实施例中,(多个)调制解调器102和(多个)变频器104可以在RFIC外部。在一些实施例中,DAC和ADC与调制解调器102在同一IC中集成在同一单片半导体衬底中。在一些实施例中,每个RFIC包括M个信道。在一些实施例中,每个RFIC包括一个以上的移相器112和/或一个以上的VGA114。其他集成实现也是可能的。
图2A示出了根据本发明的实施例的毫米波系统200的RFIC 202的布置。毫米波系统200是包括16个RFIC 202的毫米波系统100的可能实现,其中每个RFIC 202包括移相器112、VGA 114和对应的天线116。图2A所示的RFIC 202的布置可以在印刷电路板(PCB)中实现。在一些实施例中,图2A所示的RFIC 202的布置可以被封装在模块中。尽管毫米波系统200在图2中示出为仅包括16个RFIC,但是毫米波系统200中可以包括不同数目的RFIC,诸如4、8或32个RFIC。
如图2A所示,每个RFIC 202控制4个天线116。在一些实施例中,每个RFIC 202可以控制不同数目的天线,诸如1、2、8、16或32个。
如图2A所示,每个RFIC 202耦合到至少一个天线116。在一些实施例中,RFIC 202可以包括一个或多个天线116。
在正常操作期间,每个RFIC 202可以被个体地配置为作为雷达或通信设备进行操作。RFIC 202的组可以配置为协作以作为雷达和/或通信设备进行操作。例如,图2B和图2C示出了根据本发明的实施例的同时作为雷达设备和通信设备进行操作的毫米波系统200。
如图2B所示,毫米波系统200被划分成RFIC 202的四个组,即组210、220、230和240。RFIC 202的组210被配置为作为雷达设备进行操作,其中子组212和214分别作为雷达发射器和雷达接收器进行操作。组220、230和240被配置为作为通信设备进行操作。在一些实施例中,组210在ISM RF频段中操作,而组220、230和240在5G RF频段中操作。在相邻的ISM频段中执行雷达功能有利地引入了频率上的分离,该频率分离允许同时执行雷达功能和通信功能,而不会由于雷达与通信辐射之间的干扰而导致雷达或通信操作的性能显著恶化。
如图2C所示,一些实施例可以将相应组210、220、230和240中的相应波束211、221、231和241沿不同的方向引导以引入空间分离,以允许同时执行雷达功能和通信功能,而不会由于雷达与通信辐射之间的干扰而导致雷达或通信操作的性能显著恶化。如本文中描述的,通过以频率分离和/或时间分离进行操作,一些实施例可以将雷达波束和通信波束引导向相同或相似的方向,而不会显著降低雷达或通信操作的性能。
应当理解,毫米波系统200可以以不同的方式进行划分以执行同时的雷达操作和通信操作。例如,一些实施例可以将组210、220和230作为雷达设备进行操作,而将组240作为通信设备进行操作。其他实施例可以将组210和230作为雷达设备进行操作,而将组220和240作为通信设备进行操作。一些实施例可以在配置之间交替。一些实施例可以使一个或多个组不活动(临时或永久)。其他实现也是可能的。例如,图2D和图2E示出了根据本发明的实施例的同时作为雷达设备和通信设备进行操作的毫米波系统200。如图2D和图2E所示,毫米波系统200被划分成RFIC 202的两个组,即组250和260。RFIC 202的组250被配置为作为雷达设备进行操作,其中子组252和254分别作为雷达发射器和雷达接收器进行操作。
在一些实施例中,毫米波系统200可以在时间上分离地操作,这有利地允许顺序地执行雷达功能和通信功能,这可以有利地促进资源调度,并且可以避免可能由于雷达与通信辐射之间的干扰而导致的雷达或通信操作的性能显著恶化。例如,图2F和图2G示出了根据本发明的实施例的顺序地作为雷达设备和通信设备进行操作的毫米波系统200。如图2F和图2G所示,毫米波系统200被划分为顺序地作为雷达设备(组270)和通信设备(组280)进行操作的RFIC 202的单个组,雷达设备具有分别作为雷达发射器和雷达接收器进行操作的子组272和274。
尽管图2A-图2G示出了具有16个RFIC的毫米波系统,这些RFIC可以分为一个组、两个组或四个组,并且以频率分离和/或空间分离和/或时间分离的方式进行操作,但是可以使用数目不同的RFIC和/或不同数目的组和/或子组。在一些实施例中,毫米波系统200可以被动态地重新配置(例如,通过控制器120)为在第一时间以图2B和图2C中描述的方式操作,在第二时间以图2C和图2D中描述的方式操作,在第三时间以图2E和图2F中描述的方式操作。其他修改也是可能的。
在一些实施例中,每个RFIC可以耦合或包括一个以上的天线116。应当理解,尽管图2A-图2G示出了具有16个封装RFIC 202的毫米波系统,但是可以实现具有不同封装布置(例如,单个IC或IC的不同划分)的毫米波系统。
一些实施例的优点包括将雷达功能和通信功能集成到同一可调谐硬件中。将雷达功能和通信功能集成到同一(例如,单个可调谐RF前端)中有利地允许例如使用毫米波系统的雷达功能感测和检测运动和/或静态物体,并且使用同一毫米波系统的通信功能发射物体检测信息。一些实施例有利地使用同一毫米波系统的通信操作连续地发射利用毫米波系统获取的雷达信息。
将雷达操作和通信操作集成到单个毫米波系统中有利地允许在小区域中实现雷达和通信系统,诸如无人机、移动电话、可穿戴设备和其他设备。
以频率分离操作有利地允许同时和/或顺序地进行雷达操作和通信操作。在一些实施例中,毫米波系统有利地作为雷达设备进行操作,而无需监测通信信道是否空闲。
环境的附加成像(例如,飞行时间数据或来自作为雷达设备进行操作的毫米波系统的其他测距雷达处理)可以与源自通信流的位置信息组合,例如以增强对诸如UE等目标的DoA的确定,并且估计和定义其位置。因此,在一些实施例中,来自通信链路的信道信息和来自雷达操作的测距信息的融合有利地提供例如UE的精确定位。这样的精确信息可以用于增强通信操作(例如,通过例如优化波束形状和方向来提高通信质量)和/或雷达操作(例如,通过改进用于物体跟踪以及用于优化波束形状和方向的物体位置以改进空间分辨率)。
一些实施例的附加优点包括架构的可伸缩性。例如,毫米波系统可以使用诸如图2A所示的相同的总体架构,但是基于系统的特定需要,可以使用更多的RFIC 202,诸如32个或100个或更多个,或者使用更少的RFIC 202,诸如8个或4个。
图3A示出了根据本发明的实施例的毫米波系统300的示意图。毫米波系统300包括竖直极化接口301、水平极化接口303、多个调制解调器302、多个变频器304、分配网络306、多个波束形成器电路310、天线阵列318和控制器320(为了清楚起见,已经从图3A中省略了去往和来自控制器320的连接)。毫米波系统300可以用例如如图2A所示的多个RFIC 202来实现。
为了清楚起见,图3A标识了要用作接收器(RX)或发射器(TX)的特定路径(例如,竖直TX、竖直RX、水平TX和水平RX)。然而,应当理解,每个路径可以在不同时间用于TX或RX。例如,当以通信模式操作时,任何路径可以作为RX或TX进行操作。类似地,当以雷达模式操作时,任何路径可以作为RX或TX进行操作。
一些实施例可以不实现分配网络306。在这样的实施例中,每个波束形成器电路310的每个RF I/O端子可以具有与图1所示的实现类似的实现中对其馈电的个体链(但是具有两倍数量的馈送信道)。
毫米波系统300以类似于毫米波系统100的方式操作,其中调制解调器302、变频器304、波束形成器电路310和控制器320的操作方式分别类似于调制解调器102、变频器104、波束形成器电路110和控制器320。然而,毫米波系统300以双极化架构实现。竖直极化接口301和水平极化接口303具有向同一天线馈电的独立信号路径,其中这些路径在天线内部通过极化被隔离。因此,天线阵列318的每个天线以竖直和水平极化进行操作,并且波束形成电路310具有2M个信道,是诸如图1所示的可比较的单极化实现的信道数量的两倍。
毫米波系统300可以如在图2B-图2G中描述的那样操作。另外,毫米波系统300的双极化允许附加的操作模式。例如,在一些实施例中,一个接口(例如,301)可以用于FMCW雷达操作,而另一接口(例如,303)可以用于5G通信。应当理解,双极化模式和关于图2B-图2G描述的模式的附加排列也是可能的。例如,可以使用时间分离,其中在第一时间将竖直和水平极化用于FMCW雷达操作,而在第二时间将竖直和水平极化用于5G通信。毫米波系统300还可以使用空间、频率和时间分离的组合。
在一些实施例中,时间分离基于:波形结构(例如,特定的5G NR波形结构)、所使用的特定命理、毫米波系统300的资源可用性、和/或网络中的数据需求。
图3B和图3C示出了根据本发明的实施例的FMCW雷达操作与5G通信操作之间的转换。图3B示出了5G NR标准的帧结构。如图3B所示,一个10ms的无线电帧(例如,帧353)包括10个1ms的子帧。每个子帧(例如,355、357或359)包括多个时隙,这些时隙包括OFDM符号(在每个子帧内被描绘为框)。
每个子帧中的时隙数取决于所选择的子载波间隔(SCS)。例如,子帧355以60kHzSCS操作并且具有4个时隙。子帧357以120kHz SCS操作并且具有8个SCS。子帧359以240kHzSCS操作并且具有16个时隙。
如图3C所示,每个OFDM符号具有循环前缀(CP)。在一些实施例中,毫米波系统300在循环前缀时间期间在雷达模式(作为雷达设备)与通信模式(作为通信设备)之间转换。例如,如图3C所示,毫米波系统300的划分可以在第一OFDM符号的发射期间以通信模式操作,并且可以在后续OFDM符号的发射期间以雷达模式操作,其中通信模式与雷达模式之间的转换在后续OFDM符号的循环前缀时间期间发生。
控制器320可以用于动态地重新配置毫米波系统300。例如,图4示出了根据本发明的实施例的控制器320的架构的一部分的示意图。控制器120也可以如图4所示实现。
在正常操作期间,资源调度器402基于从信号处理和数据管理模块410接收的请求来动态地配置毫米波系统300的毫米波硬件404。毫米波硬件404包括竖直接口301、水平接口303、调制解调器302、变频器304、分配网络306和波束形成器电路310。配置毫米波硬件404可以包括以下中的一项或多项:确定毫米波系统300将仅执行雷达操作,仅执行通信操作,还是执行两者;确定毫米波系统300是否以空间分离和/或频率分离和/或时间分离操作;分配RFIC 202的组和/或子组和/或相应的天线极化,以执行雷达操作和/或通信操作;选择RFIC 202的每个组和/或子组的操作频率;将波束形成器电路310配置为将RFIC 202的每个组和/或子组的相应波束引导向确定方向;以及将要执行雷达操作和通信操作的时间。
资源调度器402可以使用SPI、I2C或其他模拟或数字有线或无线通信协议来配置毫米波硬件404的一个或多个方面。
一旦配置了毫米波系统300,雷达处理模块406和通信处理模块408就根据资源调度器402的分配使用毫米波系统300的硬件分别执行雷达操作和通信操作。信号处理和数据管理模块410从雷达处理模块406和通信处理模块408(以及在一些实施例中从外部设备或系统)接收信息,并且基于从雷达处理模块406和通信处理模块408接收的信息来请求资源调度器402为雷达操作和/或通信操作分配资源。然后,通过重新配置毫米波硬件404,资源调度器402基于从信号处理和数据管理模块410接收的请求来保持毫米波系统300的当前分配或更改其资源分配。例如,当毫米波系统300处于活动状态时,重复执行以下过程:配置毫米波硬件404,执行雷达操作和通信操作,以及重新配置毫米波硬件404。
雷达处理模块406包括雷达子系统412和雷达目标优化器模块416。雷达子系统412执行雷达操作,诸如测距、成像和/或目标检测以及杂波图的生成。雷达目标优化器基于毫米波系统300的当前状态、执行雷达操作的当前请求、和/或雷达的当前状态(例如,被跟踪物体的位置和移动方向)来确定用于优化的雷达操作的雷达参数,诸如空间分辨率、波束方向、带宽和/或其他参数。雷达目标优化器模块416然后将对硬件资源的请求发送给信号处理和数据管理模块410。
通信处理模块408包括通信子系统422和通信性能优化器426。通信子系统422执行通信操作,诸如编码和解码数据,确定当前数据速率和带宽,确定通信信道质量,以及其他通信功能。通信性能优化器426基于例如毫米波系统300的当前状态和/或执行通信操作的当前请求来确定用于优化的通信操作的通信参数,诸如估计用户数据速率和带宽需求,确定用于改善的通信信道质量的波束方向和/或其他参数。然后,通信处理模块408 416将对硬件资源的请求发送给信号处理和数据管理模块410。
资源调度器402、雷达处理模块406、通信处理模块408以及信号处理和数据管理410例如通过软件指令在控制器320中实现,这些软件指令例如存储在相关联的(例如,非易失性的)存储器中并且由处理单元、专用硬件或其组合执行。
图5示出了根据本发明的实施例的重新配置毫米波雷达300的实施例方法500。方法500可以例如由控制器120实现以动态地重新配置毫米波系统300。方法500也可以由其他系统实现,诸如由控制器120实现以动态地重新配置毫米波系统300,等等。
在步骤502期间,毫米波系统300接收对毫米波系统资源的一个或多个请求。对资源的请求可以是例如由毫米波系统300经由5G通信信道接收的用于标识毫米波系统300附近的特定位置的物体的请求。请求的其他示例包括增加毫米波系统300的5G通信信道的数据速率的请求、经由毫米波系统300的5G通信信道发送有关由毫米波系统300的操作标识的物体的位置和/或速度和/或跟踪信息的信息的请求、以及基于当前物体跟踪状态来增加由毫米波系统300生成的雷达成像的空间分辨率的请求。
在步骤504期间,毫米波系统300确定如何对RFIC 202进行分组以执行所请求的操作。例如,在一些实施例中,毫米波系统300可以如图2B和图2C所示分配资源。其他资源分配也是可能的,诸如使用毫米波系统仅执行雷达操作或仅执行通信操作,或者如图2D和图2E、图2F和图2G所示,以及利用不同的天线极化配置,或者其组合。在步骤506期间,如在步骤504期间确定的那样配置毫米波系统300,并且由毫米波系统300执行雷达操作和/或通信操作。然后,毫米波系统300在步骤502期间接收对资源的请求,以重复该序列。
图6示出了根据本发明的实施例的作为雷达系统进行操作的毫米波系统300。毫米波系统300在使用RFIC 202的一个或多个组或子组期间,或者通过使用所有可用硬件。在图6中示出为毫米波雷达600的部分是毫米波系统300的用于雷达目的的硬件部分。应当理解,用于雷达目的的硬件部分可以动态地改变,例如关于图2B-图2G以及图4和图5所解释的。
在正常操作期间,毫米波雷达600使用例如波束朝向场景608发射多个辐射脉冲606,诸如线性调频信号。在一些实施例中,毫米波雷达600发送等距线性线性调频信号的帧,诸如256个等距线性线性调频信号。也可以使用不同数目的线性调频信号,例如16个、32个。
所发射的辐射脉冲606被场景608中的物体反射。被反射的辐射脉冲(图6中未示出)(也被称为回波信号)被毫米波雷达600检测和处理,例如以确定回波信号的到达角、波束的视场(FoV)中的运动和/或静态物体的位置(即,范围、方位角和俯仰角分量)、波束的FoV中的物体运动的速度和/或方向、检测到的物体类型的标识(例如,使用微多普勒和/或宏多普勒签名)等。为了执行这些和其他雷达功能,毫米波雷达600可以执行以下中的一种或多种:在慢速和/或快速时间内的快速傅立叶变换(FFT)、短时快速傅立叶变换(STFFT)、分数傅立叶变换(FrFT)、短时分数傅立叶变换(STFrFT)、飞行时间(ToF)计算、以及本领域中已知的其他雷达处理技术。
场景608中的物体可以包括静止的人(诸如躺着的人)、表现出低速和不频繁运动的人(诸如站立的人)、运动的人(诸如奔跑或行走的人)、静止或运动的动物(诸如狗或猫)、静止或运动的设备(诸如汽车、无人机、摩托车、工业设备、家具)、周期性运动的设备(诸如旋转风扇等)。场景608中也可以存在其他物体。
毫米波雷达600作为包括(多个)发射天线和(多个)接收天线的FMCW雷达进行操作。在一些实施例中,同一天线可以用于发射和接收雷达信号。
毫米波雷达600在20GHz至122GHz范围内发射和接收信号。备选地,也可以使用在该范围之外的频率,诸如在1GHz至20GHz之间的频率或者在122GHz至300GHz之间的频率。
图7示出了根据本发明的实施例的街道级基站700。街道级基站700(例如,微微基站)包括路灯710和毫米波系统703。毫米波系统703包括远程无线电头(RRH)和雷达模块704、组合的前端模块702、和天线阵列706。RRH和雷达模块704、组合的前端模块702、和天线阵列706用毫米波系统703实现,毫米波系统703可以例如用毫米波系统100、200或300来实现。出于描述的目的,假定毫米波系统200用于实现毫米波系统703。
在正常操作期间,毫米波系统703的资源调度器402为雷达操作和5G通信操作分配资源。在雷达操作期间,毫米波系统703将雷达波束708引导向地面714,并且监测人的存在。当在雷达波束708中检测到人712时,毫米波系统703打开路灯710。在一些实施例中,可以基于人712与毫米波系统703的接近度来调节光亮度。当有人存在时,通过基于人的存在来控制灯710,街道级基站700有利地节省功率,同时保持街道照明。应当理解,街道级基站700也可以用于监测其他类型的物体,诸如汽车和自行车。
在一些实施例中,毫米波系统703可以以低功率消耗模式操作,例如,其中在执行雷达操作时,通信链路是不活动的。在检测到人712的存在时,毫米波系统703被唤醒(即,退出低功耗模式)并且开始操作,例如,作为用于5G通信的小小区(smallcell)/热点,以有利地创建节省电力的智能RF 5G通信覆盖范围。在一些实施例中,使用雷达操作检测到的人712的位置被用于将毫米波系统703的通信波束(未示出)引导向人712的方向,以有利地提高通信质量,同时减少在新的用户网络进入时的波束形成工作。
在一些实施例中,毫米波系统703可以使用雷达操作(例如,诸如使用三维成像)来检测在雷达波束708内不允许的物体,诸如人行道上的汽车。在一些实施例中,毫米波系统703可以报告物体的存在,而这在使用毫米波系统703的5G通信操作时无法实现。因此,毫米波系统703可以有利地用于监督应用,诸如在不允许人进入这样的位置时监测人的存在。
在一些实施例中,雷达波束708是固定的(例如,未动态地修改)。在其他实施例中,动态地修改雷达波束708,例如以改变方向或形状,例如以提高空间分辨率或在不同时间监测不同位置。
在一些实施例中,毫米波系统703在5G RF通信频段(例如,n258频段,从24.25GHz到27.5GHz进行操作)中执行通信操作,并且在与RF通信频段相邻的ISM频段(例如,从24GHz到24.25GHz的ISM频段)中执行雷达操作。在一些实施例中,毫米波系统703以附加的时间分离和/或空间分离进行操作。
图8A-图8D示出了根据本发明的实施例的自主无人机系统800。自主无人机系统800包括一个或多个自主无人机802。每个自主无人机802包括毫米波系统803。如图8B所示,毫米波系统803包括控制器804、雷达模块和通信模块806、以及RF部分808。控制器804、雷达模块和通信模块806、以及RF部分808用毫米波系统803实现,毫米波系统803可以例如用毫米波系统100、200或300来实现。出于描述的目的,假定毫米波系统200用于实现毫米波系统803。
在正常操作期间,毫米波系统803的资源调度器402为雷达操作和5G通信操作分配资源。在雷达操作期间,毫米波系统803引导一个或多个雷达波束(诸如雷达波束810、812和814)以自主地检测物体(诸如其他飞行的无人机)的存在,并且避免碰撞,如图8A所示。一个或多个雷达波束也可以用于执行例如高度测量以检测自主无人机802的高度(例如,使用雷达波束812)。因此,自主无人机802有利地能够自主飞行而不会与例如朝向预定位置的物体碰撞。
如图8B所示,毫米波系统803的RF部分808可以位于自主无人机802的不同位置以促进波束形成。一些实施例可以以不同方式集成控制器804、雷达模块和通信模块806、以及RF部分808中的一个或多个。
在一些实施例中,一个或多个雷达波束(例如,810、812和814)是固定的(例如,未动态修改)。在一些实施例中,动态地修改一个或多个雷达波束(例如,810、812和814)例如以改变方向或形状,例如以改善空间分辨率或在不同时间监测不同位置。
在一些实施例中,毫米波系统803在5G RF通信频段中执行通信操作并且在与RF通信频段相邻的ISM频段中执行雷达操作。在一些实施例中,毫米波系统803以附加的时间分离和/或空间分离来操作。
每个自主无人机802可以使用毫米波系统803的通信操作与其他自主无人机802通信,如图8C中通过通信链路820所示。作为另一示例,在一些实施例中,第一自主无人机8021可以用作通过使用通信链路822和824在第二自主无人机8022与基站826之间的通信中继。当用作通信中继时,自主无人机802有利地将控制数据转发给可能无法访问以与基站826直接通信的相邻无人机。
图9A-图9C示出了根据本发明的实施例的自主车辆系统900。自主车辆系统900包括一个或多个自主车辆902。在一些实施例中,自主车辆包括汽车或卡车。也可以使用其他车辆,诸如农业和建筑工地作业车辆。
每个自主车辆902包括毫米波系统903。如图9B所示,毫米波系统903包括控制器904、雷达模块和通信模块906、以及RF部分908。控制器904、雷达模块和通信模块906、以及RF部分908用毫米波系统903实现,该毫米波系统903可以例如用毫米波系统100、200或300来实现。出于描述的目的,假定毫米波系统200用于实现毫米波系统903。
在正常操作期间,毫米波系统903的资源调度器402为雷达操作和5G通信操作分配资源。如图9A所示,在雷达操作期间,毫米波系统903引导一个或多个雷达波束(诸如雷达波束912和914)以自主地检测物体(诸如其他车辆)的存在,并且避免碰撞。因此,自主车辆902有利地能够自主驾驶而不会与例如朝向预定位置的物体碰撞。
如图9B所示,毫米波系统903的RF部分908可以位于自主车辆902的不同位置以促进波束形成。一些实施例可以以不同方式集成控制器904、雷达模块和通信模块906、以及RF部分908中的一个或多个。
在一些实施例中,一个或多个雷达波束(例如,912和914)是固定的(例如,未动态修改)。在一些实施例中,动态地修改一个或多个雷达波束(例如,912和914)例如以改变方向或形状,例如以改善空间分辨率或在不同时间监测不同位置。
在一些实施例中,毫米波系统903在5G RF通信频段中执行通信操作并且在与RF通信频段相邻的ISM频段中执行雷达操作。在一些实施例中,毫米波系统903以附加的时间分离和/或空间分离来操作。
每个自主车辆902可以使用毫米波系统903的通信操作与其他自主车辆902通信,如图9C中通过通信链路922所示。作为另一示例,在一些实施例中,第一自主车辆9021可以用作通过使用通信链路922和924在第二自主车辆9022与基站926之间的通信中继。当用作通信中继时,自主车辆902有利地将控制数据转发给可能无法访问以与基站926直接通信的相邻车辆。
应当理解,所描述的一些实施例可以以不同的方式组合。例如,自主无人机802可以用作自主车辆902与基站926之间的通信中继。其他修改和实现也是可能的。
在此总结了本发明的示例实施例。从本文中的整个说明书和权利要求书中还可以理解其他实施例。
示例1.一种毫米波系统,包括:第一电路,具有M个信道,其中M为大于或等于1的正整数;一个或多个天线,耦合到所述第一电路;以及控制器,包括资源调度器模块,所述控制器被配置为基于所述资源调度器模块的输出将所述毫米波系统作为雷达设备和通信设备进行操作。
示例2.根据示例1所述的毫米波系统,其中所述控制器可操作以将所述毫米波系统配置为在将所述毫米波系统作为雷达设备进行操作时在第一射频(RF)范围内操作,并且在将所述毫米波系统作为通信设备进行操作时在第二RF范围内操作,其中所述第一RF范围和所述第二RF范围不重叠。
示例3.根据示例1或2之一所述的毫米波系统,其中所述控制器被配置为通过将所述毫米波系统的第一部分配置为雷达设备并且将所述毫米波系统的第二部分配置为通信设备来同时将所述毫米波系统作为所述雷达设备和所述通信设备进行操作。
示例4.根据示例1至3之一所述的毫米波系统,还包括多个第一电路,所述多个第一电路中的每个第一电路具有M个信道,所述多个第一电路包括所述第一电路,所述多个第一电路中的每个第一电路在多个射频集成电路(RFIC)中的相应RFIC中实现。
示例5.根据示例1至4之一所述的毫米波系统,其中所述毫米波系统的所述第一部分包括所述多个RFIC的第一子集,并且所述毫米波系统的所述第二部分包括所述多个RFIC的第二子集,所述第一子集和所述第二子集是互斥的。
示例6.根据示例1至5之一所述的毫米波系统,其中所述控制器被配置为顺序地将所述毫米波系统作为雷达设备并且然后作为通信设备进行操作。
示例7.根据示例1至6之一所述的毫米波系统,其中所述第一电路包括波束形成电路。
示例8.根据示例1至7之一所述的毫米波系统,其中所述波束形成器电路被配置为生成固定波束。
示例9.根据示例1至8之一所述的毫米波系统,其中所述一个或多个天线包括M个天线,其中所述第一电路的所述M个信道中的每个信道耦合到所述M个天线中的相应天线。
示例10.根据示例1至9之一所述的毫米波系统,其中所述一个或多个天线包括M/2个天线,其中所述第一电路的所述M个信道中的每对信道耦合到所述M/2个天线中的相应天线。
示例11.根据示例1至10之一所述的毫米波系统,其中每对信道包括与所述相应天线的竖直极化相对应的第一信道和与所述相应天线的水平极化相对应的第二信道,并且其中所述控制器被配置为操作一对信道中的所述第一信道以进行所述雷达设备的雷达操作,并且操作所述一对信道中的所述第二信道以进行所述通信设备的通信操作。
示例12.根据示例1至11之一所述的毫米波系统,其中所述控制器被配置为同时操作所述一对信道中的所述第一信道以进行雷达操作以及所述一对信道中的所述第二信道以进行通信操作。
示例13.根据示例1至12之一所述的毫米波系统,还包括:调制器/解调器(调制解调器);以及变频器电路,耦合在所述调制解调器与所述第一电路之间。
示例14.根据示例1至13之一所述的毫米波系统,其中所述调制解调器包括正交调制器。
示例15.根据示例1至14之一所述的毫米波系统,其中所述变频器包括耦合到双向可变增益放大器的混频器。
示例16.根据示例1至15之一所述的毫米波系统,其中所述变频器包括链,所述链包括多个混频器和多个双向可变增益放大器。
示例17.一种毫米波系统,包括:第一电路,具有被配置为耦合到天线阵列的多个射频(RF)信道,所述第一电路被配置为通过所述天线阵列发射和接收RF信号;以及控制器,被配置为使用所述第一电路执行雷达操作和通信操作,所述控制器可操作以基于调度器模块的输出将所述毫米波系统动态地重新配置为在执行雷达操作与执行通信操作之间进行多路复用。
示例18.根据示例17所述的毫米波系统,其中所述控制器被配置为通过执行所述通信操作来与基站建立通信链路。
示例19.根据示例17或18之一所述的毫米波系统,其中所述控制器被配置为通过执行通信操作来在基站与第二毫米波系统之间建立通信链路。
示例20.根据示例17至19之一所述的毫米波系统,其中所述毫米波系统是无人机的一部分,并且其中所述控制器被配置为通过执行所述雷达操作来测量所述无人机的高度。
示例21.根据示例17至20之一所述的毫米波系统,其中所述毫米波系统是车辆或无人机的一部分,并且其中所述控制器被配置为通过执行所述雷达操作来检测所述车辆或所述无人机周围的物体。
示例22.一种操作毫米波系统的方法,所述方法包括:接收雷达请求;接收通信请求;基于所述雷达请求和所述通信请求将所述毫米波系统的硬件资源分配用于雷达操作和用于通信操作;利用被分配用于雷达操作的所述毫米波系统的所述硬件资源执行雷达操作;以及利用被分配用于通信操作的所述毫米波系统的所述硬件资源执行通信操作。
示例23.根据示例22所述的方法,还包括同时执行所述雷达操作和所述通信操作。
示例24.根据示例22或23之一所述的方法,其中执行所述雷达操作包括在科学和医学(ISM)频段中发射和接收射频(RF)信号,并且其中执行所述通信操作包括在与所述ISM频段不同的5G通信频段中发射和接收RF信号。
示例25.根据示例22至24之一所述的方法,其中执行通信操作包括通过通信链路发射和接收数据,所述方法还包括:使用雷达波束进行所述雷达操作;以及基于从所述通信链路接收的数据修改所述雷达波束。
示例26.根据示例22至25之一所述的方法,其中执行通信操作包括通过通信链路发射和接收数据,所述方法还包括:使用雷达波束进行所述雷达操作;在所述雷达波束的视场中检测物体;以及经由所述通信链路发射所述检测到的物体的位置信息。
尽管已经参考说明性实施例描述了本发明,但是本说明书并非旨在以限制性的意义来解释。通过参考说明书,本领域技术人员将很清楚说明性实施例以及本发明的其他实施例的各种修改和组合。因此,意图在于,所附权利要求涵盖任何这样的修改或实施例。

Claims (26)

1.一种毫米波系统,包括:
第一电路,具有M个信道,其中M为大于或等于1的正整数;
一个或多个天线,耦合到所述第一电路;以及
控制器,包括资源调度器模块,所述控制器被配置为基于所述资源调度器模块的输出将所述毫米波系统作为雷达设备以及作为通信设备进行操作。
2.根据权利要求1所述的毫米波系统,其中所述控制器可操作以将所述毫米波系统配置为在将所述毫米波系统作为雷达设备进行操作时在第一射频(RF)范围内操作,并且在将所述毫米波系统作为通信设备进行操作时在第二RF范围内操作,其中所述第一RF范围和所述第二RF范围不重叠。
3.根据权利要求1所述的毫米波系统,其中所述控制器被配置为:通过将所述毫米波系统的第一部分配置为雷达设备并且将所述毫米波系统的第二部分配置为通信设备,来同时将所述毫米波系统作为所述雷达设备和所述通信设备进行操作。
4.根据权利要求3所述的毫米波系统,还包括多个第一电路,所述多个第一电路中的每个第一电路具有M个信道,所述多个第一电路包括所述第一电路,所述多个第一电路中的每个第一电路在多个射频集成电路(RFIC)中的相应RFIC中实现。
5.根据权利要求4所述的毫米波系统,其中所述毫米波系统的所述第一部分包括所述多个RFIC的第一子集,并且所述毫米波系统的所述第二部分包括所述多个RFIC的第二子集,所述第一子集和所述第二子集是互斥的。
6.根据权利要求1所述的毫米波系统,其中所述控制器被配置为顺序地将所述毫米波系统作为雷达设备并且然后作为通信设备进行操作。
7.根据权利要求1所述的毫米波系统,其中所述第一电路包括波束形成电路。
8.根据权利要求7所述的毫米波系统,其中所述波束形成器电路被配置为生成固定波束。
9.根据权利要求1所述的毫米波系统,其中所述一个或多个天线包括M个天线,其中所述第一电路的所述M个信道中的每个信道被耦合到所述M个天线中的相应天线。
10.根据权利要求1所述的毫米波系统,其中所述一个或多个天线包括M/2个天线,其中所述第一电路的所述M个信道中的每对信道被耦合到所述M/2个天线中的相应天线。
11.根据权利要求10所述的毫米波系统,其中每对信道包括与所述相应天线的竖直极化相对应的第一信道和与所述相应天线的水平极化相对应的第二信道,并且其中所述控制器被配置为操作一对信道中的所述第一信道以进行所述雷达设备的雷达操作,并且操作所述一对信道中的所述第二信道以进行所述通信设备的通信操作。
12.根据权利要求11所述的毫米波系统,其中所述控制器被配置为同时操作所述一对信道中的所述第一信道以进行雷达操作以及所述一对信道中的所述第二信道以进行通信操作。
13.根据权利要求1所述的毫米波系统,还包括:
调制器/解调器(调制解调器);以及
变频器电路,耦合在所述调制解调器与所述第一电路之间。
14.根据权利要求13所述的毫米波系统,其中所述调制解调器包括正交调制器。
15.根据权利要求13所述的毫米波系统,其中所述变频器包括耦合到双向可变增益放大器的混频器。
16.根据权利要求13所述的毫米波系统,其中所述变频器包括链,所述链包括多个混频器和多个双向可变增益放大器。
17.一种毫米波系统,包括:
第一电路,具有被配置为耦合到天线阵列的多个射频(RF)信道,所述第一电路被配置为通过所述天线阵列发射和接收RF信号;以及
控制器,被配置为使用所述第一电路执行雷达操作和通信操作,所述控制器可操作以基于调度器模块的输出将所述毫米波系统动态地重新配置为在执行雷达操作与执行通信操作之间进行多路复用。
18.根据权利要求17所述的毫米波系统,其中所述控制器被配置为通过执行所述通信操作来与基站建立通信链路。
19.根据权利要求17所述的毫米波系统,其中所述控制器被配置为通过执行通信操作来在基站与第二毫米波系统之间建立通信链路。
20.根据权利要求17所述的毫米波系统,其中所述毫米波系统是无人机的一部分,并且其中所述控制器被配置为通过执行所述雷达操作来测量所述无人机的高度。
21.根据权利要求17所述的毫米波系统,其中所述毫米波系统是车辆或无人机的一部分,并且其中所述控制器被配置为通过执行所述雷达操作来检测所述车辆或所述无人机周围的物体。
22.一种操作毫米波系统的方法,所述方法包括:
接收雷达请求;
接收通信请求;
基于所述雷达请求和所述通信请求将所述毫米波系统的硬件资源分配用于雷达操作和用于通信操作;
利用被分配用于雷达操作的所述毫米波系统的所述硬件资源执行雷达操作;以及
利用被分配用于通信操作的所述毫米波系统的所述硬件资源执行通信操作。
23.根据权利要求22所述的方法,还包括同时执行所述雷达操作和所述通信操作。
24.根据权利要求22所述的方法,其中执行所述雷达操作包括在科学和医学(ISM)频段中发射和接收射频(RF)信号,并且其中执行所述通信操作包括在与所述ISM频段不同的5G通信频段中发射和接收RF信号。
25.根据权利要求22所述的方法,其中执行通信操作包括通过通信链路发射和接收数据,所述方法还包括:
使用雷达波束进行所述雷达操作;以及
基于从所述通信链路接收的数据修改所述雷达波束。
26.根据权利要求22所述的方法,其中执行通信操作包括通过通信链路发射和接收数据,所述方法还包括:
使用雷达波束进行所述雷达操作;
在所述雷达波束的视场中检测物体;以及
经由所述通信链路发射检测到的所述物体的位置信息。
CN202010266769.3A 2019-04-05 2020-04-07 Fmcw雷达与通信系统的集成 Active CN111800173B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/376,945 2019-04-05
US16/376,945 US11454696B2 (en) 2019-04-05 2019-04-05 FMCW radar integration with communication system

Publications (2)

Publication Number Publication Date
CN111800173A true CN111800173A (zh) 2020-10-20
CN111800173B CN111800173B (zh) 2024-02-02

Family

ID=70189693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010266769.3A Active CN111800173B (zh) 2019-04-05 2020-04-07 Fmcw雷达与通信系统的集成

Country Status (3)

Country Link
US (1) US11454696B2 (zh)
EP (1) EP3726242A3 (zh)
CN (1) CN111800173B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640765A (zh) * 2021-08-09 2021-11-12 刘天健 基于通信基站的雷达探测方法、物体定位方法和基站
CN115842583A (zh) * 2022-12-28 2023-03-24 北京九天微星科技发展有限公司 一种信道探测参考信号发送方法、装置及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656322B2 (en) * 2019-07-03 2023-05-23 Radchat Ab Method for reducing mutual interference in radars
US11229002B2 (en) * 2019-09-05 2022-01-18 Apple Inc. Ranging with a mobile cellular device
US11824711B2 (en) * 2019-09-25 2023-11-21 Qualcomm Incorporated Techniques for configuring a time gap for a probing pulse signal
US20210132211A1 (en) * 2019-10-30 2021-05-06 University Of Kansas Physical waveform optimization for multiple-beam multifunction digital arrays
CN113141382A (zh) * 2020-01-17 2021-07-20 北京小米移动软件有限公司 数据发送方法、数据接收方法、数据传输方法及移动终端
US11784674B2 (en) * 2020-03-24 2023-10-10 Qualcomm Incorporated Calibration of open space for an antenna array module
US20240012095A1 (en) * 2020-11-18 2024-01-11 Lenovo (Singapore) Pte. Ltd. Radar sensing in a radio access network
CN114584988A (zh) * 2020-11-28 2022-06-03 华为技术有限公司 用于感知和通信的方法和装置
DE102021100416A1 (de) 2021-01-12 2022-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum auswählen von konfigurationen einer aufgabe in einem radar-ressourcen managementsystem und radar-ressourcen managementsystem
DE102021100403A1 (de) 2021-01-12 2022-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zum Auswählen von Konfigurationen einer Aufgabe in einem Radar-Ressourcen Managementsystem und Radar-Ressourcen Managementsystem
CN113013583B (zh) * 2021-01-29 2023-08-18 中国电子科技集团公司第三十八研究所 毫米波雷达封装模组
US20240118376A1 (en) * 2021-02-15 2024-04-11 Volvo Truck Corporation Data network for a vehicle combination
WO2022182933A1 (en) * 2021-02-25 2022-09-01 Nagpal Sumit Kumar Technologies for tracking objects within defined areas
US20230076874A1 (en) * 2021-08-30 2023-03-09 Samsung Electronics Co., Ltd. Power control and beam management for communication and sensing
WO2023113930A2 (en) * 2021-12-16 2023-06-22 Qualcomm Incorporated Flexible ofdm waveform for joint communication and rf sensing
EP4270799A1 (en) * 2022-04-29 2023-11-01 Nxp B.V. Dual-mode analog beam former and method therefor

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102997A1 (en) * 2000-02-13 2003-06-05 Hexagon System Engineering Ltd. Vehicle communication network
KR20070110721A (ko) * 2006-05-15 2007-11-20 한국전기연구원 무선통신 기능을 갖춘 차량용 레이더 듀얼모드 시스템
EP3073574A1 (en) * 2015-03-27 2016-09-28 The Boeing Company Multi-function shared aperture array
CN106207468A (zh) * 2016-06-28 2016-12-07 西安电子科技大学 一种双频双极化波束可控微带反射阵天线
US20170160380A1 (en) * 2015-12-08 2017-06-08 Delphi Technologies, Inc. Residue cancellation for automated vehicle mimo radar
CN106817134A (zh) * 2016-10-25 2017-06-09 张慧 一种可配置的全双工无线网络雷达通信系统
US20170310758A1 (en) * 2016-04-25 2017-10-26 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
CN107810430A (zh) * 2015-06-17 2018-03-16 纽威莱克公司 用于停车辅助的毫米波传感器系统
CN108226914A (zh) * 2018-01-26 2018-06-29 重庆邮电大学 一种毫米波通信和雷达一体化射频前端设计方法
US20180199377A1 (en) * 2017-01-10 2018-07-12 Qualcomm Incorporated Co-existence of millimeter wave communication and radar
EP3358676A1 (en) * 2017-02-07 2018-08-08 Panasonic Corporation Module, wireless communication apparatus, and radar apparatus
WO2018195453A1 (en) * 2017-04-20 2018-10-25 The Board Of Trustees For The Leland Stanford Junior Universtiy Scalable mm-wave arrays with large apertures realized by mm-wave dielectric waveguides
US20180335512A1 (en) * 2017-05-19 2018-11-22 Novelic D.O.O. mm-Wave Radar Sensor for Distance Measurement in Short and Medium Range
CN108983226A (zh) * 2018-07-20 2018-12-11 北京航空航天大学 一种基于天线布阵调制的mimo雷达通信一体化方法
EP3444628A1 (en) * 2017-08-18 2019-02-20 Nxp B.V. Radar unit, integrated circuit and methods for detecting and mitigating mutual interference
CN109557535A (zh) * 2017-09-26 2019-04-02 英飞凌科技股份有限公司 用于使用毫米波雷达传感器的占用检测的系统和方法
US20190101634A1 (en) * 2017-10-04 2019-04-04 Infineon Technologies Ag System and method for controlling operation of a vehicle using a millimeter-wave radar sensor

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241347A (en) 1978-06-28 1980-12-23 International Telephone And Telegraph Corporation PRC/FM CW Radar system
GB2247799A (en) 1990-09-04 1992-03-11 Gec Ferranti Defence Syst Radar based navigation aid
US6459742B1 (en) * 1997-08-04 2002-10-01 Eads Defence And Security Networks Digital modulation process and modulator implementing the process
JP3361995B2 (ja) * 1998-07-03 2003-01-07 株式会社東芝 搬送波再生回路並びに搬送波再生方法
US6147572A (en) 1998-07-15 2000-11-14 Lucent Technologies, Inc. Filter including a microstrip antenna and a frequency selective surface
GB2348345B (en) * 1999-01-25 2004-04-14 Nec Corp Demodulator and demodulation method for demodulating quadrature modulation signals
JP3393204B2 (ja) 1999-10-06 2003-04-07 株式会社ホンダエレシス マルチビームレーダ装置
AU2001275342A1 (en) 2000-06-06 2001-12-17 Altratek Inc. System and method for detection and tracking of targets
DE10037099A1 (de) 2000-07-28 2002-02-07 Wienand Hans Theo Personenzählvorrichtung
JP3680029B2 (ja) 2001-08-08 2005-08-10 三菱重工業株式会社 金属薄膜の気相成長方法およびその気相成長装置
US7176506B2 (en) 2001-08-28 2007-02-13 Tessera, Inc. High frequency chip packages with connecting elements
US7068704B1 (en) * 2001-09-26 2006-06-27 Itt Manufacturing Enterpprises, Inc. Embedded chirp signal for position determination in cellular communication systems
US7948769B2 (en) 2007-09-27 2011-05-24 Hemisphere Gps Llc Tightly-coupled PCB GNSS circuit and manufacturing method
KR100477647B1 (ko) 2002-06-01 2005-03-23 삼성전자주식회사 영상의 움직임 보정 장치 및 방법
US6963259B2 (en) 2002-06-27 2005-11-08 Harris Corporation High efficiency resonant line
US6693580B1 (en) * 2002-09-04 2004-02-17 Northrop Grumman Corporation Multifunction millimeter-wave system for radar, communications, IFF and surveillance
JP3833606B2 (ja) 2002-12-19 2006-10-18 三菱電機株式会社 車載レーダ装置
US8044839B2 (en) * 2004-01-20 2011-10-25 Bae Systems Information And Electronic Systems Integration Inc. Combined radar and communications link
US7119745B2 (en) 2004-06-30 2006-10-10 International Business Machines Corporation Apparatus and method for constructing and packaging printed antenna devices
WO2006017265A2 (en) 2004-07-12 2006-02-16 Signal-Labs, Inc. System and method for detection and tracking of targets
US7057564B2 (en) 2004-08-31 2006-06-06 Freescale Semiconductor, Inc. Multilayer cavity slot antenna
US7615856B2 (en) 2004-09-01 2009-11-10 Sanyo Electric Co., Ltd. Integrated antenna type circuit apparatus
US7692684B2 (en) 2004-09-27 2010-04-06 Point Grey Research Inc. People counting systems and methods
JP2006234513A (ja) 2005-02-23 2006-09-07 Toyota Central Res & Dev Lab Inc 障害物検出装置
US8066642B1 (en) 2005-05-03 2011-11-29 Sonosite, Inc. Systems and methods for ultrasound beam forming data control
US7596241B2 (en) 2005-06-30 2009-09-29 General Electric Company System and method for automatic person counting and detection of specific events
US8228382B2 (en) 2005-11-05 2012-07-24 Ram Pattikonda System and method for counting people
EP1791277A1 (de) 2005-11-28 2007-05-30 Siemens Aktiengesellschaft Verfahren und Anordnung zur Kalibrierung von Sendepfaden eines Antennensystems
US20070210959A1 (en) 2006-03-07 2007-09-13 Massachusetts Institute Of Technology Multi-beam tile array module for phased array systems
US7652617B2 (en) 2006-06-01 2010-01-26 University Of Florida Research Foundation, Inc. Radar microsensor for detection, tracking, and classification
US7873326B2 (en) 2006-07-11 2011-01-18 Mojix, Inc. RFID beam forming system
DE102006032539A1 (de) 2006-07-13 2008-01-17 Robert Bosch Gmbh FMCW-Radarsensor
US7889147B2 (en) 2007-02-23 2011-02-15 Northrop Grumman Systems Corporation Modular active phased array
US7525474B2 (en) 2007-03-30 2009-04-28 Honeywell International Inc. Integrated distance measuring equipment and transponder system and method
US7675465B2 (en) 2007-05-22 2010-03-09 Sibeam, Inc. Surface mountable integrated circuit packaging scheme
US8237259B2 (en) 2007-06-13 2012-08-07 Infineon Technologies Ag Embedded chip package
US8169358B1 (en) * 2007-06-25 2012-05-01 Bbn Technologies Coherent multi-band radar and communications transceiver
JP4415040B2 (ja) 2007-09-18 2010-02-17 三菱電機株式会社 レーダ装置
US7994969B2 (en) 2007-09-21 2011-08-09 The Regents Of The University Of Michigan OFDM frequency scanning radar
US7880677B2 (en) 2007-12-12 2011-02-01 Broadcom Corporation Method and system for a phased array antenna embedded in an integrated circuit package
US8134425B2 (en) 2007-12-13 2012-03-13 Broadcom Corporation Method and system for filters embedded in an integrated circuit package
JP4861303B2 (ja) 2007-12-27 2012-01-25 株式会社日立製作所 レーダセンサ
EP2307907A1 (en) 2008-07-24 2011-04-13 Koninklijke Philips Electronics N.V. Distance measurement
DE102008054570A1 (de) 2008-12-12 2010-06-17 Robert Bosch Gmbh FMCW-Radarsensor für Kraftfahrzeuge
EP2396887A4 (en) 2009-02-13 2012-08-29 Freescale Semiconductor Inc INTEGRATED CIRCUIT COMPRISING A FREQUENCY GENERATION CIRCUITRY FOR CONTROLLING A FREQUENCY SOURCE
US20100207805A1 (en) 2009-02-19 2010-08-19 Agd Systems Limited Obtaining an indication of a number of moving objects passing speed detection apparatus
WO2010115418A2 (de) 2009-04-06 2010-10-14 Conti Temic Microelectronic Gmbh Radarsystem mit anordnungen und verfahren zur entkopplung von sende- und empfangssignalen sowie unterdrückung von störeinstrahlungen
US7978123B2 (en) * 2009-05-04 2011-07-12 Raytheon Company System and method for operating a radar system in a continuous wave mode for data communication
CN201438747U (zh) 2009-05-18 2010-04-14 幻音科技(深圳)有限公司 耳塞式耳机
CN101585361A (zh) 2009-05-25 2009-11-25 郭文艺 汽车防碰撞防车道偏离控制装置
WO2010147515A1 (en) 2009-06-17 2010-12-23 Telefonaktiebolage Lm Eriksson (Publ) A method for antenna calibration in a wideband communication system
US8941625B2 (en) 2009-07-07 2015-01-27 Elliptic Laboratories As Control using movements
DE102009055262A1 (de) 2009-12-23 2011-06-30 Endress + Hauser GmbH + Co. KG, 79689 Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
WO2011106881A1 (en) 2010-03-05 2011-09-09 University Of Windsor Radar system and method of manufacturing same
US8725085B2 (en) 2010-06-03 2014-05-13 Broadcom Corporation RF front-end module
US8730088B2 (en) * 2010-08-09 2014-05-20 Raytheon Bbn Technologies Corp. Radar coherent processing interval scheduling via ad hoc network
EP2428814A1 (en) * 2010-09-13 2012-03-14 France Telecom Object detection method, device and system
US9569003B2 (en) 2010-09-30 2017-02-14 Broadcom Corporation Portable computing device including a three-dimensional touch screen
JP5549560B2 (ja) 2010-11-26 2014-07-16 富士通株式会社 Fm−cwレーダ装置、ペアリング方法
JP2012168157A (ja) 2011-02-11 2012-09-06 National Univ Corp Shizuoka Univ 車載用のマルチビーム方式レーダ装置、マルチビーム方式レーダ方法およびマルチビーム方式レーダプログラム
US8988299B2 (en) 2011-02-17 2015-03-24 International Business Machines Corporation Integrated antenna for RFIC package applications
US20120280900A1 (en) 2011-05-06 2012-11-08 Nokia Corporation Gesture recognition using plural sensors
DE102011100907A1 (de) 2011-05-09 2012-01-12 Daimler Ag Vorrichtung und Verfahren zur Ermittlung eines Fahrbahnzustands
DE102011075725A1 (de) 2011-05-12 2012-11-15 Robert Bosch Gmbh Verfahren zum Erkennen von Gesten
US8860532B2 (en) 2011-05-20 2014-10-14 University Of Central Florida Research Foundation, Inc. Integrated cavity filter/antenna system
US9183686B2 (en) 2011-07-12 2015-11-10 Tyco Fire & Security Gmbh Method and system for people counting using passive infrared detectors
CN104115417A (zh) 2011-10-20 2014-10-22 基萨公司 低剖面无线连接器
CN104094194A (zh) 2011-12-09 2014-10-08 诺基亚公司 用于基于多个传感器信号的融合识别手势的方法和设备
US9202105B1 (en) 2012-01-13 2015-12-01 Amazon Technologies, Inc. Image analysis for user authentication
CN102788969B (zh) 2012-07-04 2015-01-28 中国人民解放军海军航空工程学院 基于短时分数阶傅里叶变换的海面微动目标检测和特征提取方法
US9325545B2 (en) * 2012-07-26 2016-04-26 The Boeing Company System and method for generating an on-demand modulation waveform for use in communications between radios
US9678573B2 (en) 2012-07-30 2017-06-13 Microsoft Technology Licensing, Llc Interaction with devices based on user state
DE102012015250A1 (de) * 2012-08-01 2014-02-06 Audi Ag Radarsensor für ein Kraftfahrzeug, Kraftfahrzeug und Kommunikationsverfahren
US20140070994A1 (en) 2012-09-13 2014-03-13 Toyota Motor Engineering & Manufacturing North America, Inc. 3d short range detection with phased array radar
US9196951B2 (en) 2012-11-26 2015-11-24 International Business Machines Corporation Millimeter-wave radio frequency integrated circuit packages with integrated antennas
CN102967854B (zh) 2012-12-07 2014-08-13 中国人民解放军海军航空工程学院 Frft域海杂波中目标的多重分形检测方法
TWI553721B (zh) 2012-12-26 2016-10-11 日立化成股份有限公司 擴展方法、以及半導體裝置的製造方法
US8836596B2 (en) 2013-01-15 2014-09-16 Cubic Corporation Filter antenna
GB2525550B (en) * 2013-02-18 2017-08-09 Univ Cape Town Combined radar and communication system
US20140266857A1 (en) * 2013-03-12 2014-09-18 Physical Sciences, Inc. Fusing Radar and Communications Data in a Bi-Static Passive RF Link
US9413079B2 (en) 2013-03-13 2016-08-09 Intel Corporation Single-package phased array module with interleaved sub-arrays
KR101480348B1 (ko) 2013-05-31 2015-01-09 삼성에스디에스 주식회사 사람 검출 장치 및 방법과 사람 계수 장치 및 방법
US9459339B2 (en) 2013-06-13 2016-10-04 Texas Instruments Incorporated Kalman filter for indoor positioning
CN103529444A (zh) 2013-09-27 2014-01-22 安徽师范大学 一种车载毫米波雷达动目标识别器及识别方法
WO2015051819A1 (en) 2013-10-07 2015-04-16 Gn Netcom A/S Earphone device with optical sensor
US9753131B2 (en) 2013-10-09 2017-09-05 Massachusetts Institute Of Technology Motion tracking via body radio reflections
US9759807B2 (en) 2013-10-25 2017-09-12 Texas Instruments Incorporated Techniques for angle resolution in radar
US9773742B2 (en) 2013-12-18 2017-09-26 Intel Corporation Embedded millimeter-wave phased array module
US20150181840A1 (en) 2013-12-31 2015-07-02 i4c Innovations Inc. Ultra-Wideband Radar System for Animals
JP2015141109A (ja) 2014-01-29 2015-08-03 富士通テン株式会社 レーダ装置、及び、信号処理方法
US9704769B2 (en) 2014-02-27 2017-07-11 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming encapsulated wafer level chip scale package (EWLCSP)
CN203950036U (zh) 2014-03-12 2014-11-19 肖令军 一种基于毫米波雷达测距的有人无人直升机避撞系统
US9921657B2 (en) 2014-03-28 2018-03-20 Intel Corporation Radar-based gesture recognition
WO2015167260A1 (en) 2014-04-30 2015-11-05 Lg Innotek Co., Ltd. Touch device, wearable device having the same and touch recognition method
RU2595941C2 (ru) * 2014-05-06 2016-08-27 Общество с ограниченной ответственностью "Радио Гигабит" Система радиорелейной связи с подстройкой луча
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9666553B2 (en) 2014-06-16 2017-05-30 Texas Instruments Incorporated Millimeter wave integrated circuit with ball grid array package including transmit and receive channels
US20170131395A1 (en) 2014-06-25 2017-05-11 University Of Washington Devices, systems, and methods for detecting gestures using multiple antennas and/or reflections of signals transmitted by the detecting device
US10627480B2 (en) 2014-07-17 2020-04-21 Texas Instruments Incorporated Distributed radar signal processing in a radar system
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9784828B2 (en) 2014-08-27 2017-10-10 Texas Insturments Incorporated FMCW doppler processing algorithm for achieving CW performance
US10094920B2 (en) 2014-08-27 2018-10-09 Texas Instruments Incorporated Range resolution in FMCW radars
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US10539669B2 (en) 2014-10-08 2020-01-21 Texas Instruments Incorporated Three dimensional (3D) tracking of objects in a radar system
US10634778B2 (en) 2014-10-21 2020-04-28 Texas Instruments Incorporated Camera assisted tracking of objects in a radar system
US20160118353A1 (en) 2014-10-22 2016-04-28 Infineon Techologies Ag Systems and Methods Using an RF Circuit on Isolating Material
KR20160058594A (ko) 2014-11-17 2016-05-25 삼성전자주식회사 로봇 청소기, 단말장치 및 그 제어 방법
US9733340B2 (en) 2014-11-21 2017-08-15 Texas Instruments Incorporated Techniques for high arrival angle resolution using multiple nano-radars
US9829566B2 (en) 2014-11-25 2017-11-28 Texas Instruments Incorporated Controlling radar transmission to enable interference mitigation
US20160306034A1 (en) * 2014-12-23 2016-10-20 Infineon Technologies Ag RF System with an RFIC and Antenna System
US10317512B2 (en) * 2014-12-23 2019-06-11 Infineon Technologies Ag RF system with an RFIC and antenna system
US9921295B2 (en) 2014-12-30 2018-03-20 Texas Instruments Incorporated Multiple chirp generation in a radar system
US9696359B2 (en) 2014-12-31 2017-07-04 Texas Instruments Incorporated Dynamic measurement of frequency synthesizer noise spurs or phase noise
JP6567832B2 (ja) 2015-01-29 2019-08-28 日本電産株式会社 レーダシステム、レーダ信号処理装置、車両走行制御装置および方法、ならびにコンピュータプログラム
US10622694B2 (en) 2015-02-12 2020-04-14 Texas Instruments Incorporated Dielectric waveguide radar signal distribution
US9817109B2 (en) 2015-02-27 2017-11-14 Texas Instruments Incorporated Gesture recognition using frequency modulated continuous wave (FMCW) radar with low angle resolution
US10168785B2 (en) 2015-03-03 2019-01-01 Nvidia Corporation Multi-sensor based user interface
RU2017128750A (ru) 2015-03-16 2019-04-16 ДЮПУНТОЦЕРО С.р.л. Устройство для интубации трахеи
US10067221B2 (en) 2015-04-06 2018-09-04 Texas Instruments Incorporated Interference detection in a frequency modulated continuous wave (FMCW) radar system
US9835714B2 (en) 2015-04-09 2017-12-05 Texas Instruments Incorporated Circuit and method for impedance detection in millimeter wave systems
JP6427279B2 (ja) 2015-04-30 2018-11-21 グーグル エルエルシー ジェスチャの追跡および認識のための、rfに基づいた微細動作追跡
US10139916B2 (en) 2015-04-30 2018-11-27 Google Llc Wide-field radar-based gesture recognition
US9853365B2 (en) 2015-05-05 2017-12-26 Texas Instruments Incorporated Dynamic programming of chirps in a frequency modulated continuous wave (FMCW) radar system
US10310063B2 (en) * 2015-05-12 2019-06-04 Maxlinear, Inc. Calibration of a multifunctional automotive radar system
US10613208B2 (en) 2015-05-15 2020-04-07 Texas Instruments Incorporated Low complexity super-resolution technique for object detection in frequency modulation continuous wave radar
US20160349845A1 (en) 2015-05-28 2016-12-01 Google Inc. Gesture Detection Haptics and Virtual Tools
US9806040B2 (en) 2015-07-29 2017-10-31 STATS ChipPAC Pte. Ltd. Antenna in embedded wafer-level ball-grid array package
US10048354B2 (en) 2015-08-13 2018-08-14 Texas Instruments Incorporated Chirp frequency non-linearity mitigation in radar systems
US20170054449A1 (en) 2015-08-19 2017-02-23 Texas Instruments Incorporated Method and System for Compression of Radar Signals
US10555256B2 (en) 2015-09-08 2020-02-04 Texas Instruments Incorporated Re-sampling with reduced power consumption and complexity
US10078131B2 (en) 2015-09-15 2018-09-18 Texas Instruments Incorporated Method and apparatus for FMCW radar processing
US9886095B2 (en) 2015-09-24 2018-02-06 Stmicroelectronics Sa Device and method for recognizing hand gestures using time-of-flight sensing
US10234542B2 (en) 2015-09-30 2019-03-19 Texas Instruments Incorporated Measurement of transceiver performance parameters in a radar system
US10061015B2 (en) 2015-09-30 2018-08-28 Texas Instruments Incorporated Multi-chip transceiver testing in a radar system
US10718852B2 (en) 2015-10-23 2020-07-21 Texas Instruments Incorporated RF/mm-wave peak detector with high-dynamic range calibration
US9759808B2 (en) 2015-11-12 2017-09-12 Texas Instruments Incorporated Buffer sample size control for variable chirp radar
WO2017084700A1 (de) 2015-11-17 2017-05-26 Vega Grieshaber Kg Antennenvorrichtung und verfahren zum senden und/oder empfangen eines signals
KR102427185B1 (ko) 2015-12-09 2022-08-01 삼성전자 주식회사 스위치 운용 방법 및 이를 지원하는 전자 장치
US10746851B2 (en) 2015-12-18 2020-08-18 Texas Instruments Incorporated Circuits and methods for determining chirp signal linearity and phase noise of a FMCW radar
US10599518B2 (en) 2015-12-31 2020-03-24 Texas Instruments Incorporated Protecting data memory in a signal processing system
US10530053B2 (en) 2016-01-13 2020-01-07 Infineon Technologies Ag System and method for measuring a plurality of RF signal paths
DE102016101041B4 (de) * 2016-01-21 2018-11-22 Infineon Technologies Ag Konzept für Car2X-Kommunikation
US9965043B2 (en) 2016-01-27 2018-05-08 Wipro Limited Method and system for recommending one or more gestures to users interacting with computing device
WO2017207042A1 (en) * 2016-06-01 2017-12-07 Sony Mobile Communications Inc. Coexistence of radio communication and radar probing
US10514770B2 (en) 2016-06-17 2019-12-24 Texas Instruments Incorporated Hidden Markov model-based gesture recognition with FMCW radar
US10598763B2 (en) * 2016-07-27 2020-03-24 Raytheon Company System and method for concurrent communication of different signal types by a radar
EP3497546B1 (en) 2016-08-09 2021-10-06 Google LLC Radar-based gestural interface
CN106980362A (zh) 2016-10-09 2017-07-25 阿里巴巴集团控股有限公司 基于虚拟现实场景的输入方法及装置
EP3321710B1 (en) * 2016-11-09 2020-03-25 NXP USA, Inc. Apparatus and associated method
US9935065B1 (en) 2016-12-21 2018-04-03 Infineon Technologies Ag Radio frequency device packages and methods of formation thereof
US10620297B2 (en) * 2016-12-22 2020-04-14 Apple Inc. Radar methods and apparatus using in phased array communication systems
US20190377075A1 (en) * 2016-12-29 2019-12-12 Intel IP Corporation Communication scanning method and system
US10371812B2 (en) * 2017-02-23 2019-08-06 Rosemount Aerospace Inc. Ultra-wideband radar altimeter
CN106911605A (zh) 2017-03-01 2017-06-30 哈尔滨工业大学 一种基于fmcw的雷达通信一体化波形生成方法
US10782390B2 (en) * 2017-05-31 2020-09-22 Google Llc Full-duplex operation for radar sensing using wireless communication chipset
US10754005B2 (en) * 2017-05-31 2020-08-25 Google Llc Radar modulation for radar sensing using a wireless communication chipset
DE102018102979A1 (de) * 2018-02-09 2019-08-14 Infineon Technologies Ag Hochfrequenzeinrichtung, System umfassend eine Hochfrequenzeinrichtung und entsprechende Verfahren
US11644529B2 (en) * 2018-03-26 2023-05-09 Qualcomm Incorporated Using a side-communication channel for exchanging radar information to improve multi-radar coexistence
US10082562B1 (en) * 2018-04-27 2018-09-25 Lyft, Inc. Simultaneous object detection and data transfer with a vehicle radar
US10175340B1 (en) * 2018-04-27 2019-01-08 Lyft, Inc. Switching between object detection and data transfer with a vehicle radar
CN110418310B (zh) * 2018-04-28 2021-03-30 华为技术有限公司 车辆雷达通信一体化的实现方法、相关设备及系统
US11585889B2 (en) * 2018-07-25 2023-02-21 Qualcomm Incorporated Methods for radar coexistence
US11061126B2 (en) * 2019-03-26 2021-07-13 The Boeing Company Cooperative frequency-modulated continuous-waveform radar systems
US11307299B2 (en) * 2019-08-07 2022-04-19 Apple Inc. Radio frequency based sensing using communication signals

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102997A1 (en) * 2000-02-13 2003-06-05 Hexagon System Engineering Ltd. Vehicle communication network
KR20070110721A (ko) * 2006-05-15 2007-11-20 한국전기연구원 무선통신 기능을 갖춘 차량용 레이더 듀얼모드 시스템
EP3073574A1 (en) * 2015-03-27 2016-09-28 The Boeing Company Multi-function shared aperture array
CN107810430A (zh) * 2015-06-17 2018-03-16 纽威莱克公司 用于停车辅助的毫米波传感器系统
US20170160380A1 (en) * 2015-12-08 2017-06-08 Delphi Technologies, Inc. Residue cancellation for automated vehicle mimo radar
US20170310758A1 (en) * 2016-04-25 2017-10-26 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
CN106207468A (zh) * 2016-06-28 2016-12-07 西安电子科技大学 一种双频双极化波束可控微带反射阵天线
CN106817134A (zh) * 2016-10-25 2017-06-09 张慧 一种可配置的全双工无线网络雷达通信系统
TW201830943A (zh) * 2017-01-10 2018-08-16 美商高通公司 毫米波通訊與雷達的共存
US20180199377A1 (en) * 2017-01-10 2018-07-12 Qualcomm Incorporated Co-existence of millimeter wave communication and radar
EP3358676A1 (en) * 2017-02-07 2018-08-08 Panasonic Corporation Module, wireless communication apparatus, and radar apparatus
WO2018195453A1 (en) * 2017-04-20 2018-10-25 The Board Of Trustees For The Leland Stanford Junior Universtiy Scalable mm-wave arrays with large apertures realized by mm-wave dielectric waveguides
US20180335512A1 (en) * 2017-05-19 2018-11-22 Novelic D.O.O. mm-Wave Radar Sensor for Distance Measurement in Short and Medium Range
EP3444628A1 (en) * 2017-08-18 2019-02-20 Nxp B.V. Radar unit, integrated circuit and methods for detecting and mitigating mutual interference
CN109557535A (zh) * 2017-09-26 2019-04-02 英飞凌科技股份有限公司 用于使用毫米波雷达传感器的占用检测的系统和方法
US20190101634A1 (en) * 2017-10-04 2019-04-04 Infineon Technologies Ag System and method for controlling operation of a vehicle using a millimeter-wave radar sensor
CN108226914A (zh) * 2018-01-26 2018-06-29 重庆邮电大学 一种毫米波通信和雷达一体化射频前端设计方法
CN108983226A (zh) * 2018-07-20 2018-12-11 北京航空航天大学 一种基于天线布阵调制的mimo雷达通信一体化方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640765A (zh) * 2021-08-09 2021-11-12 刘天健 基于通信基站的雷达探测方法、物体定位方法和基站
CN113640765B (zh) * 2021-08-09 2023-11-14 刘天健 基于通信基站的雷达探测方法、物体定位方法和基站
CN115842583A (zh) * 2022-12-28 2023-03-24 北京九天微星科技发展有限公司 一种信道探测参考信号发送方法、装置及系统

Also Published As

Publication number Publication date
CN111800173B (zh) 2024-02-02
EP3726242A3 (en) 2021-01-20
US20200319327A1 (en) 2020-10-08
US11454696B2 (en) 2022-09-27
EP3726242A2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
CN111800173B (zh) Fmcw雷达与通信系统的集成
Barneto et al. Full duplex radio/radar technology: The enabler for advanced joint communication and sensing
Mishra et al. Toward millimeter-wave joint radar communications: A signal processing perspective
US11079470B2 (en) Radar modulation for radar sensing using a wireless communication chipset
US11598844B2 (en) Full-duplex operation for radar sensing using a wireless communication chipset
US10795009B2 (en) Digital beamforming for radar sensing using wireless communication chipset
US10969481B2 (en) Coexistence of radio communication and radar probing
CN110875765A (zh) 具有传感器辅助波束管理的波束成形通信系统
US20230393275A1 (en) Multimode Communication and Radar System Resource Allocation
CN109477885B (zh) 采用导频信号的雷达探测
KR20070110721A (ko) 무선통신 기능을 갖춘 차량용 레이더 듀얼모드 시스템
WO2020017475A1 (ja) 通信装置及び通信方法
US20210215817A1 (en) Synthetic aperture antenna array for 3d imaging
CN105991170B (zh) 一种信号发射方法及装置
CN115462112A (zh) 使用射频进行环境感测
US11774550B2 (en) Two-state automatic gain control for communications and radar
US20220377792A1 (en) Communication device and communication method
KR102185793B1 (ko) 레이더 장치
Faghih-Naini et al. Hardware Design Challenges and Modulation Schemes in Joint Communication and Sensing: Analyzation and Comparison of the State-of-the-Art Co-Located Communication and Sensing Systems
Feger et al. Millimeter-wave radar systems on-chip and in package: Current status and future challenges
US20100253568A1 (en) Method for exchanging radar signals
US20230253997A1 (en) Millimiter-wave antenna system for radiomobile communications in vehicles
JP2021002847A (ja) 無線通信とレーダプロービングの共存

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant