CN111796267A - 一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法 - Google Patents

一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法 Download PDF

Info

Publication number
CN111796267A
CN111796267A CN202010672857.3A CN202010672857A CN111796267A CN 111796267 A CN111796267 A CN 111796267A CN 202010672857 A CN202010672857 A CN 202010672857A CN 111796267 A CN111796267 A CN 111796267A
Authority
CN
China
Prior art keywords
target
turning
representing
pseudo
doppler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010672857.3A
Other languages
English (en)
Other versions
CN111796267B (zh
Inventor
周共健
王亮亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202010672857.3A priority Critical patent/CN111796267B/zh
Publication of CN111796267A publication Critical patent/CN111796267A/zh
Application granted granted Critical
Publication of CN111796267B publication Critical patent/CN111796267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/70Radar-tracking systems; Analogous systems for range tracking only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法、计算机设备及计算机可读存储介质,该方法包括:获取雷达接收的RD回波数据,建立回波模型,确定演化方程;根据回波模型设置匹配滤波器的间隔和数量;对于每个匹配滤波器,根据演化方程预测目标位置,构造伪谱,基于伪谱积累实现RD平面多帧能量积累;根据预设的检测门限,判断是否有能量积累结果的峰值大于检测门限,如有则估计目标的距离、多普勒、转弯目标参数和转弯率;通过演化方程进行航迹回溯;输出航迹回溯结果。本发明能够实现在RD平面对机动转弯的微弱目标进行有效地检测和参数估计,且检测概率高,估计误差小。

Description

一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法
技术领域
本发明涉及空间目标跟踪技术领域,尤其涉及一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法、计算机设备及计算机可读存储介质。
背景技术
现代战争要求雷达在进行远程警戒、预警的任务时,具备运动目标的检测跟踪能力。但是,目标和环境的日益复杂,如隐身技术的发展使得目标的雷达反射截面积极大地减小,目标反射回波大幅度减弱;高层建筑、高海情等雷达照射区域中目标的信噪比、信杂比显著降低,这些都使得雷达的探测性能大大下降。
传统的跟踪方法以门限检测后的数据作为输入,但是由于单帧的门限检测会丢弃原始观测中大量的信息,并且会丢弃低信噪比的目标检测信号,传统的跟踪方法的检测性能会严重下降。与传统的跟踪方法相比,检测前跟踪(Track-Before-Detect,TBD)技术在单帧内并不进行门限检测处理,而是将雷达观测到的原始回波数据信息存储起来,通过多帧数据联合处理,宣布检测结果并同时估计出目标航迹。由于TBD技术没有采用单帧门限检测,保留了目标所有的信息,并且TBD技术通过多帧回波数据的联合处理,利用目标和背景噪声帧间位置相关性差异,实现目标回波能量的有效积累和背景的抑制,因此,TBD技术具有目标检测性能高,航迹估计精度高,不需要改变雷达外部硬件结构等一系列的优点。
现有的TBD方法对于机动目标往往存在模型失配问题,无法针对机动转弯目标直接处理距离-多普勒(Range-Doppler,RD)平面的数据,并实现机动转弯目标的多帧能量积累和有效检测,并且,由于传统TBD方法能量积累方式的局限,使得多帧积累后目标的输出包络存在退化现象,目标包络的特性无法保持。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是解决现有技术无法对机动转弯的微弱目标进行有效地检测和参数估计的问题。
(二)技术方案
为了解决上述技术问题,本发明提供了一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法,该方法包括如下步骤:
S1、获取雷达接收的RD回波数据,建立目标在RD平面的回波模型,确定机动转弯目标的距离和多普勒状态的演化方程,以及需匹配的转弯目标参数和转弯率的取值范围;
S2、根据回波模型设置一组匹配滤波器的间隔和数量;
S3、对于每个匹配滤波器,根据演化方程预测目标位置,构造伪谱,基于伪谱积累实现RD平面多帧能量积累;
S4、根据预设的检测门限,判断是否有能量积累结果的峰值大于检测门限,如没有则判断没有检测到目标,如有则选择最大峰值,记录最大峰值所在的匹配滤波器及分辨单元位置,估计目标的距离、多普勒、转弯目标参数和转弯率;
S5、根据估计出的目标的距离、多普勒、转弯目标参数和转弯率,通过演化方程进行航迹回溯;
S6、输出航迹回溯结果。
优选地,所述步骤S1中,建立目标在RD平面的回波模型时,雷达接收的RD回波数据zk为一个Nr×Nd的离散的RD平面,Nr和Nd分别表示距离和多普勒方向上的分辨单元数量,k表示帧数,k=1,2,...,K,K表示一个批处理中总的积累帧数;
目标在RD平面的回波模型为:
Figure BDA0002582959810000031
其中,(nr,nd)表示离散的分辨单元,nr=1,2,...,Nr,nd=1,2,...,Nd,(pr,k,pd,k)表示目标在第k帧的RD状态,0<pr,k≤Rmax表示雷达的距离观测范围,vdmin≤pd,k≤vdmax表示雷达的多普勒观测范围,Rmax表示雷达可观测到的最大距离,vdmin和vdmax分别表示雷达可观测到的最小多普勒和最大多普勒,I表示批处理中恒定的回波峰值幅度,εr和εd分别表示回波在距离和多普勒方向上的扩展程度,Δr和Δd分别表示雷达的距离和多普勒分辨。
优选地,所述步骤S1中,确定机动转弯目标的距离和多普勒状态的演化方程时,设目标服从笛卡尔坐标系的CT运动,则目标的距离和多普勒状态的演化方程分别表示为:
Figure BDA0002582959810000032
Figure BDA0002582959810000033
针对CT运动,包括两个转弯目标参数:第一转弯目标参数、第二转弯目标参数;其中,初始的第一转弯目标参数η0、第二转弯目标参数
Figure BDA0002582959810000034
满足:
Figure BDA0002582959810000035
第k帧的第一转弯目标参数ηk、第二转弯目标参数
Figure BDA0002582959810000036
满足:
Figure BDA0002582959810000037
(pr,0,pd,0)表示目标的初始RD状态,T表示连续两帧之间的时间间隔,(px,k,py,k)表示目标第k帧的笛卡尔位置,(vx,k,vy,k)表示目标第k帧的笛卡尔速度,(px,0,py,0)表示目标的初始笛卡尔位置,(vx,0,vy,0)表示目标的初始笛卡尔速度,λ表示转弯率;
针对CT运动,两个需匹配的参数:初始的第二转弯目标参数
Figure BDA0002582959810000049
转弯率λ,的取值范围分别为:
max≤λ≤λmax
Figure BDA0002582959810000041
其中,(vmin,vmax)表示目标速度绝对值的范围,λmax表示最大可能的转弯率。
优选地,所述步骤S2中,根据回波模型设置匹配滤波器的间隔时,归一化的匹配参数域的包络表达式为:
Figure BDA0002582959810000042
其中,
Figure BDA0002582959810000043
Figure BDA0002582959810000044
Figure BDA0002582959810000045
Figure BDA0002582959810000046
Figure BDA0002582959810000047
表示批处理后的目标输出包络,fIS(nr,nd,ir,id,pr,k,pd,k)表示以分辨单元本身为中心的初始伪谱,
Figure BDA0002582959810000048
表示系统传递函数,δ(·)表示狄拉克δ函数,*表示卷积算子,ir和id分别表示在距离和多普勒方向上所占分辨单元到回波峰值的距离,
Figure BDA0002582959810000051
Figure BDA0002582959810000052
分别表示在距离和多普勒方向上所占分辨单元到回波峰值的距离集合,kt表示系统传递函数中的帧数,
Figure BDA0002582959810000053
表示一个批处理中系统传递函数总的帧数,
Figure BDA0002582959810000054
表示匹配滤波器存在匹配误差时的预测RD状态,
Figure BDA0002582959810000055
表示第二转弯目标参数的匹配误差,Δλ表示转弯率的匹配误差;
根据匹配参数域的包络,确定初始的第二转弯目标参数
Figure BDA0002582959810000056
转弯率λ的3dB分辨,表达式分别为:
Figure BDA0002582959810000057
Figure BDA0002582959810000058
其中,
Figure BDA0002582959810000059
Figure BDA00025829598100000510
的逆函数;
Figure BDA00025829598100000511
和Δλ3dB分别作为相邻匹配滤波器之间的间隔来设置一组匹配滤波器。
优选地,所述步骤S3中,对于每个匹配滤波器,根据演化方程预测目标位置时,设第k帧的分辨单元(ncr,ncd)包含目标能量,对应的距离和多普勒状态分别表示为:
pcr=ncrΔr
pcd=(ncd-1)Δd+vdmin
ncr=1,2,...,Nr,ncd=1,2,...,Nd
设一个匹配滤波器对应的初始的第二转弯目标参数、转弯率为
Figure BDA00025829598100000512
和λh,则相应的第k帧的第二转弯目标参数为:
Figure BDA00025829598100000513
其中,初始的第一转弯目标参数表达式为:
Figure BDA00025829598100000514
将第k帧的距离和多普勒状态预测到最后一帧,得:
Figure BDA0002582959810000061
Figure BDA0002582959810000062
其中,ppr和ppd分别表示预测的距离和多普勒状态,进而得到预测的目标在RD平面中对应的位置分别为:
npr=pprr
npd=(ppd-vdmin)/Δd+1
其中,1≤npr≤Nr,1≤npd≤Nd
优选地,所述步骤S3中,对于每个匹配滤波器,构造伪谱时,以预测到的目标的位置(npr,npd)为中心,第k帧的分辨单元(ncr,ncd)的观测值zk(ncr,ncd)为峰值构造一个伪谱,得:
fPS(nr,nd,(npr,npd),zk(ncr,ncd))=zk(ncr,ncd)exp(-εr(nr-npr)2d(nd-npd)2)
将伪谱在分辨单元上对应的采样值累加到批处理的最后一帧中的分辨单元上,实现RD平面多帧能量积累。
本发明还提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法的步骤。
本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法的步骤。
(三)有益效果
本发明的上述技术方案具有如下优点:本发明提供了一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法、计算机设备及计算机可读存储介质,本发明建立目标在RD平面的回波模型,确定机动转弯目标的距离和多普勒状态的演化方程,通过演化方程准确地预测目标位置,避免因模型失配而造成的性能损失;本发明以预测的目标位置为中心,以分辨单元的观测值为峰值,在观测的RD平面构造一个伪谱,将伪谱采样值累加到对应的分辨单元上,实现多帧能量积累;本发明在多帧积累后,通过预设的检测门限来检测并申明目标的存在,同时对目标的距离、多普勒、转弯目标参数和转弯率进行估计。本发明能够有效保留回波数据中的各种信息,提高弱的机动转弯目标多帧积累后的信噪比增益和检测概率,实现在RD平面对弱的机动转弯目标进行有效地检测和参数估计。
附图说明
图1是本发明实施例中一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法步骤示意图;
图2示出了本发明实施例所提出的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法、传统基于近似模型的三维匹配滤波方法以及传统的DP-TBD方法的积累平面;
图3示出了本发明实施例所提出的机动转弯目标检测前跟踪方法与传统的DP-TBD方法检测概率对比;
图4示出了本发明实施例所提出的机动转弯目标检测前跟踪方法与传统的DP-TBD方法距离估计误差对比;
图5示出了本发明实施例所提出的机动转弯目标检测前跟踪方法与传统的DP-TBD方法多普勒估计误差对比;
图6示出了本发明实施例所提出的机动转弯目标检测前跟踪方法得到初始的第二转弯目标参数
Figure BDA0002582959810000071
的估计误差;
图7示出了本发明实施例所提出的机动转弯目标检测前跟踪方法得到转弯率λ的估计误差。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供的一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法,包括如下步骤:
S1、获取雷达接收的RD回波数据,建立目标在RD平面的回波模型,确定机动转弯目标的距离和多普勒状态的演化方程,以及需匹配的转弯目标参数和转弯率的取值范围。
检测前跟踪方法通过多帧回波数据的联合处理实现目标回波能量的有效积累和背景的抑制,步骤S1中获取雷达接收的RD回波数据时,一个批处理对应多帧RD回波数据。
S2、根据步骤S1得到的回波模型设置一组匹配滤波器的间隔和数量。
一组匹配滤波器的数量NF可根据相邻匹配滤波器间的间隔来确定。
S3、对于步骤S2设置的一组匹配滤波器中的每个匹配滤波器,根据步骤S1确定的演化方程预测目标位置,构造伪谱,基于伪谱积累实现RD平面多帧能量积累。
S4、根据预设的检测门限,判断是否有能量积累结果的峰值大于检测门限,如没有,则判断没有检测到目标,如有,则选择最大峰值,记录最大峰值所在的匹配滤波器及分辨单元位置,估计目标的距离、多普勒、转弯目标参数和转弯率。
S5、根据估计出的目标的距离、多普勒、转弯目标参数和转弯率,通过演化方程进行航迹回溯。
S6、输出航迹回溯结果。
优选地,步骤S1中,建立目标在RD平面的回波模型时,雷达接收的RD回波数据zk为一个Nr×Nd的离散的RD平面,Nr和Nd分别表示距离和多普勒方向上的分辨单元数量,k表示帧数,zk即对应的第k帧RD回波数据,k=1,2,...,K,K表示一个批处理中总的积累帧数,第K帧即批处理中的最后一帧。
不考虑回波旁瓣,目标在RD观测平面的回波可以近似为高斯点扩散函数,目标在RD平面的回波模型为:
Figure BDA0002582959810000091
其中,(nr,nd)表示离散的分辨单元,nr=1,2,...,Nr,nd=1,2,...,Nd,(pr,k,pd,k)表示目标在第k帧的RD状态,0<pr,k≤Rmax表示雷达的距离观测范围,vdmin≤pd,k≤vdmax表示雷达的多普勒观测范围,Rmax表示雷达可观测到的最大距离,vdmin和vdmax分别表示雷达可观测到的最小多普勒和最大多普勒,I表示批处理中恒定的回波峰值幅度,εr和εd分别表示回波在距离和多普勒方向上的扩展程度,Δr和Δd分别表示雷达的距离和多普勒分辨。
进一步地,步骤S1中,确定机动转弯目标的距离和多普勒状态的演化方程时,设目标服从笛卡尔坐标系的CT(Coordinated Turn)运动,则目标的距离和多普勒状态的演化方程可分别表示为:
Figure BDA0002582959810000092
Figure BDA0002582959810000093
针对CT运动,包括两个转弯目标参数:第一转弯目标参数、第二转弯目标参数;其中,初始的第一转弯目标参数η0、第二转弯目标参数
Figure BDA0002582959810000094
满足:
Figure BDA0002582959810000101
第k帧的第一转弯目标参数ηk、第二转弯目标参数
Figure BDA0002582959810000102
满足:
Figure BDA0002582959810000103
(pr,0,pd,0)表示目标的初始RD状态,即pr,0和pd,0分别表示目标的初始距离和初始多普勒状态,(pr,k,pd,k)表示目标在第k帧的RD状态,T表示连续两帧之间的时间间隔,(px,k,py,k)表示目标第k帧的笛卡尔位置,即px,k和py,k分别表示目标第k帧的笛卡尔坐标系x轴和y轴位置,(vx,k,vy,k)表示目标第k帧的笛卡尔速度,即vx,k和vy,k分别表示目标第k帧的笛卡尔坐标系x轴和y轴速度,(px,0,py,0)表示目标的初始笛卡尔位置,(vx,0,vy,0)表示目标的初始笛卡尔速度,λ表示转弯率。
针对CT运动,根据上述目标的距离和多普勒状态的演化方程,能够确定两个需匹配的参数:初始的第二转弯目标参数
Figure BDA0002582959810000104
转弯率λ,的取值范围分别为:
max≤λ≤λmax
Figure BDA0002582959810000105
其中,(vmin,vmax)表示目标速度绝对值的范围,λmax表示最大可能的转弯率。
步骤S2旨在根据回波模型设计匹配滤波器。优选地,步骤S2中,根据回波模型设置匹配滤波器的间隔时,针对需匹配的参数,归一化的匹配参数域的包络表达式为:
Figure BDA0002582959810000106
其中,
Figure BDA0002582959810000111
Figure BDA0002582959810000112
Figure BDA0002582959810000113
Figure BDA0002582959810000114
Figure BDA0002582959810000115
表示批处理后的目标输出包络,fIS(nr,nd,ir,id,pr,k,pd,k)表示以分辨单元本身为中心的初始伪谱,
Figure BDA0002582959810000116
表示系统传递函数,δ(·)表示狄拉克δ函数,*表示卷积算子,ir和id分别表示在距离和多普勒方向上所占分辨单元到回波峰值的距离,
Figure BDA0002582959810000117
Figure BDA0002582959810000118
分别表示在距离和多普勒方向上所占分辨单元到回波峰值的距离集合,kt表示系统传递函数中的帧数,
Figure BDA0002582959810000119
表示一个批处理中系统传递函数总的帧数,由于匹配滤波的系统传递函数是目标信号的翻转,所以kt为负数,
Figure BDA00025829598100001110
(pr,K,pd,K)表示第K帧的RD状态,即最后的RD状态,
Figure BDA00025829598100001111
表示匹配滤波器存在匹配误差时的预测RD状态,
Figure BDA00025829598100001112
表示第二转弯目标参数的匹配误差,Δλ表示转弯率的匹配误差。
根据匹配参数域的包络,确定初始的第二转弯目标参数
Figure BDA00025829598100001113
转弯率λ的3dB分辨,表达式分别为:
Figure BDA00025829598100001114
Figure BDA00025829598100001115
其中,
Figure BDA00025829598100001116
Figure BDA00025829598100001117
的逆函数。
Figure BDA00025829598100001118
和Δλ3dB分别作为相邻匹配滤波器之间的间隔来设置一组匹配滤波器,能够达到运算性能和计算复杂度之间平衡,在确保计算结果的情况下,加快处理速度,节省时间。
准确的演化方程是目标能量沿着其轨迹准确积累的关键。本发明根据准确的演化方程,通过匹配恒定的CT目标的两个恒定参数(初始的第二转弯目标参数
Figure BDA0002582959810000121
转弯率λ),来准确地预测目标的位置。
优选地,步骤S3中,对于每个匹配滤波器,根据演化方程预测目标位置时,设第k帧的分辨单元(ncr,ncd)包含目标能量,对应的距离和多普勒状态分别表示为:
pcr=ncrΔr
pcd=(ncd-1)Δd+vdmin
由于缺乏目标位置的先验信息,因此每一个分辨单元都需要被处理,即ncr=1,2,...,Nr,ncd=1,2,...,Nd
设一个匹配滤波器对应的初始的第二转弯目标参数、转弯率分别为
Figure BDA0002582959810000122
和λh,则可以得到相应的第k帧的第二转弯目标参数为:
Figure BDA0002582959810000123
其中,初始的第一转弯目标参数表达式为:
Figure BDA0002582959810000124
将第k帧的距离和多普勒状态预测到最后一帧(第K帧),得:
Figure BDA0002582959810000125
Figure BDA0002582959810000126
其中,ppr和ppd分别表示预测的距离和多普勒状态,进而得到预测的目标在RD平面中对应的位置分别为:
npr=pprr
npd=(ppd-vdmin)/Δd+1
其中,npr和npd可能是整数也可能是非整数,1≤npr≤Nr,1≤npd≤Nd
进一步地,步骤S3中,对于每个匹配滤波器,根据预测到的目标的位置构造伪谱时,以预测到的目标的位置(npr,npd)为中心,第k帧的分辨单元(ncr,ncd)的观测值zk(ncr,ncd)为峰值构造一个伪谱,得:
fPS(nr,nd,(npr,npd),zk(ncr,ncd))=zk(ncr,ncd)exp(-εr(nr-npr)2d(nd-npd)2)
其中,(nr,nd)表示RD平面的分辨单元,且nr=1,2,...,Nr和nd=1,2,...,Nd
将伪谱在分辨单元上对应的采样值累加到批处理的最后一帧中的分辨单元上,实现RD平面多帧能量积累。匹配滤波器输出即为一个批处理的所有帧中所有伪谱的能量积累结果。
优选地,步骤S4中,根据预设的检测门限,判断是否有能量积累结果的峰值大于检测门限前,预先在恒定虚警率pfa下设置检测门限VT
步骤S5中,根据估计出的第K帧的目标的距离、多普勒和初始的第二转弯目标参数
Figure BDA0002582959810000131
转弯率λ,通过步骤S1中的演化方程进行机动转弯目标RD平面航迹回溯,回溯出批处理中前K-1帧的目标RD状态。
如图2至图7所示,本发明还通过仿真检验了所提出的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法的优越性。图2(a)为本发明实施例所提出的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法(简称所提出的方法)的积累平面,图2(b)为传统基于近似模型的三维匹配滤波方法的积累平面,图2(c)为传统的DP-TBD(动态规划检测前跟踪方法)的积累平面,其中距离单元即距离方向上的分辨单元,多普勒单元即多普勒方向上的分辨单元。由图2可以看出,本发明所提出的方法能够更为有效、准确地实现能量积累。
图3至图5分别对比了本发明所提出的方法与传统的DP-TBD方法检测概率、距离估计误差和多普勒估计误差(纵坐标单位为分辨单元,简称单元)。由图3至图5可以看出,相比传统的DP-TBD方法,本发明所提出的方法检测概率更高,距离估计误差和多普勒估计误差更小。
图6和图7分别示出了本发明所提出的方法对于初始的第二转弯目标参数
Figure BDA0002582959810000141
转弯率λ的估计误差(纵坐标单位为分辨单元,简称单元)。由图6和图7可以看出本发明所提出的方法能够较为准确地估计初始的第二转弯目标参数
Figure BDA0002582959810000142
转弯率λ。本发明所提出的方法除了能提供距离和多普勒的估计,还提供了初始的第二转弯目标参数
Figure BDA0002582959810000143
转弯率λ,这有利于后续RD平面对机动转弯目标的跟踪和数据关联。
特别地,在本发明一些优选的实施方式中,还提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一实施方式中所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法的步骤。
在本发明另一些优选的实施方式中,还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施方式中所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程,在此不再重复说明。
综上所述,本发明提出了一种能够实现RD平面的微弱机动转弯目标检测前跟踪方法。首先,为解决传统TBD方法中模型失配的问题,本发明提出了针对机动转弯目标的距离和多普勒随时间演化的准确演化方程,能够避免因模型失配造成的目标积累能量损失。其次,本发明在RD平面构造伪谱用于多帧能量积累,使得机动转弯目标的能量被充分积累的同时其输出包络能够保持完好。再次,本发明通过一组匹配滤波器去匹配未知的机动转弯目标参数,利用匹配参数域的包络的3dB宽度来设计滤波器,以达到运算性能和计算复杂度之间的平衡。最后,本发明能够根据多帧积累后的RD平面对目标的距离、多普勒以及初始的第二转弯目标参数
Figure BDA0002582959810000151
转弯率λ的进行估计,且误差较小,有利于后续RD平面对机动转弯目标的跟踪和数据关联。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法,其特征在于,包括如下步骤:
S1、获取雷达接收的RD回波数据,建立目标在RD平面的回波模型,确定机动转弯目标的距离和多普勒状态的演化方程,以及需匹配的转弯目标参数和转弯率的取值范围;
S2、根据回波模型设置一组匹配滤波器的间隔和数量;
S3、对于每个匹配滤波器,根据演化方程预测目标位置,构造伪谱,基于伪谱积累实现RD平面多帧能量积累;
S4、根据预设的检测门限,判断是否有能量积累结果的峰值大于检测门限,如没有则判断没有检测到目标,如有则选择最大峰值,记录最大峰值所在的匹配滤波器及分辨单元位置,估计目标的距离、多普勒、转弯目标参数和转弯率;
S5、根据估计出的目标的距离、多普勒、转弯目标参数和转弯率,通过演化方程进行航迹回溯;
S6、输出航迹回溯结果。
2.根据权利要求1所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法,其特征在于:
所述步骤S1中,建立目标在RD平面的回波模型时,雷达接收的RD回波数据zk为一个Nr×Nd的离散的RD平面,Nr和Nd分别表示距离和多普勒方向上的分辨单元数量,k表示帧数,k=1,2,...,K,K表示一个批处理中总的积累帧数;
目标在RD平面的回波模型为:
Figure FDA0002582959800000011
其中,(nr,nd)表示离散的分辨单元,nr=1,2,...,Nr,nd=1,2,...,Nd,(pr,k,pd,k)表示目标在第k帧的RD状态,0<pr,k≤Rmax表示雷达的距离观测范围,vdmin≤pd,k≤vdmax表示雷达的多普勒观测范围,Rmax表示雷达可观测到的最大距离,vdmin和vdmax分别表示雷达可观测到的最小多普勒和最大多普勒,I表示批处理中恒定的回波峰值幅度,εr和εd分别表示回波在距离和多普勒方向上的扩展程度,Δr和Δd分别表示雷达的距离和多普勒分辨。
3.根据权利要求2所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法,其特征在于:
所述步骤S1中,确定机动转弯目标的距离和多普勒状态的演化方程时,设目标服从笛卡尔坐标系的CT运动,则目标的距离和多普勒状态的演化方程分别表示为:
Figure FDA0002582959800000021
Figure FDA0002582959800000022
针对CT运动,包括两个转弯目标参数:第一转弯目标参数、第二转弯目标参数;其中,初始的第一转弯目标参数η0、第二转弯目标参数
Figure FDA0002582959800000023
满足:
Figure FDA0002582959800000024
第k帧的第一转弯目标参数ηk、第二转弯目标参数
Figure FDA0002582959800000025
满足:
Figure FDA0002582959800000026
(pr,0,pd,0)表示目标的初始RD状态,T表示连续两帧之间的时间间隔,(px,k,py,k)表示目标第k帧的笛卡尔位置,(vx,k,vy,k)表示目标第k帧的笛卡尔速度,(px,0,py,0)表示目标的初始笛卡尔位置,(vx,0,vy,0)表示目标的初始笛卡尔速度,λ表示转弯率;
针对CT运动,两个需匹配的参数:初始的第二转弯目标参数
Figure FDA0002582959800000039
转弯率λ,的取值范围分别为:
max≤λ≤λmax
Figure FDA0002582959800000031
其中,(vmin,vmax)表示目标速度绝对值的范围,λmax表示最大可能的转弯率。
4.根据权利要求3所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法,其特征在于:
所述步骤S2中,根据回波模型设置匹配滤波器的间隔时,归一化的匹配参数域的包络表达式为:
Figure FDA0002582959800000032
其中,
Figure FDA0002582959800000033
Figure FDA0002582959800000034
Figure FDA0002582959800000035
Figure FDA0002582959800000036
Figure FDA0002582959800000037
表示批处理后的目标输出包络,fIS(nr,nd,ir,id,pr,k,pd,k)表示以分辨单元本身为中心的初始伪谱,
Figure FDA0002582959800000038
表示系统传递函数,δ(·)表示狄拉克δ函数,*表示卷积算子,ir和id分别表示在距离和多普勒方向上所占分辨单元到回波峰值的距离,
Figure FDA0002582959800000041
Figure FDA0002582959800000042
分别表示在距离和多普勒方向上所占分辨单元到回波峰值的距离集合,kt表示系统传递函数中的帧数,
Figure FDA0002582959800000043
表示一个批处理中系统传递函数总的帧数,
Figure FDA0002582959800000044
Figure FDA0002582959800000045
表示匹配滤波器存在匹配误差时的预测RD状态,
Figure FDA0002582959800000046
表示第二转弯目标参数的匹配误差,Δλ表示转弯率的匹配误差;
根据匹配参数域的包络,确定初始的第二转弯目标参数
Figure FDA00025829598000000413
转弯率λ的3dB分辨,表达式分别为:
Figure FDA0002582959800000047
Figure FDA0002582959800000048
其中,
Figure FDA0002582959800000049
Figure FDA00025829598000000410
的逆函数;
Figure FDA00025829598000000411
和Δλ3dB分别作为相邻匹配滤波器之间的间隔来设置一组匹配滤波器。
5.根据权利要求4所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法,其特征在于:
所述步骤S3中,对于每个匹配滤波器,根据演化方程预测目标位置时,设第k帧的分辨单元(ncr,ncd)包含目标能量,对应的距离和多普勒状态分别表示为:
pcr=ncrΔr
pcd=(ncd-1)Δd+vdmin
ncr=1,2,...,Nr,ncd=1,2,...,Nd
设一个匹配滤波器对应的初始的第二转弯目标参数、转弯率为
Figure FDA00025829598000000414
和λh,则相应的第k帧的第二转弯目标参数为:
Figure FDA00025829598000000412
其中,初始的第一转弯目标参数表达式为:
Figure FDA0002582959800000051
将第k帧的距离和多普勒状态预测到最后一帧,得:
Figure FDA0002582959800000052
Figure FDA0002582959800000053
其中,ppr和ppd分别表示预测的距离和多普勒状态,进而得到预测的目标在RD平面中对应的位置分别为:
npr=pprr
npd=(ppd-vdmin)/Δd+1
其中,1≤npr≤Nr,1≤npd≤Nd
6.根据权利要求5所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法,其特征在于:
所述步骤S3中,对于每个匹配滤波器,构造伪谱时,以预测到的目标的位置(npr,npd)为中心,第k帧的分辨单元(ncr,ncd)的观测值zk(ncr,ncd)为峰值构造一个伪谱,得:
fPS(nr,nd,(npr,npd),zk(ncr,ncd))=zk(ncr,ncd)exp(-εr(nr-npr)2d(nd-npd)2)
将伪谱在分辨单元上对应的采样值累加到批处理的最后一帧中的分辨单元上,实现RD平面多帧能量积累。
7.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至6中任一项所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法的步骤。
8.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至6中任一项所述的基于伪谱匹配滤波的机动转弯目标检测前跟踪方法的步骤。
CN202010672857.3A 2020-07-14 2020-07-14 一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法 Active CN111796267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010672857.3A CN111796267B (zh) 2020-07-14 2020-07-14 一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010672857.3A CN111796267B (zh) 2020-07-14 2020-07-14 一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法

Publications (2)

Publication Number Publication Date
CN111796267A true CN111796267A (zh) 2020-10-20
CN111796267B CN111796267B (zh) 2022-05-06

Family

ID=72808572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010672857.3A Active CN111796267B (zh) 2020-07-14 2020-07-14 一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法

Country Status (1)

Country Link
CN (1) CN111796267B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514823A (zh) * 2021-04-25 2021-10-19 哈尔滨工业大学 一种基于伪谱的多模型机动目标检测前跟踪方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168214A (en) * 1991-02-19 1992-12-01 General Electric Company Multi-rate superresolution time series spectrum analyzer
US20050100077A1 (en) * 2003-08-04 2005-05-12 Lowell Rosen Multipath-adapted holographic communications apparatus and methods
US20070120730A1 (en) * 2005-11-30 2007-05-31 Gaku Takano Radar signal processor
JP2012154887A (ja) * 2011-01-28 2012-08-16 Furuno Electric Co Ltd クラッタ除去器、レーダ装置、クラッタ除去方法およびクラッタ除去用プログラム
CN104297748A (zh) * 2014-10-20 2015-01-21 西安电子科技大学 一种基于轨迹增强的雷达目标检测前跟踪方法
CN104931952A (zh) * 2015-06-26 2015-09-23 西安电子科技大学 一种基于多帧联合的运动目标航迹的雷达检测方法
CN105866769A (zh) * 2016-05-19 2016-08-17 哈尔滨工业大学 一种并行运算的多目标检测前跟踪方法
CN106226751A (zh) * 2016-07-08 2016-12-14 西安电子科技大学 基于dp‑tbd的机动目标检测与跟踪方法
CN106218922A (zh) * 2016-07-27 2016-12-14 中国科学院长春光学精密机械与物理研究所 挠性敏捷卫星的联合执行机构控制方法
CN106354152A (zh) * 2016-08-18 2017-01-25 中国人民解放军国防科学技术大学 一种对辐射型禁飞区的再入轨迹优化设计方法
CN107907855A (zh) * 2017-10-25 2018-04-13 天津大学 一种互素阵列转化为均匀线阵的doa估计方法及装置
CN108181614A (zh) * 2016-12-08 2018-06-19 中国人民解放军空军预警学院 基于ar模型重构的天波超视距雷达脉冲压缩方法
CN108549064A (zh) * 2018-07-24 2018-09-18 电子科技大学 基于脉内多普勒频率模糊补偿的外辐射源动目标探测方法
CN108802722A (zh) * 2018-08-28 2018-11-13 哈尔滨工业大学 一种基于虚拟谱的弱目标检测前跟踪方法
CN110007299A (zh) * 2019-04-16 2019-07-12 哈尔滨工业大学 一种基于混合坐标伪谱技术的微弱目标检测跟踪方法
CN110161494A (zh) * 2019-05-30 2019-08-23 哈尔滨工业大学 基于速度平方滤波的rd平面弱目标检测跟踪方法及装置
US20190383930A1 (en) * 2017-04-18 2019-12-19 Limited Liability Company "Innovative Center Jewel" Method and device for radar determination of the coordinates and speed of objects
CN110940973A (zh) * 2019-12-10 2020-03-31 成都纳雷科技有限公司 一种用于雷达目标检测的角度测量方法及装置
CN110954895A (zh) * 2019-12-13 2020-04-03 哈尔滨工业大学 一种基于复伪谱的速度滤波检测前跟踪方法
CN111077518A (zh) * 2019-12-20 2020-04-28 哈尔滨工业大学 一种基于距离-多普勒量测的跟踪滤波方法及装置

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168214A (en) * 1991-02-19 1992-12-01 General Electric Company Multi-rate superresolution time series spectrum analyzer
US20050100077A1 (en) * 2003-08-04 2005-05-12 Lowell Rosen Multipath-adapted holographic communications apparatus and methods
US20070120730A1 (en) * 2005-11-30 2007-05-31 Gaku Takano Radar signal processor
JP2012154887A (ja) * 2011-01-28 2012-08-16 Furuno Electric Co Ltd クラッタ除去器、レーダ装置、クラッタ除去方法およびクラッタ除去用プログラム
CN104297748A (zh) * 2014-10-20 2015-01-21 西安电子科技大学 一种基于轨迹增强的雷达目标检测前跟踪方法
CN104931952A (zh) * 2015-06-26 2015-09-23 西安电子科技大学 一种基于多帧联合的运动目标航迹的雷达检测方法
CN105866769A (zh) * 2016-05-19 2016-08-17 哈尔滨工业大学 一种并行运算的多目标检测前跟踪方法
CN106226751A (zh) * 2016-07-08 2016-12-14 西安电子科技大学 基于dp‑tbd的机动目标检测与跟踪方法
CN106218922A (zh) * 2016-07-27 2016-12-14 中国科学院长春光学精密机械与物理研究所 挠性敏捷卫星的联合执行机构控制方法
CN106354152A (zh) * 2016-08-18 2017-01-25 中国人民解放军国防科学技术大学 一种对辐射型禁飞区的再入轨迹优化设计方法
CN108181614A (zh) * 2016-12-08 2018-06-19 中国人民解放军空军预警学院 基于ar模型重构的天波超视距雷达脉冲压缩方法
US20190383930A1 (en) * 2017-04-18 2019-12-19 Limited Liability Company "Innovative Center Jewel" Method and device for radar determination of the coordinates and speed of objects
CN107907855A (zh) * 2017-10-25 2018-04-13 天津大学 一种互素阵列转化为均匀线阵的doa估计方法及装置
CN108549064A (zh) * 2018-07-24 2018-09-18 电子科技大学 基于脉内多普勒频率模糊补偿的外辐射源动目标探测方法
CN108802722A (zh) * 2018-08-28 2018-11-13 哈尔滨工业大学 一种基于虚拟谱的弱目标检测前跟踪方法
CN110007299A (zh) * 2019-04-16 2019-07-12 哈尔滨工业大学 一种基于混合坐标伪谱技术的微弱目标检测跟踪方法
CN110161494A (zh) * 2019-05-30 2019-08-23 哈尔滨工业大学 基于速度平方滤波的rd平面弱目标检测跟踪方法及装置
CN110940973A (zh) * 2019-12-10 2020-03-31 成都纳雷科技有限公司 一种用于雷达目标检测的角度测量方法及装置
CN110954895A (zh) * 2019-12-13 2020-04-03 哈尔滨工业大学 一种基于复伪谱的速度滤波检测前跟踪方法
CN111077518A (zh) * 2019-12-20 2020-04-28 哈尔滨工业大学 一种基于距离-多普勒量测的跟踪滤波方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GONGJIAN ZHOU ET AL.: "Pseudo-Spectrum Based Speed Square Filter for Track-Before-Detect in Range-Doppler Domain", 《 IEEE TRANSACTIONS ON SIGNAL PROCESSING》 *
何璐雅 等: "一种无格点动态规划检测前跟踪算法研究", 《现代雷达》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514823A (zh) * 2021-04-25 2021-10-19 哈尔滨工业大学 一种基于伪谱的多模型机动目标检测前跟踪方法

Also Published As

Publication number Publication date
CN111796267B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
EP1588188B1 (en) Method of detecting a target
CN109946671B (zh) 一种基于双门限判决的水下机动弱目标检测跟踪方法
CN110161494B (zh) 基于速度平方滤波的rd平面弱目标检测跟踪方法及装置
CN109324315B (zh) 基于双层次块稀疏性的空时自适应处理雷达杂波抑制方法
CN111624574A (zh) 弱目标探测的目标检测方法、系统、存储介质和装置
JPH09145829A (ja) レーダ信号処理装置
CN110007299B (zh) 一种基于混合坐标伪谱技术的微弱目标检测跟踪方法
CN110531327B (zh) 一种基于自动增益控制的雷达抗干扰探测方法
CN103197297B (zh) 基于认知框架的雷达动目标检测方法
CN111257865B (zh) 一种基于线性伪量测模型的机动目标多帧检测跟踪方法
CN111796266B (zh) 一种匀加速运动目标rd平面检测前跟踪方法
Sahal et al. Comparison of CFAR methods on multiple targets in sea clutter using SPX-radar-simulator
CN111796267B (zh) 一种基于伪谱匹配滤波的机动转弯目标检测前跟踪方法
CN112748429B (zh) 一种快速噪声对消滤波方法
CN105652256B (zh) 一种基于极化信息的高频地波雷达tbd方法
CN115877350B (zh) 一种和差波束体制雷达时变目标角度估计方法和装置
CN116106824B (zh) 一种基于认知学习的无人机多阶段信号源定位方法和系统
CN108828584B (zh) 基于航迹折叠因子解模糊的多重频目标检测前跟踪方法
CN113484866B (zh) 一种基于被动声呐方位历程图的多目标检测跟踪方法
CN113126086B (zh) 一种基于状态预测积累的生命探测雷达弱目标检测方法
CN113514823B (zh) 一种基于伪谱的多模型机动目标检测前跟踪方法
JP3421242B2 (ja) 目標追尾装置および目標追尾方法
Yu et al. Bernoulli Track-before-detect Algorithm for Distributed Target with Unknown Amplitude Information
RU198994U1 (ru) Устройство определения факта искажения навигационного поля и идентификации помехового воздействия на приемник роботизированного беспилотного летательного аппарата
CN112816973B (zh) 一种跟踪信息辅助的目标检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant