CN111760468A - 一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法 - Google Patents

一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法 Download PDF

Info

Publication number
CN111760468A
CN111760468A CN202010593492.5A CN202010593492A CN111760468A CN 111760468 A CN111760468 A CN 111760468A CN 202010593492 A CN202010593492 A CN 202010593492A CN 111760468 A CN111760468 A CN 111760468A
Authority
CN
China
Prior art keywords
zno
polyvinylidene fluoride
membrane
ultrafiltration membrane
catalytic reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010593492.5A
Other languages
English (en)
Other versions
CN111760468B (zh
Inventor
陈桂娥
刘连静
汪洋
万佳俊
李怡静
陈镇
谢焕银
许振良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN202010593492.5A priority Critical patent/CN111760468B/zh
Publication of CN111760468A publication Critical patent/CN111760468A/zh
Application granted granted Critical
Publication of CN111760468B publication Critical patent/CN111760468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法与应用,制备方法包括首先以ZnO分散液与2‑甲基咪唑溶液为原料,采用包覆法合成ZnO@ZIF‑8核壳材料;再将ZnO@ZIF‑8、添加剂及聚偏氟乙烯溶解于溶剂中,得到铸膜液;最后将铸膜液依次经过搅拌、脱泡、刮膜过程后,置于凝胶浴中分相,即得到ZnO@ZIF‑8/PVDF复合超滤膜,所制备复合超滤膜可用于催化还原对硝基苯酚。与现有技术相比,本发明制备工艺简单,并且在改善了膜的亲水性和纯水通量的同时,膜的催化性能明显提升,是一种制备PVDF超滤膜的新方法。

Description

一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备 方法
技术领域
本发明属于膜分离技术领域,涉及一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法。
背景技术
金属有机骨架(MOFs)材料由于具有大的比表面积、孔径可调节等性质,在小分子分离、异相催化、化学传感、药物传递等领域展现出巨大的应用前景。近年来,除采用金属盐做原料合成MOFs晶体外,以金属氧化物为前驱体,采用包覆法将预先合成好的纳米微粒置于金属有机骨架的合成溶液中,在晶体的生长过程中,实现MOFs材料在纳米微粒表面的包覆,这种方法能够解决纳米微粒在MOF表面聚集的问题,同时避免了还原前驱体溶液对MOFs材料的损害,并且能够对被引入的纳米微粒在形貌,尺寸,组成等多方面进行预先调控。然而,不同于一般MOFs合成中的均相成核过程,如何控制MOFs材料在纳米微粒表面成核生长是该方法的主要挑战。
中国专利(公开号:CN 107638807A)公开了一种常温下具有催化作用的ZIF-8/PVDF超滤膜及其制备方法。常温下通过原位生长法在膜上合成ZIF-8,即得到具有催化作用的ZIF-8/PVDF超滤膜。本发明方法不仅制膜工艺简单,而且可以有效地抑制粒子团聚,在此基础上还具有一定的催化作用,且对卵清白蛋白盐水溶液(OVA盐水溶液)的截留率高,截留通量良好,是一种将MOFs用于制备具有催化作用的超滤膜的新颖方法。
中国专利(公开号:CN 106178989A)公开了一种亲水性共聚物包覆纳米氧化物改性中空纤维膜的制备方法,该膜采用添加亲水共聚物包覆纳米氧化物共混的方法,使得复合物有机无机相间结合较好,且在成膜过程中不易流失,不但提高了膜丝的亲水性能,而且对膜丝机械性能和渗透性能都有较大的提高,该方法操作简单、聚合反应条件温和,可适用于大规模化生产。
叶静等人研究了将改良的亲水性MOFs用于提高薄膜纳米复合膜的性能(参见朱等.钴(II)金属-有机骨架微纳米颗粒:显示羧基的结合取向的从层到微孔的自组装分子[J].分子结构学报,2015,1093,162-165.),所制备的复合膜亲水性增加,抗污染性增强,但是制备的MOF分散性不好,容易引起团聚。
发明内容
本发明的目的就是用于解决现有复合超滤膜渗透率较低以及对对硝基苯酚的催化还原能力较差的问题而提供一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法,具体为首先通过包覆法合成ZnO@ZIF-8核壳材料,再采用原位生长法制备出具有催化作用的PVDF超滤膜,此方法制备工艺简单,并且在改善了膜的亲水性和纯水通量的同时,膜的催化性能明显提升,是制备PVDF超滤膜的一种新方法。
本发明的目的可以通过以下技术方案来实现:
一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,包括以下步骤:
1)以ZnO分散液与2-甲基咪唑溶液为原料,采用包覆法合成氧化锌@沸石咪唑酯骨架(ZnO@ZIF-8)纳米核壳材料;
2)将ZnO@ZIF-8、添加剂及聚偏氟乙烯(PVDF)溶解于溶剂中,得到铸膜液;
3)将铸膜液依次经过机械搅拌、静置脱泡、刮膜过程后,置于凝胶浴中分相,即得到所述的聚偏氟乙烯复合超滤膜。
进一步地,步骤1)具体包括以下步骤:
1-1)将ZnO纳米粒子(粒径为8-12nm)分散于有机溶剂中,得到ZnO分散液;将2-甲基咪唑(HmIM)溶解于有机溶剂中,得到2-甲基咪唑溶液;
1-2)将ZnO分散液与2-甲基咪唑溶液混合均匀,并依次经过搅拌、过滤、洗涤、真空干燥过程后,即得到所述的ZnO@ZIF-8核壳材料(粒径为12-18nm)。
进一步地,步骤1-1)中,所述的ZnO分散液中,ZnO的质量浓度为0.5-1.5g/L,所述的有机溶剂包括甲醇;
所述的2-甲基咪唑溶液中,2-甲基咪唑的质量浓度为1.5-2.5g/L,所述的有机溶剂包括甲醇。
进一步地,步骤1-2)中,所述的ZnO分散液与2-甲基咪唑溶液的混合体积比为(0.5-1.5):1。
进一步地,步骤1-2)中,所述的搅拌过程中,搅拌温度为60-70℃,搅拌时间为3-9h;
所述的真空干燥过程中,干燥温度为55-65℃。
进一步地,步骤2)中,所述的ZnO@ZIF-8、添加剂及聚偏氟乙烯的质量比为(0.1-0.5):(2-4):12。
进一步地,所述的添加剂包括聚乙烯吡咯烷酮(PVP);
所述的溶剂包括N,N-二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺(DMAC)。
进一步地,步骤3)中,所述的机械搅拌过程中,搅拌温度为60-100℃(优选为80℃),搅拌时间为12-24h;
所述的静置脱泡过程中,脱泡温度为60-100℃(优选为60℃),脱泡时间为18-30h;
所述的刮膜过程中,所用基板为玻璃板,所得薄膜的厚度为150-250μm。
进一步地,步骤3)中,所述的凝胶浴为20-30℃的去离子水。
一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜,采用如上所述的方法制备而成。
与现有技术相比,本发明具有以下特点:
1)本发明采用包覆法合成粒径约为15nm的氧化锌@沸石咪唑酯骨架核壳材料,即将ZnO纳米微粒置于金属有机骨架的合成溶液中,在晶体的生长过程中,以ZnO为核均匀的生长出ZIF-8,形成ZnO@ZIF-8核壳材料,实现MOFs材料在纳米微粒表面的包覆;
2)本发明以ZnO@ZIF-8作为改性剂,制备的ZnO@ZIF-8具有更好的稳定性、多孔性、良好的分散性以及催化性,与PVDF膜材料之间具有较好的相容性,并可有效提高膜材料的比表面积,从而显著提高其在催化领域内的应用潜力;
3)本发明合成的ZnO@ZIF-8/PVDF混合基质膜具有更高的选择性与稳定性,相较于原始ZnO微球,该混合基质膜对对硝基苯酚(4-NP)具有更高的催化还原效率。
附图说明
图1为实施例1-3及对比例1中制备得到的复合超滤膜的渗透率对比图;
图2为实施例1-3及对比例1中制备得到的复合超滤膜的催化效果对比图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,包括以下步骤:
1)将粒径为8-12nm的ZnO纳米粒子分散于甲醇中,得到0.5-1.5g/L ZnO分散液;将2-甲基咪唑(HmIM)溶解于甲醇中,得到1.5-2.5g/L 2-甲基咪唑溶液;将ZnO分散液与2-甲基咪唑溶液以体积比(0.5-1.5):1混合均匀,并依次经过60-70℃搅拌3-9h、过滤、洗涤、55-65℃真空干燥过程后,得到粒径为12-18nm的ZnO@ZIF-8核壳材料;
2)将ZnO@ZIF-8、聚乙烯吡咯烷酮(PVP)及聚偏氟乙烯(PVDF)以质量比(0.1-0.5):(2-4):12溶解于溶剂N,N-二甲基甲酰胺(DMF)或N,N-二甲基乙酰胺(DMAC)中,得到铸膜液;
3)将铸膜液依次经过60-100℃(优选为80℃)机械搅拌12-24h、60-100℃(优选为60℃)静置脱泡18-30h后,在玻璃基板上刮膜形成厚度为150-250μm的薄膜,之后置于凝胶浴(20-30℃的去离子水)中分相,即得到聚偏氟乙烯复合超滤膜。
以下实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
对比例1:
一种ZnO/PVDF复合超滤膜的制备方法,包括以下步骤:
2)将0.3g ZnO、3g PVP、12g PVDF充分溶解于DMF,配制成铸膜液;
5)将铸膜液在80℃下依次经过机械搅拌18h、静置脱泡24h后,刮在玻璃板上形成厚度为200μm的薄膜;
6)配制25℃的去离子水作为凝胶浴,并将薄膜迅速放入凝胶浴中,使其快速发生相转换,分相后即得到ZnO/PVDF复合超滤膜;
7)标记ZnO/PVDF复合超滤膜的正反两面,并放入3%的甘油水溶液中24h,最后再存放于去离子水中。
实施例1:
一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,包括以下步骤:
1)将0.05g粒径为8-12nm ZnO纳米粒子分散于50mL无水甲醇中,得到ZnO分散液;将0.1g HmIM溶解于50mL无水甲醇中,得到2-甲基咪唑溶液;
2)将ZnO分散液与2-甲基咪唑溶液混合并在65℃下搅拌3h,得到悬浊液;
3)将悬浊液过滤,并将收集到的固体产物用去离子水和无水乙醇分别洗涤数次,再在60℃下真空干燥,得到粒径为12-18nm ZnO@ZIF-8核壳材料;
4)将0.1g ZnO@ZIF-8核壳材料、3g PVP、12g PVDF充分溶解于DMF,配制成铸膜液;
5)将铸膜液在60℃下依次经过机械搅拌18h、静置脱泡24h后,刮在玻璃板上形成厚度为200μm的薄膜;
6)配制25℃的去离子水作为凝胶浴,并将薄膜迅速放入凝胶浴中,使其快速发生相转换,分相后即得到聚偏氟乙烯复合超滤膜;
7)标记ZnO@ZIF-8/PVDF复合超滤膜的正反两面,并放入3%的甘油水溶液中24h,最后再存放于去离子水中。
实施例2:
一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,包括以下步骤:
1)将0.05g粒径为8-12nm ZnO纳米粒子分散于50mL无水甲醇中,得到ZnO分散液;将0.1g HmIM溶解于50mL无水甲醇中,得到2-甲基咪唑溶液;
2)将ZnO分散液与2-甲基咪唑溶液混合并在65℃下搅拌6h,得到悬浊液;
3)将悬浊液过滤,并将收集到的固体产物用去离子水和无水乙醇分别洗涤数次,再在60℃下真空干燥,得到粒径为12-18nm ZnO@ZIF-8核壳材料;
4)将0.3g ZnO@ZIF-8核壳材料、3g PVP、12g PVDF充分溶解于DMF,配制成铸膜液;
5)将铸膜液在80℃下依次经过机械搅拌18h、静置脱泡24h后,刮在玻璃板上形成厚度为200μm的薄膜;
6)配制25℃的去离子水作为凝胶浴,并将薄膜迅速放入凝胶浴中,使其快速发生相转换,分相后即得到聚偏氟乙烯复合超滤膜;
7)标记ZnO@ZIF-8/PVDF复合超滤膜的正反两面,并放入3%的甘油水溶液中24h,最后再存放于去离子水中。
实施例3:
一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,包括以下步骤:
1)将0.05g粒径为8-12nm ZnO纳米粒子分散于50mL无水甲醇中,得到ZnO分散液;将0.1g HmIM溶解于50mL无水甲醇中,得到2-甲基咪唑溶液;
2)将ZnO分散液与2-甲基咪唑溶液混合并在65℃下搅拌9h,得到悬浊液;
3)将悬浊液过滤,并将收集到的固体产物用去离子水和无水乙醇分别洗涤数次,再在60℃下真空干燥,得到粒径为12-18nm ZnO@ZIF-8核壳材料;
4)将0.5g ZnO@ZIF-8核壳材料、3g PVP、12g PVDF充分溶解于DMF,配制成铸膜液;
5)将铸膜液在100℃下依次经过机械搅拌18h、静置脱泡24h后,刮在玻璃板上形成厚度为200μm的薄膜;
6)配制25℃的去离子水作为凝胶浴,并将薄膜迅速放入凝胶浴中,使其快速发生相转换,分相后即得到聚偏氟乙烯复合超滤膜;
7)标记ZnO@ZIF-8/PVDF复合超滤膜的正反两面,并放入3%的甘油水溶液中24h,最后再存放于去离子水中。
实施例4:
本实施例用于对实施例1-3及对比例1中的复合超滤膜进行渗透性能测试与催化性能测试,渗透性能测试方法是利用通量机采用死端过滤方式进行,设置压力为0.1MPa,纯水和溶液分别过滤半小时,待稳定后开始正常测试,4-NP溶液的透过液通过紫外吸收光谱测试,测试方法参考文献Z.Y.Wu,H.B.Lin,Y.Z.Wang,X.M.Yu,J.L.Li,Z.Xiong,Y.Wang,Y.J.Huang,T.Chen,F.Liu,Enhanced catalytic degradation of 4-NP using asuperhydrophilic PVDF membrane decorated with Au nanoparticles,RSC Adv.6(2016)62302–62309。
渗透性能测试结果如图1所示,从图中可以看出,改性膜的纯水通量先增后减,首先是实施例1表现出最低纯水通量为103L·m-2·h-1,随着ZnO@ZIF-8纳米材料的加入,纯水通量提升,最高达到322L·m-2·h-1,这是由于ZIF-8的形成,为膜提供了额外的孔道,ZIF-8外表面的-NH亲水基团吸收水分子进入ZIF-8孔窗,由于ZIF-8内壁的疏水性减小了与水分子之间的阻力,加速水分子的流过。实施例2表现出最高纯水通量,这说明膜的渗透性能受添加剂ZnO@ZIF-8含量影响,随着含量的增加,纯水通量增加,当增加到0.5g时,通量减小,这是由于ZnO@ZIF-8含量过高容易产生膜孔堵塞,影响膜的渗透通量。
催化性能测试结果如图2所示,从图中可以看出,在400nm和300nm处吸光度的变化证实了ZnO@ZIF-8系列改性膜成功地催化还原4-NP,通过膜循环30min后,400nm处的峰明显降低,伴随着280nm(4-AP)的峰增加,表明4-NP被有效地还原为4-AP,催化还原率为95%。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,该方法包括以下步骤:
1)以ZnO分散液与2-甲基咪唑溶液为原料,采用包覆法合成ZnO@ZIF-8核壳材料;
2)将ZnO@ZIF-8、添加剂及聚偏氟乙烯溶解于溶剂中,得到铸膜液;
3)将铸膜液依次经过搅拌、脱泡、刮膜过程后,置于凝胶浴中分相,即得到所述的聚偏氟乙烯复合超滤膜。
2.根据权利要求1所述的一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,步骤1)具体包括以下步骤:
1-1)将ZnO纳米粒子分散于有机溶剂中,得到ZnO分散液;将2-甲基咪唑溶解于有机溶剂中,得到2-甲基咪唑溶液;
1-2)将ZnO分散液与2-甲基咪唑溶液混合均匀,并依次经过搅拌、过滤、洗涤、真空干燥过程后,即得到所述的ZnO@ZIF-8核壳材料。
3.根据权利要求2所述的一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,步骤1-1)中,所述的ZnO分散液中,ZnO的质量浓度为0.5-1.5g/L,所述的有机溶剂包括甲醇;
所述的2-甲基咪唑溶液中,2-甲基咪唑的质量浓度为1.5-2.5g/L,所述的有机溶剂包括甲醇。
4.根据权利要求2所述的一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,步骤1-2)中,所述的ZnO分散液与2-甲基咪唑溶液的混合体积比为(0.5-1.5):1。
5.根据权利要求2所述的一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,步骤1-2)中,所述的搅拌过程中,搅拌温度为60-70℃,搅拌时间为3-9h;
所述的真空干燥过程中,干燥温度为55-65℃。
6.根据权利要求1所述的一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,步骤2)中,所述的ZnO@ZIF-8、添加剂及聚偏氟乙烯的质量比为(0.1-0.5):(2-4):12。
7.根据权利要求6所述的一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,所述的添加剂包括聚乙烯吡咯烷酮;
所述的溶剂包括N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。
8.根据权利要求1所述的一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,步骤3)中,所述的搅拌过程中,搅拌温度为60-100℃,搅拌时间为12-24h;
所述的脱泡过程中,脱泡温度为60-100℃,脱泡时间为18-30h;
所述的刮膜过程后,所得薄膜的厚度为150-250μm。
9.根据权利要求1所述的一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜的制备方法,其特征在于,步骤3)中,所述的凝胶浴为20-30℃的去离子水。
10.一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜,其特征在于,采用如权利要求1至9任一项所述的方法制备而成。
CN202010593492.5A 2020-06-27 2020-06-27 一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法 Active CN111760468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010593492.5A CN111760468B (zh) 2020-06-27 2020-06-27 一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010593492.5A CN111760468B (zh) 2020-06-27 2020-06-27 一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111760468A true CN111760468A (zh) 2020-10-13
CN111760468B CN111760468B (zh) 2022-08-23

Family

ID=72722023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010593492.5A Active CN111760468B (zh) 2020-06-27 2020-06-27 一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111760468B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750289B1 (ko) * 2006-06-26 2007-08-20 한국화학연구원 다중채널을 갖는 고강도 내오염성 중공사막의 제조방법
CN104549082A (zh) * 2014-12-19 2015-04-29 安徽建筑大学 ZnO@ZIF-8核壳结构微球及其制备方法
CN107638807A (zh) * 2017-11-10 2018-01-30 上海应用技术大学 一种常温下具有催化作用的zif‑8/pvdf超滤膜及其制备方法
CN110479109A (zh) * 2019-08-19 2019-11-22 上海应用技术大学 通量高、抗污染性强的聚偏氟乙烯混合基质膜的制备方法
CN110605028A (zh) * 2019-08-19 2019-12-24 上海应用技术大学 一种高机械强度的聚偏氟乙烯混合基质膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750289B1 (ko) * 2006-06-26 2007-08-20 한국화학연구원 다중채널을 갖는 고강도 내오염성 중공사막의 제조방법
CN104549082A (zh) * 2014-12-19 2015-04-29 安徽建筑大学 ZnO@ZIF-8核壳结构微球及其制备方法
CN107638807A (zh) * 2017-11-10 2018-01-30 上海应用技术大学 一种常温下具有催化作用的zif‑8/pvdf超滤膜及其制备方法
CN110479109A (zh) * 2019-08-19 2019-11-22 上海应用技术大学 通量高、抗污染性强的聚偏氟乙烯混合基质膜的制备方法
CN110605028A (zh) * 2019-08-19 2019-12-24 上海应用技术大学 一种高机械强度的聚偏氟乙烯混合基质膜的制备方法

Also Published As

Publication number Publication date
CN111760468B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN109876681B (zh) 一种高通量混合基质纳滤膜及其制备方法
CN108993171B (zh) 凹凸棒石在提高聚偏氟乙烯超滤膜过滤通量中的应用
Xu et al. Chitosan membrane in separation applications
CN101837249A (zh) 复合聚氯乙烯中空纤维超滤膜及其制备方法
CN110951089B (zh) 一种促进非质子极性溶剂中zif-8合成的方法
CN113750968B (zh) 一种不溶于水的环糊精基金属有机骨架材料及其制备方法
CN110479109B (zh) 通量高、抗污染性强的聚偏氟乙烯混合基质膜的制备方法
CN112316741B (zh) 一种串珠状mof填充硅橡胶的混合基质膜
CN110773006B (zh) 一种含氧化铜/氧化亚铜/碳纳米管的水凝胶抗菌过滤膜的制备方法
CN110694492A (zh) 一种zif型金属有机框架的混合基质聚酰胺膜及其制备方法
CN106948087A (zh) 一种沸石咪唑酯框架纳米粒子复合纤维膜及其制备方法
CN108499361B (zh) 一种孔径可调节的纳米多孔聚合物膜的制备方法
CN113150304A (zh) 一种混配体金属-有机骨架材料及其制备方法和应用
Han et al. Advances of enantioselective solid membranes
CN114515517B (zh) 低温水相原位生长mof中间层的聚合物复合膜及制备和应用
CN113351037A (zh) 一种zif-8/pdms混合基质渗透汽化膜及其制备方法与应用
CN113648850A (zh) 具有高通量和高去除率MXene/还原多孔氧化石墨烯(r-HGO)复合膜的制备方法
Chen et al. Bird's nest-inspired fabrication of ZIF-8 interlayer for organic solvent nanofiltration membranes
CN113385055B (zh) 一种基于复合材料UiO-66@HNT的混合基质膜的制备方法
CN113019137B (zh) MXene@COF复合膜的制备及其应用
CN109092260B (zh) 一种石油吸附降解材料及制备方法
CN113813801A (zh) 一种掺杂ZIFs@聚离子液体复合物的混合基质超滤膜及其制备方法
CN111760468B (zh) 一种催化还原对硝基苯酚的聚偏氟乙烯复合超滤膜及其制备方法
CN111804162A (zh) 一种高通量聚四氟乙烯复合纳滤膜的制备方法
CN117000193A (zh) 一种zif-8/bc成型体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant