CN111755393A - Substrate-less semiconductor package structure and method for fabricating the same - Google Patents

Substrate-less semiconductor package structure and method for fabricating the same Download PDF

Info

Publication number
CN111755393A
CN111755393A CN201910266106.9A CN201910266106A CN111755393A CN 111755393 A CN111755393 A CN 111755393A CN 201910266106 A CN201910266106 A CN 201910266106A CN 111755393 A CN111755393 A CN 111755393A
Authority
CN
China
Prior art keywords
metal
insulating
pads
insulating sealing
semiconductor package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910266106.9A
Other languages
Chinese (zh)
Inventor
陈裕纬
徐宏欣
蓝源富
柯志明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powertech Technology Inc
Original Assignee
Powertech Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Technology Inc filed Critical Powertech Technology Inc
Publication of CN111755393A publication Critical patent/CN111755393A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3185Partial encapsulation or coating the coating covering also the sidewalls of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • H01L2224/02331Multilayer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02381Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/214Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Abstract

The invention is a non-base plate semiconductor package structure and its preparation method, mainly wrap a chip with an insulating sealing colloid containing metal salt, when using laser to irradiate the top surface of the insulating sealing colloid and aim at the metal joint position of the chip, namely every metal joint can be a laser barrier layer, form multiple openings on the insulating sealing colloid, make every metal joint expose, and the laser irradiates on the top surface of the insulating sealing colloid, form a circuit pattern; then, in the chemical plating step, forming metal columns in the openings, forming circuits on the circuit patterns, and forming a plurality of external pads electrically connected with the metal columns and the circuits; therefore, the semiconductor packaging structure of the invention can be electrically connected with other electronic elements or circuit boards through the external pads without using a substrate.

Description

Substrate-less semiconductor package structure and method for fabricating the same
Technical Field
The present invention relates to a substrate-less semiconductor package and a method for fabricating the same, and more particularly, to a substrate-less semiconductor package and a method for fabricating the same that reduce delamination of an encapsulant.
Background
In a general semiconductor package structure, a chip is usually disposed and electrically connected to a substrate, and finally an encapsulant is formed on the substrate to encapsulate the chip to complete a semiconductor package structure.
In view of the overall cost of the semiconductor package structure, the cost of the substrate accounts for a large proportion of the cost of the semiconductor package structure, so that a large part of the development of the semiconductor package technology is advancing the substrate technology, and considerable package cost and technology development cost can be saved if the substrate can be saved.
Disclosure of Invention
In view of the high cost of the substrate used or developed in the semiconductor package structure, the main object of the present invention is to provide a substrate-less semiconductor package structure and a method for fabricating the same.
The main technical means to achieve the above object is to make the substrate-less semiconductor package structure include:
a chip, including an active surface and a bottom surface opposite to the active surface; wherein the active surface has a plurality of metal contacts;
an insulating encapsulant containing metal salts and covering the chip; the bottom surface of the insulating sealing colloid is flush with the bottom surface of the chip, and a plurality of openings and a first circuit pattern are formed on the top surface of the insulating sealing colloid corresponding to a plurality of metal contacts of the chip;
a plurality of first metal columns which are respectively formed in the corresponding openings and are connected with the corresponding metal contacts;
a plurality of first lines formed on the first line patterns and connected to the corresponding first metal posts; and
the first external pads are electrically connected to the first metal posts and the first circuits.
In one embodiment, the insulating sealing compound includes a plurality of through holes, each through hole penetrates through the top surface and the bottom surface of the insulating sealing compound, and a second metal pillar is formed in each through hole.
In one embodiment, the substrate-less semiconductor package structure further comprises:
a protective layer covering the top surface of the insulating sealing colloid and comprising a plurality of metal pads, wherein the plurality of metal pads are correspondingly connected with the first circuit and the first metal column, and the parts of the plurality of metal pads are respectively connected with the corresponding first external pads; and
and the plurality of second external connecting pads are respectively connected to the second metal columns on the bottom surface of the insulating sealing colloid.
In one embodiment, a second circuit pattern is formed on the bottom surface of the insulating encapsulant, and a plurality of second circuits are formed on the second circuit pattern;
the parts of the second metal columns and the parts of the second circuits which are positioned on the bottom surface of the insulating sealing colloid are further respectively connected with a second external connecting pad; and the top surface of the insulating sealing colloid is further covered with a protective layer, the protective layer comprises a plurality of metal pads, the metal pads are correspondingly connected with the first circuit and the first metal column, and each metal pad is connected with the corresponding first external pad.
As can be seen from the above description, the active surface of the chip is mainly covered by the insulating encapsulant containing metal salts, when the top surface of the insulating encapsulant corresponding to the metal contacts of the chip is irradiated with laser, each metal contact can be used as a laser blocking layer, a plurality of openings are formed on the insulating encapsulant to expose each metal contact, and the laser is irradiated on the top surface of the insulating encapsulant to form a first circuit pattern; forming first lines on the first line patterns, wherein the first lines are electrically connected with the first metal posts in the corresponding openings and are provided with first external connection pads; therefore, the semiconductor packaging structure of the invention can be electrically connected with other electronic elements or circuit boards through the external pads on the circuits without using a substrate.
The main technical means for achieving the above purpose is to make the manufacturing method of the semiconductor packaging structure include the following steps:
(a) preparing a temporary carrier plate;
(b) adhering a back surface of a chip to the temporary carrier plate;
(c) forming an insulating sealing colloid on the temporary carrier plate and coating the chip; wherein the insulating sealing colloid contains metal salt;
(d) removing the temporary carrier plate, and irradiating a top surface of the insulating sealing colloid by laser to form a plurality of openings and a first circuit pattern; wherein each opening is aligned with a corresponding metal contact on an active surface of the chip, the metal contact is exposed, and a bottom surface of the insulating sealing colloid is flush with the back surface of the chip;
(e) chemically plating a plurality of the openings and the first circuit patterns, forming a first metal column on each opening, and forming a plurality of first circuits on the first circuit patterns; and
(f) and electrically connecting a plurality of first external pads to the plurality of first metal posts and the plurality of first circuits on the top surface of the insulating sealing colloid.
In one embodiment:
further irradiating the top surface of the insulating sealant with laser in the step (d) to form a through hole penetrating the top surface and the bottom surface of the insulating sealant; and
in step (e), a second metal pillar is formed in each of the through holes.
In one embodiment, the method for fabricating a substrate-less semiconductor package further comprises:
(g) and forming a plurality of second external connecting pads on a plurality of second metal columns on the bottom surface of the insulating sealing colloid.
In one embodiment:
further irradiating the bottom surface of the insulating encapsulant with laser in step (d) to form a second circuit pattern; and
in the step (e), a plurality of second lines are formed on the second line pattern.
In one embodiment, the method for fabricating a substrate-less semiconductor package further comprises:
(g) and forming a plurality of second external connecting pads on a plurality of second metal columns and a plurality of second circuits on the bottom surface of the insulating sealing colloid.
In one embodiment:
after the step (e), further forming a protective layer on the top surface of the insulating sealing colloid, forming a plurality of pad openings on the protective layer to expose parts of the metal posts and parts of the circuits, and forming metal pads in the pad openings; and
in step (f), a plurality of first external pads are formed on the plurality of metal pads.
As can be seen from the above description, the active surface of the chip is mainly covered by the insulating encapsulant containing metal salts, when the top surface of the insulating encapsulant corresponding to the metal contacts of the chip is irradiated with laser, each metal contact can be used as a laser blocking layer, a plurality of openings are formed on the insulating encapsulant to expose each metal contact, and the laser is irradiated on the top surface of the insulating encapsulant to form a first circuit pattern; forming first lines on the first line patterns, wherein the first lines are electrically connected with the first metal posts in the corresponding openings and are provided with first external connection pads; therefore, the semiconductor packaging structure of the invention can be electrically connected with other electronic elements or circuit boards through the external pads on the circuits without using a substrate.
Drawings
Fig. 1 is a cross-sectional view of a semiconductor package according to a first embodiment of the present invention.
Fig. 2 is a cross-sectional view of a semiconductor package structure according to a second embodiment of the present invention.
Fig. 3 is a cross-sectional view of a semiconductor package according to a third embodiment of the present invention.
Fig. 4A to 4J are cross-sectional views of different steps in a first semiconductor package fabrication method according to the present invention.
Fig. 5A to 5G are cross-sectional views illustrating different steps in a second method for fabricating a semiconductor package structure according to the present invention.
Wherein, the reference numbers:
1. 1a, 1b semiconductor package structure
10 chip
11 active surface
111 metal contact
12 bottom surface
20. 20a, 20b insulating sealing colloid
200 metal particles
21 bottom surface
211 second line pattern
22 top surface
221 opening
222 line pattern
223 through hole
23 protective layer
230 pad opening
231 metal pad
30 metal column
31 second metal column
40 line
41 second line
50 external connection pad
51 second external pad
60 external chip
61 external chip
70 temporary carrier plate
71 adhesive layer
Detailed Description
The present invention provides a substrate-less semiconductor package and a method for fabricating the same, and a plurality of embodiments are provided below to explain the technical contents of the present invention in detail with reference to the drawings.
Referring to fig. 1, a semiconductor package structure 1 according to a first embodiment of the present invention includes a chip 10, an insulating encapsulant 20, a plurality of metal pillars 30, a plurality of wires 40, and a plurality of external pads 50.
The chip 10 includes an active surface 11 and a bottom surface 12 opposite to the active surface 11; wherein the active surface 11 has a plurality of metal contacts 111.
The insulating encapsulant 20 includes metal salts and encapsulates the chip 10, and the bottom surface 21 of the insulating encapsulant 20 is flush with the bottom surface 12 of the chip 10, and the top surface 22 thereof forms a plurality of openings 221 and a circuit pattern 222 corresponding to the plurality of metal contacts 111 of the chip 10; in the embodiment, the insulating encapsulant 20 is a resin containing insulating metal salts and insulating metal oxides, and after laser sintering activation, reduced metal particles can be exposed, and the metal seed layer can be used for subsequent plating to form a conductive wire plating layer, so that the insulating encapsulant layer used in the present invention is a Laser Direct Structuring (LDS) encapsulant. In the present embodiment, the top surface 22 of the insulating encapsulant 20 is irradiated with laser and aligned with the position of each metal contact 111, after laser sintering activation, a corresponding opening 221 is formed on each metal contact 111, and the top surface 22 of the insulating encapsulant 20 is also irradiated with laser (with different power adjustment), and the circuit pattern 222 is formed on the top surface 22 of the insulating encapsulant 20, that is, after laser sintering activation, reduced metal particles are exposed in each opening 221 and the circuit pattern 222.
The metal pillars 30 are formed in the corresponding openings 221 of the insulating molding compound 20, and the plurality of lines 40 are formed on the line pattern 222 and connected to the corresponding metal pillars 30. In the present embodiment, since the metal particles are exposed in each of the openings 221 and the circuit pattern 222, the metal pillars 30 can be formed in the openings 221 and the circuit 40 can be formed on the circuit pattern 222 in an electroless plating process. In the present embodiment, the metal pillars 30 and the circuit lines 40 are further covered with a passivation layer 23, i.e., the metal pads 231 are formed on the metal pillars 30 and the circuit lines 40 that are not covered by the passivation layer 23.
The external pads 50 are electrically connected to the wires 40 and/or the metal posts 30 for electrically connecting with external electronic components or circuit boards. In the embodiment, the external pads 50 are solder balls or metal contacts, and the external pads 50 are formed on the corresponding metal pads 231 to electrically connect with the circuits 40 and/or the metal posts 30.
As can be seen from the above description, the semiconductor package 1 of the present invention does not use a substrate, and the insulating encapsulant 20 is directly used in combination with laser irradiation and chemical plating to directly form the circuit 40 and the external pad 50 electrically connected to the metal contact 111 of the encapsulated chip 10 on the insulating encapsulant 20, so as to form a complete semiconductor package 1.
Referring to fig. 2, a semiconductor package structure 1a according to a second embodiment of the present invention includes a chip 10, an insulating encapsulant 20a, a plurality of first metal pillars 30, a plurality of second metal pillars 31, a plurality of first wires 40, a plurality of first external pads 50, and a plurality of second external pads 51.
The chip 10 includes an active surface 11 and a bottom surface 12 opposite to the active surface 11; wherein the active surface 11 has a plurality of metal contacts 111.
The insulating sealant 20a is substantially the same as the insulating sealant 20 of the first embodiment shown in fig. 1, but the embodiment further includes a plurality of through holes 223, and each of the through holes 223 penetrates through the top surface 22 and the bottom surface 21 of the insulating sealant 20 a. In this embodiment, the insulating encapsulant 20a is irradiated with laser (with different power adjusted) to form the through holes 223 in the insulating encapsulant 20a, and exposed metal particles are formed in each through hole 223.
The first metal pillars 30, the second metal pillars 31, and the circuit patterns 40 are formed in the openings 221, the through holes 223, and the circuit patterns 222, respectively, by an electroless plating process. In the present embodiment, the portions of the first and second metal pillars 30 and 31 and the portions of the circuits 40 on the top surface 22 of the insulating encapsulant 20a are further covered with a passivation layer 23, and the metal pads 231 are formed on the first and second metal pillars 30 and 31 and the circuits 40, which are not covered by the passivation layer 23.
The first external pads 50 are electrically connected to the wires 40 and/or the first and second metal posts 30, 31 for electrically connecting with external electronic components or circuit boards. In the present embodiment, the first external pads 50 are solder balls or metal contacts, and the external pads 50 are formed on the corresponding metal pads 231, as shown in fig. 2, the first external pads 50 can be soldered to an external chip 60, and the other metal pads 231 can be soldered to an external chip 61 of a different package structure.
The second external pads 51 are formed on the corresponding second metal posts 31 on the bottom surface 21 of the insulating encapsulant 20 a. In the present embodiment, the second external pads 50 are solder balls, and can also be metal contacts for electrically connecting with external electronic devices or circuit boards.
Referring to fig. 3, a third embodiment of a semiconductor package structure 1b according to the present invention is shown, and the structure thereof is substantially the same as the structure of the semiconductor package structure 1a shown in fig. 2, but the bottom surface 21 of the insulating encapsulant 20b is further formed with a second circuit pattern 211 by laser, and a plurality of second circuits 41 are formed on the second circuit pattern 211 by chemical plating, and a plurality of second external pads 51 are formed on a portion of the second circuits 41 and the second metal posts 31 on the bottom surface 21 of the insulating encapsulant 20b for soldering an external chip 60, and another external chip 61 is also directly soldered on the second circuits 41 and the second metal posts 31 on the bottom surface 21 of the insulating encapsulant 20 b. The first external pads 50 are electrically connected to the wires 40 and/or the first and second metal posts 30, 31 formed on the top surface 22 of the insulating encapsulant 20b for electrically connecting to external electronic components or circuit boards; specifically, the first external connection pad 50 is formed on the metal pad 231.
Referring to fig. 4A to 4J, a method for packaging the semiconductor package structure 1 of fig. 1 is shown, first referring to fig. 4A, a temporary carrier 70 is prepared, and an adhesive layer 71 is formed on the carrier 70.
As shown in fig. 4B, a chip 10 is disposed on the adhesive layer 70 to be adhered to the temporary carrier 70; in the present embodiment, the chip 10 is disposed on the adhesive layer 70 with the back surface 12, and the active surface 11 and the plurality of metal contacts 111 on the active surface 11 face the opposite direction (face up) to the adhesive layer 71.
As shown in fig. 4C, an insulating encapsulant 20 is formed on the adhesive layer 71 of the temporary carrier 70 and covers the chip 10; wherein the insulating encapsulant 20 contains metal salts. In the embodiment, the insulating encapsulant 20 is a resin containing insulating metal salts and insulating metal oxides, and after laser sintering activation, reduced metal particles can be exposed, and the metal seed layer can be used for subsequent plating to form a conductive wire plating layer.
As shown in fig. 4D, the temporary carrier 70 and the adhesive layer 71 thereon are removed, such that the bottom surface 12 of the chip and the bottom surface 21 of the insulating encapsulant 20 are exposed, and the bottom surface 12 of the chip 10 is flush with the bottom surface 21 of the insulating encapsulant 20.
As shown in fig. 4E, the top surface 22 of the insulating encapsulant 20 is irradiated with laser and aligned with the metal contacts 111 to form a plurality of openings 221, exposing the metal contacts 111; as shown in fig. 4F, a circuit pattern 222 is formed on the top surface of the insulating molding compound 20 by adjusting the laser power. Since each of the openings 221 and the line pattern 222 is activated by laser sintering, the metal particles 200 are exposed.
As shown in fig. 4G, the openings 221 and the circuit patterns 222 are chemically plated, a metal pillar 30 is formed in each opening 221, and a plurality of circuits 40 are formed on the circuit patterns 222; wherein the lines 40 are connected to the metal posts 30.
As shown in fig. 4H, a passivation layer 23 is formed on the top surface 22 of the insulating molding compound 20 to cover the metal pillars 30 and the circuits 40 exposed on the top surface 22 of the insulating molding compound 20.
As shown in fig. 4I, a pad opening 230 is formed on the passivation layer 23, so that portions of the metal pillars 30 and portions of the circuits 40 are exposed; as shown in fig. 4J, a metal pad 231 is formed in each pad opening 230, and an external pad 50 is formed on part or all of the metal pads 321; thus, the semiconductor package 1 shown in fig. 1 is constructed.
Referring to fig. 5A to 5G, which are illustrations of a packaging method of the semiconductor package structure 1a of fig. 2, the first steps of the packaging method of the present embodiment are the same as those of fig. 4A to 4C, and thus are not repeated herein. Referring to fig. 5A, the chip 10 is covered by the insulating encapsulant 20 a.
As shown in fig. 5B, laser is irradiated onto the top surface 22 of the insulating encapsulant 20a and aligned with the metal contacts 111 to form a plurality of openings 221, so as to expose the metal contacts 111, and the top surface 22 of the insulating encapsulant 20a is irradiated to form through holes 223 penetrating through the top surface 22 and the bottom surface 21 of the insulating encapsulant 20 a; wherein the metal particles 200 are exposed on the sidewall of each opening 221 and the sidewall of each through hole 223. In the present embodiment, since the laser irradiates the top surface 22 of the insulating encapsulant 20a, the apertures of the openings 221 and the through holes 223 are wider at the top and narrower at the bottom.
As shown in fig. 5C, adjusting the laser power to form a circuit pattern 222 on the top surface 22 of the insulating encapsulant 20a, wherein the metal particles 200 are exposed due to the activation of the circuit pattern 222 by laser sintering; in addition, as shown in fig. 3, another circuit pattern (the second circuit pattern 211) may be further formed on the bottom surface 21 of the insulating molding compound 20b in this step.
As shown in fig. 5D, the openings 221, the through holes 223 and the circuit patterns 222 are chemically plated, a first metal pillar 30 is formed in each opening 221, a second metal pillar 31 is formed in each through hole 223, and a plurality of circuits 40 are formed on the circuit patterns 222; wherein the lines 40 are connected to the first and second metal pillars 30, 31. Similarly, as shown in fig. 3, a plurality of second lines 41 may be formed in the second line pattern 211 in this step.
As shown in fig. 5E, a passivation layer 23 is formed on the top surface 22 of the insulating molding compound 20a to cover the first and second metal pillars 30, 31 and the circuits 40 exposed on the top surface 22 of the insulating molding compound 20 a.
As shown in fig. 5F, a pad opening 230 is formed on the passivation layer 23 to expose a portion of the first and second metal pillars 30 and 31 and the circuit 40; as shown in fig. 5G, a metal pad 231 is formed in each pad opening 230, a first external pad 50 (e.g., a solder ball) is formed on a portion of the metal pad 231, and a second external pad 51 (e.g., a solder ball) is formed on the second metal pillar 31 exposed on the bottom surface 21 of the insulating encapsulant 20 a; thus, the semiconductor package 1a shown in fig. 2 is configured to be soldered to external chips 60 and 61 of different package types through the metal pads 231 and the first external pads 50. Alternatively, as shown in fig. 3, the second metal pillar 31, the second circuit 41 and the second external pad 51 exposed on the bottom surface 21 of the insulating encapsulant 20a are soldered to external chips 60 and 61 of different packaging types.
In summary, the active surface of the chip is mainly coated with the insulating encapsulant containing metal salts, and when the top surface of the insulating encapsulant corresponding to the metal contact position of the chip is irradiated with laser, each metal contact can be a laser blocking layer, a plurality of openings are formed on the insulating encapsulant to expose each metal contact, and the laser is irradiated on the top surface of the insulating encapsulant layer to form a circuit pattern; forming circuits on the circuit pattern, wherein the circuits are electrically connected with the metal posts in the corresponding openings and are provided with external pads; therefore, the semiconductor packaging structure of the invention can be electrically connected with other electronic elements or circuit boards through the external pads on the circuits without using a substrate.
The present invention is capable of other embodiments, and various changes and modifications may be made by one skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (10)

1. A substrate-less semiconductor package structure, comprising:
a chip, including an active surface and a bottom surface opposite to the active surface; wherein the active surface has a plurality of metal contacts;
an insulating encapsulant containing metal salts and covering the chip; the bottom surface of the insulating sealing colloid is flush with the bottom surface of the chip, and a plurality of openings and a first circuit pattern are formed on the top surface of the insulating sealing colloid corresponding to a plurality of metal contacts of the chip;
a plurality of first metal columns which are respectively formed in the corresponding openings and are connected with the corresponding metal contacts;
a plurality of first lines formed on the first line patterns and connected to the corresponding first metal posts; and
the first external pads are electrically connected to the first metal posts and the first circuits.
2. The substrate-less semiconductor package according to claim 1, wherein the insulating encapsulant comprises a plurality of through holes, each through hole penetrating through a top surface and a bottom surface of the insulating encapsulant, and a second metal pillar is formed in each through hole.
3. The substrate-less semiconductor package structure of claim 2, further comprising:
a protective layer covering the top surface of the insulating sealing colloid and comprising a plurality of metal pads, wherein the plurality of metal pads are correspondingly connected with the first circuit and the first metal column, and the parts of the plurality of metal pads are respectively connected with the corresponding first external pads; and
and the plurality of second external connecting pads are respectively connected to the second metal columns on the bottom surface of the insulating sealing colloid.
4. The substrate-less semiconductor package structure of claim 2, wherein:
a second circuit pattern is formed on the bottom surface of the insulating sealing colloid, and a plurality of second circuits are formed on the second circuit pattern;
the parts of the second metal columns and the parts of the second circuits which are positioned on the bottom surface of the insulating sealing colloid are further respectively connected with a second external connecting pad; and the top surface of the insulating sealing colloid is further covered with a protective layer, the protective layer comprises a plurality of metal pads, the metal pads are correspondingly connected with the first circuit and the first metal column, and each metal pad is connected with the corresponding first external pad.
5. A method for manufacturing a substrate-free semiconductor packaging structure is characterized by comprising the following steps:
(a) preparing a temporary carrier plate;
(b) adhering a back surface of a chip to the temporary carrier plate;
(c) forming an insulating sealing colloid on the temporary carrier plate and coating the chip; wherein the insulating sealing colloid contains metal salt;
(d) removing the temporary carrier plate, and irradiating a top surface of the insulating sealing colloid by laser to form a plurality of openings and a first circuit pattern; wherein each opening is aligned with a corresponding metal contact on an active surface of the chip, the metal contact is exposed, and a bottom surface of the insulating sealing colloid is flush with the back surface of the chip;
(e) chemically plating a plurality of the openings and the first circuit patterns, forming a first metal column on each opening, and forming a plurality of first circuits on the first circuit patterns; and
(f) and electrically connecting a plurality of first external pads to the plurality of first metal posts and the plurality of first circuits on the top surface of the insulating sealant.
6. The method of manufacturing a substrate-less semiconductor package according to claim 5, wherein:
further irradiating the top surface of the insulating sealant with laser in the step (d) to form a through hole penetrating the top surface and the bottom surface of the insulating sealant; and
in step (e), a second metal pillar is formed in each of the through holes.
7. The method of fabricating the substrate-less semiconductor package structure of claim 6, further comprising:
(g) and forming a plurality of second external connecting pads on a plurality of second metal columns on the bottom surface of the insulating sealing colloid.
8. The method of manufacturing a substrate-less semiconductor package according to claim 6, wherein:
further irradiating the bottom surface of the insulating encapsulant with laser in step (d) to form a second circuit pattern; and
in the step (e), a plurality of second lines are formed on the second line pattern.
9. The method of fabricating the substrate-less semiconductor package according to claim 8, further comprising:
(g) and forming a plurality of second external connecting pads on a plurality of second metal columns and a plurality of second circuits on the bottom surface of the insulating sealing colloid.
10. The method of fabricating the substrate-less semiconductor package structure of any one of claims 5 to 9, wherein:
after the step (e), further forming a protective layer on the top surface of the insulating sealing colloid, forming a plurality of pad openings on the protective layer to expose parts of the metal posts and parts of the circuits, and forming metal pads in the pad openings; and
in step (f), a plurality of first external pads are formed on the plurality of metal pads.
CN201910266106.9A 2019-03-26 2019-04-03 Substrate-less semiconductor package structure and method for fabricating the same Pending CN111755393A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108110531A TWI685066B (en) 2019-03-26 2019-03-26 Semiconductor package without substrate and manufacturing method thereof
TW108110531 2019-03-26

Publications (1)

Publication Number Publication Date
CN111755393A true CN111755393A (en) 2020-10-09

Family

ID=70413510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910266106.9A Pending CN111755393A (en) 2019-03-26 2019-04-03 Substrate-less semiconductor package structure and method for fabricating the same

Country Status (2)

Country Link
CN (1) CN111755393A (en)
TW (1) TWI685066B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW571372B (en) * 2002-11-25 2004-01-11 Phoenix Prec Technology Corp Substrate with plated metal layer over pads thereon, and method for fabricating the same
CN101866889A (en) * 2009-04-17 2010-10-20 南茂科技股份有限公司 Substrate-free chip packaging and manufacturing method thereof
US20170125347A1 (en) * 2015-11-03 2017-05-04 Dyi-chung Hu System in package
TWI585910B (en) * 2016-02-05 2017-06-01 力成科技股份有限公司 Fan-out back-to-back chip stacked package and the method for manufacturing the same
CN107275294A (en) * 2016-04-01 2017-10-20 力成科技股份有限公司 Slim chip stack package construction and its manufacture method
CN108573963A (en) * 2017-03-07 2018-09-25 力成科技股份有限公司 Encapsulation stacking structure and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW509759B (en) * 2000-04-10 2002-11-11 Hiwin Tech Corp Ball screw with ball bearing ring
TWI256141B (en) * 2005-06-06 2006-06-01 Chipmos Technologies Inc Optoelectronic chip package and method for manufacturing the same
US8106496B2 (en) * 2007-06-04 2012-01-31 Stats Chippac, Inc. Semiconductor packaging system with stacking and method of manufacturing thereof
TWI437687B (en) * 2011-08-26 2014-05-11 Powertech Technology Inc Mehtod for testing multi-chip stacked packages
US8835228B2 (en) * 2012-05-22 2014-09-16 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
TWI473189B (en) * 2012-06-15 2015-02-11 Powertech Technology Inc Method for wafer-level testing diced multi-dice stacked packages
TWI621187B (en) * 2017-03-07 2018-04-11 力成科技股份有限公司 Package on package structure and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW571372B (en) * 2002-11-25 2004-01-11 Phoenix Prec Technology Corp Substrate with plated metal layer over pads thereon, and method for fabricating the same
CN101866889A (en) * 2009-04-17 2010-10-20 南茂科技股份有限公司 Substrate-free chip packaging and manufacturing method thereof
US20170125347A1 (en) * 2015-11-03 2017-05-04 Dyi-chung Hu System in package
TWI585910B (en) * 2016-02-05 2017-06-01 力成科技股份有限公司 Fan-out back-to-back chip stacked package and the method for manufacturing the same
CN107275294A (en) * 2016-04-01 2017-10-20 力成科技股份有限公司 Slim chip stack package construction and its manufacture method
CN108573963A (en) * 2017-03-07 2018-09-25 力成科技股份有限公司 Encapsulation stacking structure and its manufacturing method

Also Published As

Publication number Publication date
TW202036796A (en) 2020-10-01
TWI685066B (en) 2020-02-11

Similar Documents

Publication Publication Date Title
US10074614B2 (en) EMI/RFI shielding for semiconductor device packages
US7851894B1 (en) System and method for shielding of package on package (PoP) assemblies
JP5215605B2 (en) Manufacturing method of semiconductor device
CN101834166B (en) Leadless integrated circuit package having standoff contacts and die attach pad
US8890337B1 (en) Column and stacking balls package fabrication method and structure
US20120181680A1 (en) Ic package and method for manufacturing the same
JP4919103B2 (en) Land grid array semiconductor device package, assembly including the package, and manufacturing method
US20040048413A1 (en) Structure and method of direct chip attach
US9679835B2 (en) Method of manufacturing resin-encapsulated semiconductor device, and lead frame
TWI404175B (en) Semiconductor package having electrical connecting structures and fabrication method thereof
US8300423B1 (en) Stackable treated via package and method
US20120097430A1 (en) Packaging substrate and method of fabricating the same
EP3660897A1 (en) Semiconductor package with in-package compartmental shielding and fabrication method thereof
US11848214B2 (en) Encapsulated semiconductor package
US10304767B2 (en) Semiconductor device
US6930377B1 (en) Using adhesive materials as insulation coatings for leadless lead frame semiconductor packages
KR20160084666A (en) Printed circuit board, semiconductor package and method of manufacturing the same
CN111755393A (en) Substrate-less semiconductor package structure and method for fabricating the same
JP3522403B2 (en) Semiconductor device
KR20180012171A (en) Semiconductor device and manufacturing method thereof
CN112992776A (en) Packaging method, packaging structure and packaging module
JP7467214B2 (en) Wiring board, electronic device, and method for manufacturing wiring board
KR100247641B1 (en) Package and method of manufacturing the same
KR100779346B1 (en) Semiconductor package and its manufacturing method
KR20070019359A (en) Two sided mount type substrate having window for encapsulating and method for manufacturing a multi-chip package using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201009

RJ01 Rejection of invention patent application after publication