TWI473189B - Method for wafer-level testing diced multi-dice stacked packages - Google Patents

Method for wafer-level testing diced multi-dice stacked packages Download PDF

Info

Publication number
TWI473189B
TWI473189B TW101121623A TW101121623A TWI473189B TW I473189 B TWI473189 B TW I473189B TW 101121623 A TW101121623 A TW 101121623A TW 101121623 A TW101121623 A TW 101121623A TW I473189 B TWI473189 B TW I473189B
Authority
TW
Taiwan
Prior art keywords
die
wafer
stack
stacked
packages
Prior art date
Application number
TW101121623A
Other languages
Chinese (zh)
Other versions
TW201351522A (en
Inventor
Kai Jun Chang
Yu Shin Liu
Shin Kung Chen
Original Assignee
Powertech Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Technology Inc filed Critical Powertech Technology Inc
Priority to TW101121623A priority Critical patent/TWI473189B/en
Publication of TW201351522A publication Critical patent/TW201351522A/en
Application granted granted Critical
Publication of TWI473189B publication Critical patent/TWI473189B/en

Links

Description

已單離晶粒堆疊封裝件之晶圓級測試方法Wafer-level test method for single-chip stacked packages

本發明係有關於半導體裝置之製造,特別係有關於一種已單離晶粒堆疊封裝件之晶圓級測試方法。The present invention relates to the fabrication of semiconductor devices, and more particularly to a wafer level testing method for a single-die stacked package.

多晶片堆疊封裝係為一種新的高密度封裝技術,即在一封裝構件內封裝有多顆相互堆疊之晶片。目前作法係將晶片逐一堆疊在一基板上再予以封裝與測試,然而基板的存在會增加封裝結構的表面接合面積與厚度。Multi-wafer stacked package is a new high-density packaging technology in which a plurality of stacked chips are packaged in a package member. The current practice is to stack the wafers one by one on a substrate and then package and test them. However, the presence of the substrate increases the surface bonding area and thickness of the package structure.

為了減少多晶片堆疊封裝構造之尺寸,有人嘗試省略基板的方式製作,在晶圓等級進行多片晶圓貼合,經晶圓切割之後製成無基板晶粒堆疊體(或稱晶粒立方體,dice cube),如美國公開專利第2011/0074017號所揭示之技術者。然而,一晶圓內會有不良晶片的產生並且位置不固定,以晶圓對準晶圓的方式會使得無基板晶粒堆疊體的不良率大幅提高。此外,當基板省略時,多晶片堆疊封裝構造之對外導接電極與測試電極的間距將明顯縮小,由原本的數百微米間距縮小到一百微米間距以下,將無法使用原有的封裝測試機台內的測試針(pogo pin)進行測試。目前的作法有二,一為先不測試待上板之後,再進行模組測試,故無法預先確定堆疊晶片之間的接點是否良好;二為先將無基板晶粒堆疊體在單離後結合在一設有扇出電路與扇出端子之轉接基板(通常材質為矽),再裝載至封裝測試機台內,以進行測試,不但 製程複雜並且測試成本提高。In order to reduce the size of the multi-wafer stack package structure, some people try to omit the substrate, and perform multiple wafer bonding at the wafer level, and after wafer dicing, a substrate-free die stack (or a crystal grain cube) is formed. Dice cube), such as those disclosed in U.S. Patent Application Publication No. 2011/0074017. However, in a wafer, defective wafers are generated and the position is not fixed, and the wafer alignment of the wafers causes the defect rate of the substrate-free die stack to be greatly improved. In addition, when the substrate is omitted, the distance between the external conductive electrode and the test electrode of the multi-wafer stacked package structure will be significantly reduced, and the original package tester will not be used if the original distance of several hundred micrometers is reduced to less than one hundred micrometers. The test pin (pogo pin) in the station was tested. At present, there are two methods. First, after testing the board to be tested, the module test is performed. Therefore, it is impossible to determine in advance whether the joint between the stacked wafers is good. Second, the substrate stack without the substrate is separated. Combined with a transfer substrate (usually made of 矽) with a fan-out circuit and a fan-out terminal, and then loaded into the package test machine for testing, not only The process is complicated and the test cost is increased.

為了解決上述之問題,本發明之主要目的係在於一種已單離晶粒堆疊封裝件之晶圓級測試方法,能達成對已單離晶粒堆疊封裝件的微間隙探觸測試,特別可輕易整合在TSV封裝製程中。In order to solve the above problems, the main object of the present invention is a wafer level test method for a single-die stack package, which can achieve a micro-gap probe test for a single-die stack package, especially Integrated in the TSV packaging process.

本發明之次一目的係在於一種已單離晶粒堆疊封裝件之晶圓級測試方法,能在上板之前先行晶圓級測試已單離晶粒堆疊封裝件的優劣,達到以低成本方式防止已單離晶粒堆疊封裝件的誤用。The second object of the present invention is a wafer level test method for a single-die stack package, which can perform the wafer level test before the upper board, and the advantages and disadvantages of the single-die stack package can be achieved in a low cost manner. Prevent misuse of the single-die stack package.

本發明的目的及解決其技術問題是採用以下技術方案來實現的。本發明揭示一種已單離晶粒堆疊封裝件之晶圓級測試方法。首先,提供複數個晶粒堆疊封裝件,每一晶粒堆疊封裝件係包含複數個上下堆疊之晶粒,並具有一正面、一背面以及複數個位在該正面上之測試電極;之後,依晶粒陣列排列並固定該些晶粒堆疊封裝件於一透光性擬晶圓載盤上,該透光性擬晶圓載盤係具有複數個由特定定位圖樣定義之元件設置區(例如由X軸標線與Y軸標線規劃出之陣列或是中心、角隅或周邊定位標記)以及一感光性黏著層,該感光性黏著層係黏著該些晶粒堆疊封裝件之背面,並使該些晶粒堆疊封裝件位於該些元件設置區內,可不遮蓋該些X軸標線與該些Y軸標線,或是不遮蓋角隅或周邊定位標記;之後,裝載已搭載該些晶粒堆疊封裝件之該透光性擬晶圓載盤於一 晶圓測試機內;接著,利用該晶圓測試機之複數個晶圓測試探針探觸該些測試電極,以電性測試該些晶粒堆疊封裝件;最後,透過該透光性擬晶圓載盤光照射該感光性黏著層,以供由該透光性擬晶圓載盤拾取出該些晶粒堆疊封裝件。The object of the present invention and solving the technical problems thereof are achieved by the following technical solutions. The present invention discloses a wafer level test method for a single-die stack package. First, a plurality of die-stack packages are provided, each die-stack package comprising a plurality of upper and lower stacked dies, and having a front surface, a back surface, and a plurality of test electrodes on the front surface; The die array arrays and fixes the die stack packages on a light transmissive wafer carrier having a plurality of component set regions defined by a specific positioning pattern (eg, by an X axis) An array or a central, corner or peripheral positioning mark planned by the marking line and the Y-axis marking line) and a photosensitive adhesive layer adhered to the back surface of the die-stacked package and The die stacking package is located in the component setting regions, and may not cover the X-axis marking lines and the Y-axis marking lines, or may not cover the corners or the peripheral positioning marks; afterwards, the loading has carried the die stacks The light transmissive wafer carrier of the package is in a In the wafer testing machine; then, using the plurality of wafer testing probes of the wafer testing machine to probe the test electrodes to electrically test the die-stack packages; finally, transmitting the transmissive crystal The circular carrier light illuminates the photosensitive adhesive layer for picking up the die-stack packages from the light-transmissive wafer carrier.

本發明的目的及解決其技術問題還可採用以下技術措施進一步實現。The object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.

在前述之晶圓級測試方法中,該透光性擬晶圓載盤係可為一玻璃盤。In the aforementioned wafer level test method, the light transmissive wafer carrier can be a glass disk.

在前述之晶圓級測試方法中,其中上述提供該些晶粒堆疊封裝件之步驟係可包含以下步驟:設置複數個無基板晶粒堆疊體於一黏著膠帶上,每一無基板晶粒堆疊體係由該些晶粒堆疊所組成,並在兩兩上下相鄰晶粒之間係各形成有一晶粒堆疊間隙,其中該些測試電極係相對遠離該黏著膠帶;以及,形成一填充膠體於該黏著膠帶上,以填滿該些晶粒堆疊間隙。In the foregoing wafer level testing method, the step of providing the die stack packages may include the steps of: setting a plurality of substrateless die stacks on an adhesive tape, and each substrateless die stacking The system is composed of the plurality of die stacks, and a die stacking gap is formed between each of the upper and lower adjacent crystal grains, wherein the test electrodes are relatively far away from the adhesive tape; and a filling colloid is formed thereon. Adhesive tape is applied to fill the die stack gaps.

在前述之晶圓級測試方法中,上述提供該些晶粒堆疊封裝件之步驟係可更包含:在形成該填充膠體之後之一去溢膠步驟,以移除該填充膠體超出該些無基板晶粒堆疊體之溢膠部位。In the foregoing wafer level testing method, the step of providing the die-stack packages may further include: removing a glue step after forming the filling gel to remove the filling gel beyond the non-substrate The overflow portion of the crystal grain stack.

在前述之晶圓級測試方法中,在上述去溢膠步驟之後,該填充膠體仍可包覆該些晶粒之複數個側面。In the wafer level test method described above, after the step of removing the glue, the filling gel can still cover a plurality of sides of the grains.

在前述之晶圓級測試方法中,該填充膠體係可為正光阻型,而該去溢膠步驟係為對該填充膠體之溢膠部位進 行曝光顯影。In the foregoing wafer level test method, the glue filling system may be a positive photoresist type, and the de-glue step is to enter the glue-filled portion of the filling gel. Line exposure development.

在前述之晶圓級測試方法中,在上述設置該些無基板晶粒堆疊體於該黏著膠帶上之步驟之前,該黏著膠帶係可預先設置於一長條形膠帶載具之一開口中,而模擬為一基板條。In the foregoing wafer level testing method, before the step of disposing the substrateless die stack on the adhesive tape, the adhesive tape may be preset in one of the openings of the long strip adhesive carrier. The simulation is a substrate strip.

在前述之晶圓級測試方法中,每一晶粒內係可設有複數個矽穿孔,並且該些晶粒堆疊封裝件於該些晶粒堆疊間隙內係可設有複數個互連凸塊,其係電性導通該些矽穿孔。In the foregoing wafer level test method, a plurality of germanium vias may be disposed in each of the die, and the die stack packages may be provided with a plurality of interconnect bumps in the die stack gaps. It electrically conducts the perforations of the crucible.

在前述之晶圓級測試方法中,每一晶粒堆疊封裝件係可更具有複數個位在該正面上之外接凸塊。In the wafer level testing method described above, each of the die stack packages may have a plurality of locations on the front side of the bumps.

在前述之晶圓級測試方法中,該些定位圖樣係可包含複數個X軸標線與複數個Y軸標線,且不被該些晶粒堆疊封裝件所遮蓋。In the foregoing wafer level testing method, the positioning patterns may include a plurality of X-axis marking lines and a plurality of Y-axis marking lines, and are not covered by the die-stack packages.

在前述之晶圓級測試方法中,該些X軸標線與該些Y軸標線係可延伸至該透光性擬晶圓載盤之周邊。In the foregoing wafer level testing method, the X-axis marking lines and the Y-axis marking lines may extend to the periphery of the light-transmitting pseudo-wafer carrier.

在前述之晶圓級測試方法中,該透光性擬晶圓載盤在該些元件設置區之外之一表面邊緣係可建置有一晶圓辨識碼。In the wafer level test method described above, the transmissive wafer carrier may have a wafer identification code formed on one of the surface edges outside the component placement regions.

以下將配合所附圖示詳細說明本發明之實施例,然應注意的是,該些圖示均為簡化之示意圖,僅以示意方法來說明本發明之基本架構或實施方法,故僅顯示與本案有關之元件與組合關係,圖中所顯示之元件並非以實際 實施之數目、形狀、尺寸做等比例繪製,某些尺寸比例與其他相關尺寸比例或已誇張或是簡化處理,以提供更清楚的描述。實際實施之數目、形狀及尺寸比例為一種選置性之設計,詳細之元件佈局可能更為複雜。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings in which FIG. The components and combinations related to this case, the components shown in the figure are not actual The number, shape, and size of the implementation are scaled, and some ratios of dimensions to other related dimensions are either exaggerated or simplified to provide a clearer description. The actual number, shape and size ratio of the implementation is an optional design, and the detailed component layout may be more complicated.

依據本發明之一較佳實施例,一種已單離晶粒堆疊封裝件之晶圓級測試方法舉例說明於第1A至1D圖各步驟之元件截面示意圖。依該晶圓級測試方法,首先提供複數個晶粒堆疊封裝件100,而第2A至2E圖係關於提供複數個晶粒堆疊封裝件100之細部次步驟之元件截面示意圖。In accordance with a preferred embodiment of the present invention, a wafer level test method for a single-die stack package is illustrated in cross-section of the components of steps 1A through 1D. According to the wafer level test method, a plurality of die-stack packages 100 are first provided, and FIGS. 2A to 2E are schematic cross-sectional views of elements in a sub-step of providing a plurality of die-stack packages 100.

如第1A圖所示,提供複數個晶粒堆疊封裝件100,其係已切割成單體化,較佳為無基板型態。每一晶粒堆疊封裝件100係包含複數個上下堆疊之晶粒110,該些晶粒110係可由同一晶圓切單後所構成,通常該些晶粒110之本體係為半導體材質,該些晶粒110之主動表面係已製作好所需要的積體電路元件,其功能例如可為記載體、邏輯電路或微處理器電路,一般係為非揮發性記載體。並且,每一晶粒堆疊封裝件100係具有一正面102、一背面103以及複數個位在該正面102上之測試電極130,該正面102係為對外之表面接合面,該背面103係為該正面102之相對表面。在本實施例中,該正面102係可由其中一晶粒之主動表面所構成,而該背面103係可由其中一晶粒之非主動表面所構成。該些測試電極130係為連接至該些晶粒110內部積體電路元件之測試 用電極。在本實施例中,該些測試電極130係為晶片銲墊,或可為凸塊狀。更具體地,每一晶粒110內係可設有複數個矽穿孔111(Through Silicon Via,TSV),並且該些上下堆疊之晶粒110之間的晶粒堆疊間隙120內係可設有複數個互連凸塊140,其係電性導通該些矽穿孔111。在本實施例中,每一晶粒堆疊封裝件100係可更具有複數個位在該正面102上之外接凸塊141,例如銅柱、銲球或金屬凸塊,可與該些互連凸塊140在晶粒上位置、材質與尺寸上為實質相同,並由利用重配置線路層(圖中未繪出)電性連接該些外接凸塊141至該些測試電極130。此外,該些測試電極130之間距係介於60~100微米,本發明之晶圓級測試方法特別應用於該些測試電極130之間距不大於100微米之場合,而該些外接凸塊141之間距係可等於或大於該些測試電極130之間距。在一變化實施例中,該些外接凸塊141係可省略,直接以該些測試電極130130作為該晶粒堆疊封裝件100之對外電極。該些晶粒堆疊封裝件100之製造係可利用既有的半導體封裝設備。As shown in FIG. 1A, a plurality of die-stack packages 100 are provided which have been diced to be singulated, preferably in a substrateless form. Each of the die-stacked packages 100 includes a plurality of die 110 stacked on top of each other. The die 110 can be formed by singulating the same wafer. Generally, the system of the die 110 is a semiconductor material. The active surface of the die 110 has been fabricated with the required integrated circuit components, and its function can be, for example, a body, a logic circuit, or a microprocessor circuit, and is generally a non-volatile document. Moreover, each of the die-stack packages 100 has a front surface 102, a back surface 103, and a plurality of test electrodes 130 on the front surface 102. The front surface 102 is an external surface joint surface. The opposite surface of the front side 102. In this embodiment, the front surface 102 can be formed by an active surface of one of the crystal grains, and the back surface 103 can be formed by an inactive surface of one of the crystal grains. The test electrodes 130 are connected to the integrated circuit components of the die 110. Use an electrode. In this embodiment, the test electrodes 130 are wafer pads or may be bumps. More specifically, each of the die 110 may be provided with a plurality of through silicon vias 111 (TSV), and the die stack gaps 120 between the upper and lower stacked die 110 may be provided with plural numbers. The interconnecting bumps 140 electrically conduct the turns of the turns 111. In this embodiment, each of the die-stack packages 100 can have a plurality of locations on the front surface 102, such as copper pillars, solder balls or metal bumps, and the interconnect bumps. The block 140 is substantially identical in position, material and size on the die, and is electrically connected to the test electrodes 130 by using a reconfiguration circuit layer (not shown). In addition, the distance between the test electrodes 130 is between 60 and 100 micrometers. The wafer level test method of the present invention is particularly applied to the case where the distance between the test electrodes 130 is less than 100 micrometers, and the external bumps 141 are The spacing system may be equal to or greater than the distance between the test electrodes 130. In a variant embodiment, the external bumps 141 can be omitted, and the test electrodes 130130 are directly used as the external electrodes of the die stack package 100. The fabrication of the die-stack packages 100 can utilize existing semiconductor packaging devices.

如第1A圖與第4圖所示,依晶粒陣列排列並固定該些晶粒堆疊封裝件100於一透光性擬晶圓載盤210上。在此所述的「晶粒陣列」係指一晶圓中的晶粒排列位置,以使該些晶粒堆疊封裝件100的排列成宛如在同一晶圓中的晶粒。該透光性擬晶圓載盤210在尺寸外形上係模擬成一晶圓,例如8吋、12吋或16吋晶圓,而能被裝 載在一晶圓測試機內。在本實施例中,該透光性擬晶圓載盤210係可為一玻璃盤,故該透光性擬晶圓載盤210之透光性良好、具有足夠堅硬度並且其膨脹係數與半導體材質接近。此外,該透光性擬晶圓載盤210之表面係具有一感光性黏著層214,利用該感光性黏著層214係黏著該些晶粒堆疊封裝件100之背面103,該感光性黏著層214之特性為未照光前具有黏著力,在照射特定波長之光線後該感光性黏著層214將失去黏著力,在移除已照光感光性黏著層、重覆塗上未照光前之感光性黏著層、黏著工件、照光之重覆操作中,表示該透光性擬晶圓載盤210之主體係可循環使用。並且,如第3C圖所示,該透光性擬晶圓載盤210係具有複數個由特定定位圖樣定義之元件設置區213。在本實施例中,該定位圖樣係包含複數個X軸標線211與複數個Y軸標線212,其係為相互垂直之直線,以規劃出該些元件設置區213的最大區域。利用該感光性黏著層214之黏著,應使該些晶粒堆疊封裝件100位於該些元件設置區213內,更可不遮蓋該些X軸標線211與該些Y軸標線212為達到較佳的定位辨識(如第4圖所示)。較佳地,該些X軸標線211與該些Y軸標線212係可延伸至該透光性擬晶圓載盤210之周邊,以模擬晶圓切割線,而易於定位該透光性擬晶圓載盤210。該些X軸標線211與該些Y軸標線212較佳地係可為半蝕刻之直線凹槽,可供光線照射之;或者,該些X軸標線211與該些Y軸標線212亦可 為直線狀墨線。As shown in FIGS. 1A and 4, the die-stack packages 100 are arranged and fixed on a transmissive wafer carrier 210 according to the die array. As used herein, "die array" refers to the arrangement of the grains in a wafer such that the die-stack packages 100 are arranged as if they were in the same wafer. The light transmissive wafer carrier 210 is molded into a wafer, such as an 8-inch, 12-inch or 16-inch wafer, in size and can be loaded. Loaded in a wafer tester. In this embodiment, the translucent wafer carrier 210 can be a glass disk, so the transmissive wafer carrier 210 has good light transmittance, is sufficiently rigid, and has a coefficient of expansion close to that of the semiconductor material. . In addition, the surface of the light-transmissive wafer carrier 210 has a photosensitive adhesive layer 214. The photosensitive adhesive layer 214 is used to adhere the back surface 103 of the die-stack package 100. The photosensitive adhesive layer 214 The characteristic is that there is adhesive force before the light is irradiated, and the photosensitive adhesive layer 214 loses the adhesive force after irradiating the light of a specific wavelength, and removes the photosensitive photosensitive adhesive layer, and repeatedly applies the photosensitive adhesive layer before the unilluminated, In the repeated operation of adhering the workpiece and illuminating, it is indicated that the main system of the translucent pseudo-wafer carrier 210 can be recycled. Further, as shown in FIG. 3C, the translucent wafer carrier 210 has a plurality of component setting regions 213 defined by a specific positioning pattern. In this embodiment, the positioning pattern includes a plurality of X-axis marking lines 211 and a plurality of Y-axis marking lines 212, which are perpendicular to each other to plan a maximum area of the component setting regions 213. The adhesion of the photosensitive adhesive layer 214 should be such that the die-stacked packages 100 are located in the component mounting regions 213, and the X-axis markings 211 and the Y-axis markings 212 are not covered. Good positioning identification (as shown in Figure 4). Preferably, the X-axis markings 211 and the Y-axis markings 212 extend to the periphery of the transparent wafer carrier 210 to simulate a wafer cutting line, and the light transmittance is easy to locate. Wafer carrier 210. The X-axis reticle 211 and the Y-axis reticle 212 are preferably semi-etched linear grooves for illuminating light; or the X-axis reticle 211 and the Y-axis reticle 212 can also It is a linear ink line.

之後,如第1B圖所示,裝載已搭載該些晶粒堆疊封裝件100之該透光性擬晶圓載盤210於一晶圓測試機220內。該透光性擬晶圓載盤210亦可黏貼至以習知晶圓支撐環支撐固定之晶圓切割膠帶(圖中未繪出),而使該透光性擬晶圓載盤210位於習知晶圓支撐環之中央開孔內,即能使得該些晶粒堆疊封裝件100可完全模擬出由一晶圓切割出且固定在晶圓切割膠帶之晶粒,便可無障礙地沿用晶圓測試機之既有裝載機構而裝載進入至該晶圓測試機220內並進行準確定位。Thereafter, as shown in FIG. 1B, the translucent pseudo-wafer carrier 210 on which the die-stack packages 100 are mounted is loaded in a wafer testing machine 220. The translucent wafer carrier 210 can also be adhered to a wafer dicing tape (not shown) supported by a conventional wafer support ring, and the translucent wafer carrier 210 is placed on a conventional wafer support ring. In the central opening, the die-stacked package 100 can completely simulate the die cut by a wafer and fixed on the wafer cutting tape, so that the existing wafer testing machine can be used without barriers. The loading mechanism loads into the wafer testing machine 220 and performs accurate positioning.

接著,如第1C圖所示,利用該晶圓測試機220之複數個晶圓測試探針221探觸該些測試電極130,以電性測試該些晶粒堆疊封裝件100。其中該些晶圓測試探針221係安裝於一探針卡225(probe card)中。如第5圖所示,該晶圓測試機220係包含一裝載區222、一傳送區223以及一測試區224,在該裝載區222內習知晶圓與該透光性擬晶圓載盤210係可被裝載與卸載,在經過該傳送區223之對位檢查之後可被傳送到該測試區224,該測試區224內設有前述包含晶圓測試探針221之探針卡225,用以晶圓級探測晶片表面之電極。由於該晶圓測試擬態托盤符合晶圓尺寸,而能直接被裝載入該裝載區222內,並在該測試區224內以該些晶圓測試探針221探觸該些晶粒堆疊封裝件100之測試電極130,故多晶片晶圓級封裝之測試成本得以降低、測試效率得以提 昇,並且符合微間距探觸的要求,該些晶粒堆疊封裝件100不需要搭載在設有扇出電路與扇出端子之轉接基板而能進行測試,以確認該些晶粒110之間的電性導通(即該些互連凸塊140之接合)是否良好。此外,本發明之已單離晶粒堆疊封裝件之晶圓級測試方法亦可允許在經該晶圓測試機220之探測後直接進行該些晶粒堆疊封裝件100之分類,預先挑出或剃除不良的晶粒堆疊封裝件。Then, as shown in FIG. 1C, the plurality of wafer test probes 221 of the wafer testing machine 220 are used to probe the test electrodes 130 to electrically test the die-stack packages 100. The wafer test probes 221 are mounted in a probe card 225 (probe card). As shown in FIG. 5, the wafer testing machine 220 includes a loading area 222, a transfer area 223, and a test area 224. The conventional wafer and the transparent wafer carrier 210 are available in the loading area 222. The loading and unloading can be transmitted to the test area 224 after the alignment inspection by the transfer area 223. The test area 224 is provided with the probe card 225 including the wafer test probe 221 for the wafer. The stage detects the electrodes on the surface of the wafer. Since the wafer test mimetic trays conform to the wafer size, they can be directly loaded into the loading area 222, and the wafer test probes 221 are used to probe the die stack packages in the test area 224. 100 test electrode 130, so the test cost of multi-wafer wafer level packaging is reduced, and test efficiency is improved The die-stacked package 100 does not need to be mounted on the adapter substrate provided with the fan-out circuit and the fan-out terminal to be tested to confirm the between the die 110 Whether the electrical conduction (ie, the bonding of the interconnecting bumps 140) is good. In addition, the wafer level testing method of the single-die stacking package of the present invention may also allow the classification of the die-stack packages 100 directly after being detected by the wafer testing machine 220, and pre-pick or A poor die-stack package is shaved.

接著,如第1D圖所示,在測試之後由該晶圓測試機220內卸載該透光性擬晶圓載盤210並移動到一曝光機內,其下方設有一光照射裝置230,透過該透光性擬晶圓載盤210之主體進行光照射該感光性黏著層214,該光照射裝置230係可發射能對該感光性黏著層214產生反應之特定波長光線,例如UV光(紫外光),使得該感光性黏著層214失去黏性。Then, as shown in FIG. 1D, after the test, the translucent wafer carrier 210 is unloaded from the wafer testing machine 220 and moved into an exposure machine, and a light irradiation device 230 is disposed under the lens. The main body of the optical wafer carrier 210 is irradiated with light to the photosensitive adhesive layer 214, and the light irradiation device 230 emits light of a specific wavelength, such as UV light (ultraviolet light), which can react to the photosensitive adhesive layer 214. The photosensitive adhesive layer 214 is rendered viscous.

最後,如第1E圖所示,由該透光性擬晶圓載盤210拾取出該些晶粒堆疊封裝件100,進行分類包裝或是使用。因此,本發明之已單離晶粒堆疊封裝件之晶圓級測試方法能達成對已單離晶粒堆疊封裝件的微間隙探觸測試,特別可輕易整合在TSV封裝製程中。Finally, as shown in FIG. 1E, the die-stacked packages 100 are picked up by the light-transmissive wafer carrier 210 for sorting and packaging. Therefore, the wafer level test method of the single-die stack package of the present invention can achieve micro-gap probe test for the single-die stack package, and can be easily integrated into the TSV package process.

本發明之晶圓級測試方法參閱第2A至2E圖進一步說明上述提供該些晶粒堆疊封裝件100之步驟之細部次步驟。The wafer level test method of the present invention is further described with reference to FIGS. 2A through 2E for the detailed steps of the steps of providing the die stack packages 100 described above.

如第2A圖所示,在切割之時與切割之後,複數個晶粒110係黏貼於一晶圓切割膠帶240上,而該晶圓切割 膠帶240係黏貼在一晶圓支撐環中(圖中未繪出)。該些晶粒110係可形成於同一晶圓,在切割過程利用一晶圓切割刀具241切割該晶圓之切割道以形成該些晶粒110。在經過晶圓級測試之後,良好的晶粒110會被分類與收集。As shown in FIG. 2A, after cutting and cutting, a plurality of dies 110 are adhered to a wafer dicing tape 240, and the wafer is diced. The tape 240 is adhered to a wafer support ring (not shown). The dies 110 can be formed on the same wafer, and the dicing streets of the wafer are cut by a wafer cutting tool 241 during the dicing process to form the dies 110. After wafer level testing, good grains 110 are sorted and collected.

如第2B圖所示,設置複數個無基板晶粒堆疊體101於一黏著膠帶250上,每一無基板晶粒堆疊體101係由該些晶粒110堆疊所組成,並在兩兩上下相鄰晶粒110之間係各形成有一晶粒堆疊間隙120,其中該些測試電極130係相對遠離該黏著膠帶250,而該些互連凸塊140係位於該些晶粒堆疊間隙120內,以電性導通該些矽穿孔111。As shown in FIG. 2B, a plurality of substrate-free die stacks 101 are disposed on an adhesive tape 250, and each of the substrate-free die stacks 101 is composed of the plurality of die 110 stacks. Each of the adjacent die 110 is formed with a die stacking gap 120, wherein the test electrodes 130 are relatively far from the adhesive tape 250, and the interconnecting bumps 140 are located in the die stacking gaps 120. The turns 111 are electrically conductive.

如第2C圖所示,形成一填充膠體150於該黏著膠帶250上,以填滿該些晶粒堆疊間隙120,進而密封該些互連凸塊140。可由一塗膠針頭270提供該填充膠體150,該填充膠體150係形成於該黏著膠帶250上,並在適當的溫度與時間能產生毛細作用之條件下,使該填充膠體150填滿該些晶粒堆疊間隙120,接著,以加熱的預烘烤(pre-curing)方式使該填充膠體150略為固化成形。此外,該填充膠體150除了可以是底部填充膠,亦可為黏晶材料、非導電性膠(NCP)或是異方性導電膠(ACP)。上述次步驟之晶粒堆疊與塗膠之具體實施技術可參考美國公開第2011/0057327號中第8A與8B圖之相關說明;或者,在本實施例中,如第3圖所示,在上述設置該些無 基板晶粒堆疊體101於該黏著膠帶250上之步驟之前,該黏著膠帶250係可預先設置於一長條形膠帶載具260之一開口261中,而模擬為一基板條,故可以利用既有的半導體封裝設備之覆晶接合機與點膠機(或模封機)據以實施。此外,該膠帶載具260亦可作為傳送該些無基板晶粒堆疊體101進入烘烤爐之搭載治具As shown in FIG. 2C, a filling gel 150 is formed on the adhesive tape 250 to fill the die stack gaps 120, thereby sealing the interconnect bumps 140. The filling gel 150 may be provided by a glue applying needle 270 formed on the adhesive tape 250 and filled with the filling gel 150 under the condition that the temperature and time can produce capillary action. The granules are stacked with a gap 120, and then the filled colloid 150 is slightly solidified in a heated pre-curing manner. In addition, the filling gel 150 may be a die-fill material, a non-conductive glue (NCP) or an anisotropic conductive paste (ACP), in addition to the underfill. For the specific implementation technique of the above-mentioned sub-step die stacking and gluing, reference may be made to the descriptions of Figures 8A and 8B of U.S. Patent Publication No. 2011/0057327; or, in this embodiment, as shown in FIG. 3, in the above Set these none Before the step of the substrate die stack 101 on the adhesive tape 250, the adhesive tape 250 can be preliminarily disposed in one of the openings 261 of the elongated tape carrier 260, and is simulated as a substrate strip, so that both can be utilized. Some flip chip bonding machines and dispensers (or molding machines) of semiconductor packaging equipment are implemented. In addition, the tape carrier 260 can also serve as a mounting fixture for transporting the substrate-free die stack 101 into the baking furnace.

此外,如第2D與2E圖所示,上述提供該些晶粒堆疊封裝件100之步驟係可更包含:在形成該填充膠體150之後之一去溢膠步驟,以移除該填充膠體150超出該些無基板晶粒堆疊體101之溢膠部位151。較佳地,在上述去溢膠步驟之後,該填充膠體150仍可包覆該些晶粒110之複數個側面112。達成此一結構之具體技術手段之一為,該填充膠體150係可為正光阻型,而該去溢膠步驟係為對該填充膠體150之溢膠部位151進行曝光顯影。如第2D圖所示,可利用一曝光光罩280對該填充膠體150之溢膠部位151進行曝光顯影,該曝光光罩280之遮蓋區圖案略大於該些晶粒110尺寸,該填充膠體150之溢膠部位151將會被光照射而產生反應。如第2E圖所示,顯影液可溶解移除該填充膠體150之溢膠部位151,同時,該些晶粒110之側面112仍被該填充膠體150所包覆。當該填充膠體150以加熱烘烤的方式後固化(post curing)之後,即可構成上述之該些晶粒堆疊封裝件100。或者,達成該些晶粒110之側面112被該填充膠體150所包覆之結構之另一具體技術手段為,可利用雷射 切割工具切除該溢膠部位151。In addition, as shown in FIGS. 2D and 2E, the steps of providing the die-stack packages 100 may further include: removing the glue step 150 after forming the filling gel 150 to remove the filling gel 150. The overflow portions 151 of the substrate-free die stack 101 are not provided. Preferably, the filling colloid 150 can still cover the plurality of sides 112 of the plurality of crystal grains 110 after the step of removing the glue. One of the specific technical means for achieving this structure is that the filling colloid 150 can be a positive photoresist type, and the de-glue step is to expose and develop the overflow portion 151 of the filling colloid 150. As shown in FIG. 2D, the overflow portion 151 of the filling gel 150 can be exposed and developed by using an exposure mask 280. The mask pattern of the exposure mask 280 is slightly larger than the size of the crystal grains 110. The filling gel 150 is filled. The overflow portion 151 will be irradiated with light to cause a reaction. As shown in FIG. 2E, the developer can dissolve and remove the overflow portion 151 of the filling gel 150, and at the same time, the side faces 112 of the crystal grains 110 are still covered by the filling gel 150. After the filling paste 150 is post-cured in a heat-baking manner, the above-described die-stack packages 100 can be formed. Alternatively, another specific technical means for achieving the structure in which the side faces 112 of the die 110 are covered by the filling colloid 150 is that a laser can be utilized. The cutting tool cuts the overflow portion 151.

此外,該透光性擬晶圓載盤210之製作係可參閱第6A至6C圖。首先如第6A圖所示,該透光性擬晶圓載盤210之主體係為一尺寸可如12吋晶圓之空白玻璃盤,上下表面皆為乾淨平滑;如第6B圖所示,利用一定位光罩290對準在該透光性擬晶圓載盤210上,以蝕刻或是沉積方式在該透光性擬晶圓載盤210之上表面製作出該些X軸標線211與該些Y軸標線212(如第6C圖所示)。更具體地,該透光性擬晶圓載盤210在該些元件設置區213之外之上表面或下表面之邊緣係可建置有一晶圓辨識碼215,以供條碼系統(bar code system)辨識,經由該條碼系統可如同對付一般晶圓測試這般追蹤測試良率。此外,本發明非僅限定以該些X軸標線211與該些Y軸標線212構成前述之定位圖樣(alignment pattern)。第7A至7C圖繪示在不同變化實施例中具不同定位圖樣之透光性擬晶圓載盤。在第7A圖中,該透光性擬晶圓載盤210用以辨識該些元件設置區213之定位圖樣係包含複數個中央定位標記216,係位於該些元件設置區213之中心點,可為圓形或是十字形;在第7B圖中,該透光性擬晶圓載盤210用以辨識該些元件設置區213之定位圖樣係包含複數個角隅定位標記217,其係位於該些元件設置區213之角隅,可為三角形或是L形;在第7C圖中,該透光性擬晶圓載盤210用以辨識該些元件設置區213之定位圖樣係包含複數個周邊定位標記218,其 係位於該些元件設置區213之周邊,而呈窗口形。當該些晶粒堆疊封裝件固定於該些元件設置區內,以不遮蓋該些角隅定位標記217或周邊定位標記218為較佳。而該些定位圖樣之形成係亦可利用不同於該透光性擬晶圓載盤210本體材料之它物質的鑲嵌或是凹穴填埋所形成。In addition, the fabrication of the translucent wafer carrier 210 can be referred to the figures 6A to 6C. First, as shown in FIG. 6A, the main system of the translucent pseudo-wafer carrier 210 is a blank glass disk of a size such as 12-inch wafer, and the upper and lower surfaces are clean and smooth; as shown in FIG. 6B, The positioning mask 290 is aligned on the translucent wafer carrier 210, and the X-axis markings 211 and the Y are formed on the upper surface of the translucent wafer carrier 210 by etching or deposition. Axis marking line 212 (as shown in Figure 6C). More specifically, the transmissive wafer carrier 210 may have a wafer identification code 215 for the bar code system at the edge of the upper surface or the lower surface outside the component placement regions 213. Identification, through this bar code system can track the test yield as it does for general wafer testing. In addition, the present invention is not limited to the use of the X-axis reticle 211 and the Y-axis reticle 212 to form the aforementioned alignment pattern. 7A to 7C are diagrams showing a light transmissive wafer carrier having different positioning patterns in different variant embodiments. In FIG. 7A, the positioning pattern of the light-transmitting wafer carrier 210 for identifying the component setting regions 213 includes a plurality of central positioning marks 216 located at a central point of the component setting regions 213, which may be Circular or cross-shaped; in FIG. 7B, the positioning pattern of the transmissive wafer carrier 210 for identifying the component mounting regions 213 includes a plurality of corner locating marks 217 located in the components. The angle 隅 of the setting area 213 may be a triangle or an L shape. In the 7C, the positioning pattern of the light-transmitting wafer carrier 210 for identifying the component setting areas 213 includes a plurality of peripheral positioning marks 218. ,its It is located at the periphery of the component setting areas 213 and has a window shape. When the die-stack packages are fixed in the component mounting regions, it is preferable not to cover the corner-pointing marks 217 or the peripheral positioning marks 218. The formation of the positioning patterns may also be formed by inlaying or recessing a substance different from the bulk material of the light transmissive wafer carrier 210.

因此,本發明之已單離晶粒堆疊封裝件之晶圓級測試方法係相容於目前的晶圓測試機而能達成對無基板或晶片尺寸之已單離晶粒堆疊封裝件進行微間隙探觸測試而不需要電性轉接基板,以提供測試出良好的已單離晶粒堆疊封裝件,以低成本方式防止不良已單離晶粒堆疊封裝件的誤用。Therefore, the wafer level test method of the single-die-stacked package of the present invention is compatible with the current wafer tester, and can achieve micro-gap for the single-die stack package without substrate or wafer size. The probe test does not require an electrical transfer substrate to provide a well-tested, single-die stack package that prevents misuse of the defective single-die stack package in a low cost manner.

以上所述,僅是本發明的較佳實施例而已,並非對本發明作任何形式上的限制,雖然本發明已以較佳實施例揭露如上,然而並非用以限定本發明,任何熟悉本項技術者,在不脫離本發明之技術範圍內,所作的任何簡單修改、等效性變化與修飾,均仍屬於本發明的技術範圍內。The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention. Any simple modifications, equivalent changes and modifications made without departing from the technical scope of the present invention are still within the technical scope of the present invention.

100‧‧‧晶粒堆疊封裝件100‧‧‧ die stack package

101‧‧‧無基板晶粒堆疊體101‧‧‧No substrate die stack

102‧‧‧正面102‧‧‧ positive

103‧‧‧背面103‧‧‧Back

110‧‧‧晶粒110‧‧‧ grain

111‧‧‧矽穿孔111‧‧‧矽 piercing

112‧‧‧側面112‧‧‧ side

120‧‧‧晶粒堆疊間隙120‧‧‧ die stacking gap

130‧‧‧測試電極130‧‧‧Test electrode

140‧‧‧互連凸塊140‧‧‧Interconnect bumps

141‧‧‧外接凸塊141‧‧‧External bumps

150‧‧‧填充膠體150‧‧‧filled colloid

151‧‧‧溢膠部位151‧‧‧Over the glue

210‧‧‧透光性擬晶圓載盤210‧‧‧Transmissive wafer carrier

211‧‧‧X軸標線211‧‧‧X-axis marking

212‧‧‧Y軸標線212‧‧‧Y-axis marking

213‧‧‧元件設置區213‧‧‧Component setting area

214‧‧‧感光性黏著層214‧‧‧Photosensitive adhesive layer

215‧‧‧晶圓辨識碼215‧‧‧ wafer identification code

216‧‧‧中央標記216‧‧‧Central Mark

217‧‧‧角隅標記217‧‧‧ corner mark

218‧‧‧周邊標記218‧‧‧ surrounding marking

220‧‧‧晶圓測試機220‧‧‧Watt Testing Machine

221‧‧‧晶圓測試探針221‧‧‧ wafer test probe

222‧‧‧裝載區222‧‧‧ Loading area

223‧‧‧傳送區223‧‧‧Transfer area

224‧‧‧測試區224‧‧‧Test area

225‧‧‧探針卡225‧‧‧ probe card

230‧‧‧光照射裝置230‧‧‧Lighting device

240‧‧‧晶圓切割膠帶240‧‧‧ Wafer Cutting Tape

241‧‧‧晶圓切割刀具241‧‧‧ Wafer Cutting Tools

250‧‧‧黏著膠帶250‧‧‧Adhesive tape

260‧‧‧膠帶載具260‧‧‧ Tape Carrier

261‧‧‧開口261‧‧‧ openings

270‧‧‧塗膠針頭270‧‧‧Glue needle

280‧‧‧曝光光罩280‧‧‧Exposure mask

290‧‧‧定位光罩290‧‧‧ Positioning mask

第1A至1E圖:依據本發明之一較佳實施例,繪示在一種已單離晶粒堆疊封裝件之晶圓級測試方法中各主要步驟之元件截面示意圖。1A-1E FIG. 1 is a cross-sectional view showing the components of each of the main steps in a wafer level test method for a single-die stack package according to a preferred embodiment of the present invention.

第2A至2E圖:依據本發明之一較佳實施例,繪示在一種已單離晶粒堆疊封裝件之晶圓級測試方法中 用以提供複數個晶粒堆疊封裝件之細部次步驟之元件截面示意圖。2A to 2E are diagrams showing a wafer level test method for a single-die stack package according to a preferred embodiment of the present invention A schematic cross-sectional view of an element for providing a sub-step of a plurality of die-stack packages.

第3圖:繪示該晶圓級測試方法中複數個無基板晶粒堆疊體搭載於一長條形膠帶載具之正面示意圖。Figure 3 is a front elevational view showing a plurality of substrate-free die stacks mounted on a long strip of tape carrier in the wafer level test method.

第4圖:繪示該晶圓級測試方法中複數個晶粒堆疊封裝件搭載於一透光性擬晶圓載盤之正面示意圖。Figure 4 is a front elevational view showing a plurality of die-stack packages mounted on a light-transmissive wafer carrier in the wafer level test method.

第5圖:依據本發明之一較佳實施例,繪示該晶圓級測試方法中所使用之晶圓測試機之立體示意圖。Figure 5 is a perspective view of a wafer testing machine used in the wafer level testing method in accordance with a preferred embodiment of the present invention.

第6A至6C圖:依據本發明之一較佳實施例,繪示該晶圓級測試方法中所使用之透光性擬晶圓載盤在製造過程中之正面示意圖。6A to 6C are views showing a front view of a translucent pseudo-wafer carrier used in the wafer level test method in a manufacturing process according to a preferred embodiment of the present invention.

第7A至7C圖:依據本發明之一較佳實施例,具不同定位圖樣之透光性擬晶圓載盤之正面示意圖。7A-7C are front elevational views of a light transmissive wafer carrier having different positioning patterns in accordance with a preferred embodiment of the present invention.

100‧‧‧晶粒堆疊封裝件100‧‧‧ die stack package

102‧‧‧正面102‧‧‧ positive

103‧‧‧背面103‧‧‧Back

110‧‧‧晶粒110‧‧‧ grain

111‧‧‧矽穿孔111‧‧‧矽 piercing

112‧‧‧側面112‧‧‧ side

120‧‧‧晶粒堆疊間隙120‧‧‧ die stacking gap

130‧‧‧測試電極130‧‧‧Test electrode

140‧‧‧互連凸塊140‧‧‧Interconnect bumps

141‧‧‧外接凸塊141‧‧‧External bumps

150‧‧‧填充膠體150‧‧‧filled colloid

210‧‧‧透光性擬晶圓載盤210‧‧‧Transmissive wafer carrier

212‧‧‧Y軸標線212‧‧‧Y-axis marking

214‧‧‧感光性黏著層214‧‧‧Photosensitive adhesive layer

220‧‧‧晶圓測試機220‧‧‧Watt Testing Machine

221‧‧‧晶圓測試探針221‧‧‧ wafer test probe

225‧‧‧探針卡225‧‧‧ probe card

Claims (14)

一種已單離晶粒堆疊封裝件之晶圓級測試方法,包含:提供複數個晶粒堆疊封裝件,每一晶粒堆疊封裝件係包含複數個上下堆疊之晶粒,並具有一正面、一背面以及複數個位在該正面上之測試電極;依晶粒陣列排列並固定該些晶粒堆疊封裝件於一透光性擬晶圓載盤上,該透光性擬晶圓載盤係具有複數個由特定定位圖樣定義之元件設置區以及一感光性黏著層,該感光性黏著層係黏著該些晶粒堆疊封裝件之背面,並使該些晶粒堆疊封裝件位於該些元件設置區內;裝載已搭載該些晶粒堆疊封裝件之該透光性擬晶圓載盤於一晶圓測試機內;利用該晶圓測試機之複數個晶圓測試探針探觸該些測試電極,以電性測試該些晶粒堆疊封裝件;以及透過該透光性擬晶圓載盤光照射該感光性黏著層,以供由該透光性擬晶圓載盤拾取出該些晶粒堆疊封裝件;其中上述提供該些晶粒堆疊封裝件之步驟係包含以下步驟:設置複數個無基板晶粒堆疊體於一黏著膠帶上,每一無基板晶粒堆疊體係由該些晶粒堆疊所組成, 並在兩兩上下相鄰晶粒之間係各形成有一晶粒堆疊間隙,其中該些測試電極係相對遠離該黏著膠帶;以及形成一填充膠體於該黏著膠帶上,以填滿該些晶粒堆疊間隙。 A wafer level testing method for a single-die stack package includes: providing a plurality of die-stack packages, each die-stack package comprising a plurality of upper and lower stacked dies, and having a front side and a front side a back surface and a plurality of test electrodes on the front surface; arranging and fixing the die stack packages on a light transmissive wafer carrier according to the die array, the light transmissive wafer carrier having a plurality of a component setting region defined by a specific positioning pattern and a photosensitive adhesive layer, the photosensitive adhesive layer is adhered to the back surface of the die-stacked package, and the die-stack packages are located in the component setting regions; Loading the translucent pseudo-wafer carrier on which the die-stacked packages are mounted in a wafer testing machine; and using the plurality of wafer test probes of the wafer testing machine to probe the test electrodes to be electrically Testing the die-stack packages; and illuminating the photosensitive adhesive layer through the light-transmissive wafer carrier for picking up the die-stack packages from the light-transmissive wafer carrier; Provided above These steps of die-based stack package comprising the steps of: setting a plurality of substrate-die on a stack of adhesive tape, each of the substrate-die stacked system composed of the plurality of stacked die, And forming a die stack gap between the two adjacent upper and lower dies, wherein the test electrodes are relatively far away from the adhesive tape; and forming a filling gel on the adhesive tape to fill the dies Stack gaps. 依據申請專利範圍第1項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中該透光性擬晶圓載盤係為一玻璃盤。 A wafer level test method for a single-die-stacked package according to the first aspect of the patent application, wherein the light-transmissive wafer carrier is a glass disk. 依據申請專利範圍第1項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中上述提供該些晶粒堆疊封裝件之步驟係更包含:在形成該填充膠體之後之一去溢膠步驟,以移除該填充膠體超出該些無基板晶粒堆疊體之溢膠部位。 The wafer level testing method for the single-die-stacked package according to the first aspect of the patent application, wherein the step of providing the die-stacked package further comprises: removing the glue after forming the filling gel a step of removing the filling gel beyond the overflow portion of the substrate-free substrate stack. 依據申請專利範圍第3項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中在上述去溢膠步驟之後,該填充膠體仍包覆該些晶粒之複數個側面。 A wafer level test method for a single-die stack package according to claim 3, wherein the fill colloid still covers a plurality of sides of the die after the step of removing the glue. 依據申請專利範圍第3項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中該填充膠體係為正光阻型,而該去溢膠步驟係為對該填充膠體之溢膠部位進行曝光顯影。 A wafer level test method for a single-die stack package according to claim 3, wherein the fill system is a positive photoresist type, and the step of removing the glue is to perform the overflow portion of the filled colloid. Exposure development. 依據申請專利範圍第3項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中在上述設置該些無基板晶粒堆疊體於該黏著膠帶上之步驟之前,該黏著膠帶係預先設置於一長條形膠帶載具之一開口中,而模 擬為一基板條。 A wafer level test method for a single-die-stacked package according to claim 3, wherein the adhesive tape is pre-set before the step of disposing the substrate-free die stack on the adhesive tape In a long strip of tape carrier in one of the openings, and the mold It is intended to be a substrate strip. 依據申請專利範圍第1項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中每一晶粒內係設有複數個矽穿孔,並且該些晶粒堆疊封裝件於該些晶粒堆疊間隙內係設有複數個互連凸塊,其係電性導通該些矽穿孔。 A wafer level test method for a single-die-stacked package according to claim 1, wherein each of the crystal grains is provided with a plurality of germanium perforations, and the die-stacked packages are on the crystal grains A plurality of interconnecting bumps are disposed in the stacking gap, and the plurality of interconnecting bumps are electrically connected. 依據申請專利範圍第7項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中每一晶粒堆疊封裝件係更具有複數個位在該正面上之外接凸塊。 A wafer level test method for a single-die-stacked package according to claim 7 of the patent application, wherein each of the die-stack packages further has a plurality of external bumps on the front surface. 依據申請專利範圍第1項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中該些定位圖樣係包含複數個X軸標線與複數個Y軸標線,且不被該些晶粒堆疊封裝件所遮蓋。 A wafer level test method for a single-die-stacked package according to the first aspect of the patent application, wherein the positioning patterns comprise a plurality of X-axis marks and a plurality of Y-axis marks, and are not subjected to the crystals Covered by a grain stack package. 依據申請專利範圍第9項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中該些X軸標線與該些Y軸標線係延伸至該透光性擬晶圓載盤之周邊。 A wafer level test method for a single-die-stacked package according to claim 9 of the patent application, wherein the X-axis marks and the Y-axis marks extend to the periphery of the light-transmissive wafer carrier . 依據申請專利範圍第1項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中該些定位圖樣係選自於中心定位標記、角隅定位標記與周邊定位標記所構成群組之其中之一。 A wafer level testing method for a single-die-stacked package according to the first aspect of the patent application, wherein the positioning patterns are selected from the group consisting of a central positioning mark, a corner positioning mark, and a peripheral positioning mark. one. 依據申請專利範圍第1項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中該透光性擬晶圓載盤在該些元件設置區之外之一表面邊緣係建置有一晶圓辨識碼。 A wafer level test method for a single-die-stacked package according to the first aspect of the patent application, wherein the light-transmissive wafer carrier has a wafer on a surface edge of the component mounting region Identification code. 一種已單離晶粒堆疊封裝件之晶圓級測試方法,包含:提供複數個晶粒堆疊封裝件,每一晶粒堆疊封裝件係包含複數個上下堆疊之晶粒,並具有一正面、一背面以及複數個位在該正面上之測試電極;依晶粒陣列排列並固定該些晶粒堆疊封裝件於一透光性擬晶圓載盤上,該透光性擬晶圓載盤係具有複數個由特定定位圖樣定義之元件設置區以及一感光性黏著層,該感光性黏著層係黏著該些晶粒堆疊封裝件之背面,並使該些晶粒堆疊封裝件位於該些元件設置區內,其中該些定位圖樣係包含複數個X軸標線與複數個Y軸標線,且不被該些晶粒堆疊封裝件所遮蓋;裝載已搭載該些晶粒堆疊封裝件之該透光性擬晶圓載盤於一晶圓測試機內;利用該晶圓測試機之複數個晶圓測試探針探觸該些測試電極,以電性測試該些晶粒堆疊封裝件;以及透過該透光性擬晶圓載盤光照射該感光性黏著層,以供由該透光性擬晶圓載盤拾取出該些晶粒堆疊封裝件。 A wafer level testing method for a single-die stack package includes: providing a plurality of die-stack packages, each die-stack package comprising a plurality of upper and lower stacked dies, and having a front side and a front side a back surface and a plurality of test electrodes on the front surface; arranging and fixing the die stack packages on a light transmissive wafer carrier according to the die array, the light transmissive wafer carrier having a plurality of a component setting area defined by a specific positioning pattern, and a photosensitive adhesive layer, the photosensitive adhesive layer is adhered to the back surface of the die-stacked package, and the die-stacked packages are located in the component setting regions, Wherein the positioning patterns comprise a plurality of X-axis marking lines and a plurality of Y-axis marking lines, and are not covered by the die-stack packages; loading the light-transmitting properties of the chip-stack packages Wafer is carried in a wafer testing machine; a plurality of wafer testing probes of the wafer testing machine are used to probe the test electrodes to electrically test the die-stack packages; and through the light transmission Pseudo wafer carrier Irradiation of the photosensitive adhesive layer, the pickup for the plurality of stacked die package of the light-transmissive plate intended wafer. 依據申請專利範圍第13項之已單離晶粒堆疊封裝件之晶圓級測試方法,其中該些X軸標線與該些Y軸標線係延伸至該透光性擬晶圓載盤之周邊。 A wafer level test method for a single-die-stacked package according to claim 13 wherein the X-axis marks and the Y-axis marks extend to the periphery of the light-transmissive wafer carrier .
TW101121623A 2012-06-15 2012-06-15 Method for wafer-level testing diced multi-dice stacked packages TWI473189B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101121623A TWI473189B (en) 2012-06-15 2012-06-15 Method for wafer-level testing diced multi-dice stacked packages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101121623A TWI473189B (en) 2012-06-15 2012-06-15 Method for wafer-level testing diced multi-dice stacked packages

Publications (2)

Publication Number Publication Date
TW201351522A TW201351522A (en) 2013-12-16
TWI473189B true TWI473189B (en) 2015-02-11

Family

ID=50158116

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101121623A TWI473189B (en) 2012-06-15 2012-06-15 Method for wafer-level testing diced multi-dice stacked packages

Country Status (1)

Country Link
TW (1) TWI473189B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281254B2 (en) * 2014-02-13 2016-03-08 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming integrated circuit package
TWI685066B (en) * 2019-03-26 2020-02-11 力成科技股份有限公司 Semiconductor package without substrate and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140946A (en) * 1988-11-22 1990-05-30 Seiko Epson Corp Prober
JPH0878508A (en) * 1994-09-02 1996-03-22 Fujitsu Ltd Wafer holding plate
US5623214A (en) * 1994-10-14 1997-04-22 Hughes Aircraft Company Multiport membrane probe for full-wafer testing
JP2007037320A (en) * 2005-07-28 2007-02-08 Oriental Motor Co Ltd Drive method and drive device for stepping motor
JP2011154627A (en) * 2010-01-28 2011-08-11 Elpida Memory Inc Semiconductor device, test method thereof, and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140946A (en) * 1988-11-22 1990-05-30 Seiko Epson Corp Prober
JPH0878508A (en) * 1994-09-02 1996-03-22 Fujitsu Ltd Wafer holding plate
US5623214A (en) * 1994-10-14 1997-04-22 Hughes Aircraft Company Multiport membrane probe for full-wafer testing
JP2007037320A (en) * 2005-07-28 2007-02-08 Oriental Motor Co Ltd Drive method and drive device for stepping motor
JP2011154627A (en) * 2010-01-28 2011-08-11 Elpida Memory Inc Semiconductor device, test method thereof, and system

Also Published As

Publication number Publication date
TW201351522A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
US8703508B2 (en) Method for wafer-level testing diced multi-chip stacked packages
US7208335B2 (en) Castellated chip-scale packages and methods for fabricating the same
US9583461B2 (en) Probing chips during package formation
US7977156B2 (en) Chipstack package and manufacturing method thereof
US11217555B2 (en) Aligning bumps in fan-out packaging process
KR20200011007A (en) Fan-out package with controllable standoff
US8710859B2 (en) Method for testing multi-chip stacked packages
US8173488B2 (en) Electronic device and method of manufacturing same
JP2004095836A (en) Semiconductor device and its manufacturing method
US9165890B2 (en) Chip package comprising alignment mark and method for forming the same
KR100679684B1 (en) Method for manufacturing wafer level semiconductor device formed protecting layer
US20180108645A1 (en) Apparatuses and methods for forming die stacks
TW202002218A (en) Integrated fan-out package and manufacturing method thereof
CN114050111A (en) Fan-out type packaging method and fan-out type packaging structure
US20200105545A1 (en) Semiconductor package and manufacturing method thereof
TWI473189B (en) Method for wafer-level testing diced multi-dice stacked packages
US7205643B2 (en) Stray field shielding structure for semiconductors
CN111696880B (en) Bare chip KGD screening method based on TSV silicon wafer reconstruction
KR20210016255A (en) Warpage control of packages using embedded core frame
US9462694B2 (en) Spacer layer for embedding semiconductor die
CN113793812B (en) Fan-out packaging method and fan-out packaging structure
TWI464856B (en) Alignment method for inversely picking and placing diced multi-dice stacked packages
US7972904B2 (en) Wafer level packaging method
KR100563022B1 (en) Method and apparatus for processing an array of components
KR101343048B1 (en) Semiconductor wafer having a alignment mark for wafer bonding and processing method thereof