CN111747767B - 石墨烯增强的树脂基全碳复合材料及其制备方法 - Google Patents

石墨烯增强的树脂基全碳复合材料及其制备方法 Download PDF

Info

Publication number
CN111747767B
CN111747767B CN202010699521.6A CN202010699521A CN111747767B CN 111747767 B CN111747767 B CN 111747767B CN 202010699521 A CN202010699521 A CN 202010699521A CN 111747767 B CN111747767 B CN 111747767B
Authority
CN
China
Prior art keywords
graphene
room temperature
composite material
carbon nanotube
nanotube film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010699521.6A
Other languages
English (en)
Other versions
CN111747767A (zh
Inventor
沈永涛
雷圣宾
吴国领
张恩冰
宋亚儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010699521.6A priority Critical patent/CN111747767B/zh
Publication of CN111747767A publication Critical patent/CN111747767A/zh
Application granted granted Critical
Publication of CN111747767B publication Critical patent/CN111747767B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种石墨烯增强的树脂基全碳复合材料及其制备方法,制备方法包括以下步骤:将碳纳米管薄膜在过氧化氢水溶液中浸泡,再在盐酸水溶液中浸泡,冲洗,进行机械单向拉伸,沉浸在第一液体中,用二氯甲烷冲洗,真空静置,得到处理后薄膜,将处理后薄膜浸入第二液体中,再采用提拉法进行提拉,得到层状结构,再于机械压力下沿层状结构的厚度方向压制,压制时从室温升温至180~200℃,再在惰性气体或氮气环境下从室温升温至1000‑1100℃并于该温度保持30min,冷却至室温,得到石墨烯增强的树脂基全碳复合材料,本发明通过设计层状结构、层结合面的预处理、石墨烯填料的应用,缓慢固化,利用软相与硬相的紧密结合,使复合材料质地紧密,实现了高导热性。

Description

石墨烯增强的树脂基全碳复合材料及其制备方法
技术领域
本发明属于碳碳复合薄膜材料制备技术领域,具体来说涉及一种石墨烯增强的树脂基全碳复合材料及其制备方法。
背景技术
新型航天器对有效载荷、功能性的要求不断提高,表现为所载电子设备小型化、密集化和高功率化,热控设计难度愈来愈大;电子元器件向着小型化、大功率、高度集成化发展,工作时热流密度快速增加,散热问题愈加突出。对于以上问题其研究焦点均集中于高导热材料的开发([1]Chen H,Ginzburg V V,Yang J,et al.Thermal conductivity ofpolymer-based composites:fundamentals and applications[J].Progress in PolymerScience,2016,59:41-85.[2]Burger N,Laachachi A,Ferriol M,et al.Review ofthermalconductivity in composites:mechanisms,parameters and theory[J].Progress in Polymer Science,2016,61:1-28.)。树脂基复合材料具备轻质、高比强度、高比模量、可设计性强等特点,但受基体树脂低导热限制,材料导热性能特别是垂直纤维方向导热性能不佳;以高导热填料改性树脂可有效提高导热性能,但以传统手段制备的树脂基复合材料,由于填料与基体的结合度欠缺无法获得理想的导热率,例如有学者通过非共价结合了10wt%非氧化石墨烯片的环氧基质,其导热系数为1.53W/(m·K)(S.H.Song,K.H.Park,B.H.Kim,Y.W.Choi,G.H.Jun,D.J.Lee,B.S.Kong,K.W.Paik,S.Jeon,Enhancedthermal conductivity of epoxy-graphene composites by using non-oxidizedgraphene flakes with non-covalent functionalization,Adv.Mater 25(2013)732e737,http://dx.doi.org/10.1002/adma.201202736.)。另外,随着纳米填料含量的增加,填料的聚集也阻碍着导热率的提升(Peng,J.S.;Huang,C.J.;Cao,C.;Saiz,E.;Du,Yi.;Dou,S.X.;Tomsia,A.P.;Wagner,H.D.;Jiang,L.;Cheng,Q.F.Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring.Matter.2020,2,220-232.)。
发明内容
针对现有技术的不足,本发明的目的在于提供一种石墨烯增强的树脂基全碳复合材料的制备方法,该制备方法提出采用热压固化后玻璃碳化的方法制备了界面结合良好的石墨烯增强的树脂基全碳复合材料,形成了良好的层状结构,达成了石墨烯/树脂复合材料的高导热率的目标。
本发明的目的是通过下述技术方案予以实现的。
一种石墨烯增强的树脂基全碳复合材料的制备方法,包括以下步骤:
1)将碳纳米管薄膜在50~70℃的过氧化氢水溶液中浸泡60~72h,再在盐酸水溶液中浸泡10-12h,用去离子水冲洗,得到纯化碳纳米管薄膜;
在所述步骤1)中,所述过氧化氢水溶液的浓度为30~35wt%,盐酸水溶液的浓度为36-38wt%。
在所述步骤1)中,所述碳纳米管薄膜为未经压实(处于蓬松状态)。
2)对步骤1)所得纯化碳纳米管薄膜进行机械单向拉伸,用于将纯化碳纳米管薄膜上的碳纳米管排列方向调整为一致,得到拉伸后碳纳米管薄膜;
在所述步骤2)中,所述机械拉伸的速度不大于5mm/min。
3)将拉伸后碳纳米管薄膜沉浸在第一液体中10~15min,用于向拉伸后碳纳米管薄膜表面引入环氧基,用二氯甲烷冲洗拉伸后碳纳米管薄膜,60~80℃真空静置,得到处理后薄膜,其中,第一液体为m-CPBA(间氯过氧苯甲酸)和CH2Cl2的混合物,第一液体中m-CPBA为饱和浓度;
在所述步骤3)中,真空静置的时间为30~60min。
在所述步骤3)中,所述饱和浓度为室温20~25℃。
4)将处理后薄膜浸入第二液体中,再采用提拉法进行提拉,得到层状结构,再于30~35MP的机械压力下沿层状结构的厚度方向压制30~50min,压制时从室温20~25℃升温至180~200℃,压制后自然冷却至室温20~25℃,再在惰性气体或氮气环境下从室温20~25℃升温至1000-1100℃并于该温度保持30min,冷却至室温20~25℃,得到石墨烯增强的树脂基全碳复合材料,其中,第二液体为酚醛树脂、异丙醇和石墨烯的混合物。
在所述步骤4)中,所述压制时的升温速率不高于0.4℃/min。
在所述步骤4)中,从室温20~25℃升温至1000~1100℃的升温时间为8~10h,升温速率为不高于2℃/min。
在所述步骤4)中,按质量份数计,所述酚醛树脂和石墨烯的比为4:1,每35g酚醛树脂和石墨烯的混合物与100mL异丙醇混合。上述制备方法获得的石墨烯增强的树脂基全碳复合材料。
本发明的有益效果如下:
(1)高质量:通过对纯化碳纳米管薄膜进行预先机械拉伸和表面处理,能够有效提高碳纳米管的有序性、减少无定形碳等杂质含量、在表面引入环氧基,从而提高界面结合强度。
(2)均匀化:通过设计层状结构,有效避免了石墨烯团聚形成裂纹源,因此为良好韧性提供基础。
(3)共强化:通过设计层状结构、层结合面的预处理、石墨烯填料的应用,缓慢固化,利用软相与硬相的紧密结合,使复合材料质地紧密,实现了高导热性。
附图说明
图1为实施例1所得石墨烯增强的树脂基全碳复合材料的SEM;
图2为实施例2所得石墨烯增强的树脂基全碳复合材料的比热容;
图3为实施例1所得拉伸后碳纳米管薄膜的SEM;
图4为碳纳米管薄膜的SEM。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
在本实施例中,酚醛树脂用FB-90高温树脂和树脂F44混合而成,FB-90高温树脂和树脂F44的质量比为3:1。
下述实施例所涉及的药品购买源如下:
药品 公司
FB-90高温树脂 蚌埠市天宇高温树脂材料有限公司
树脂F44 济宁华凯树脂有限公司
石墨烯粉 哈工大石墨深加工中心
碳纳米管薄膜 河北碳垣纳米科技有限公司
下述实施例所涉及的仪器以及型号如下:
Figure BDA0002592516700000031
Figure BDA0002592516700000041
实施例1
一种石墨烯增强的树脂基全碳复合材料的制备方法,包括以下步骤:
1)将碳纳米管薄膜在60℃的过氧化氢水溶液中浸泡72h,再在盐酸水溶液中浸泡12h,用去离子水冲洗,得到纯化碳纳米管薄膜;其中,过氧化氢水溶液的浓度为30wt%,盐酸水溶液的浓度为37wt%,碳纳米管薄膜为未经压实(处于蓬松状态)。
2)对步骤1)所得纯化碳纳米管薄膜进行机械单向拉伸,用于将纯化碳纳米管薄膜上的碳纳米管排列方向调整为一致,得到拉伸后碳纳米管薄膜,其中,机械单向拉伸的速度为5mm/min;
3)将拉伸后碳纳米管薄膜沉浸在第一液体中10min,用于向拉伸后碳纳米管薄膜表面引入环氧基,用二氯甲烷冲洗拉伸后碳纳米管薄膜,80℃真空静置30min,得到处理后薄膜,其中,第一液体为m-CPBA(间氯过氧苯甲酸)和CH2Cl2的混合物,第一液体中m-CPBA为饱和浓度(室温20~25℃下);
4)将处理后薄膜浸入第二液体中,再采用提拉法进行提拉,得到层状结构(层层铺展),再于30MP的机械压力下沿层状结构的厚度方向压制30min,压制时从室温20~25℃升温至200℃,压制后自然冷却至室温20~25℃,再在氮气环境下从室温20~25℃升温至1000℃并于该温度保持30min,冷却至室温20~25℃,得到石墨烯增强的树脂基全碳复合材料,其中,第二液体为酚醛树脂、异丙醇和石墨烯的混合物,按质量份数计,酚醛树脂和石墨烯的比为4:1,每35g酚醛树脂和石墨烯的混合物与100mL异丙醇混合。压制时的升温速率为0.4℃/min,从室温20~25℃升温至1000℃的升温时间为8h,升温速率为2℃/min。
第一液体能够增强酚醛树脂与碳纳米管界面层的结合强度。获得实施例1所得石墨烯增强的树脂基全碳复合材料的平整断面,该断面的SEM如图1所示。由图1可知到层间结合紧密,层界清晰,没有发现石墨烯粉末聚集的现象。实施例1所得拉伸后碳纳米管薄膜的SEM如图3所示,碳纳米管薄膜的SEM如图4所示。
用激光导热仪对实施例1所得石墨烯增强的树脂基全碳复合材料进行测试(测5次,取平均值),获得的结果如表1所示;测试实施例1所得石墨烯增强的树脂基全碳复合材料的比热容,结果如图2所示。
表1
Figure BDA0002592516700000051
由图2和表1获得的平均值可知,26.9℃时石墨烯增强的树脂基全碳复合材料的热扩散系数为6.18mm2/s,比热容为0.966J/(g·K)。经测试所制备的样品密度为1.87g/cm3。可按式(1)计算导热系数。
λ=αCpρ (1)
式中:λ为导热系数,单位W/(m·K);α为热扩散系数,单位mm2/s;Cp为恒压比热容,单位J/(g·K);ρ为材料密度,单位g/cm3。通过计算可知实施例1所得石墨烯增强的树脂基全碳复合材料的导热系数为11.21W/(m·K),相对纯树脂导热率(0.17W/(m·K))提升了65倍(杨坤好,姚盼,肖海刚,王晓蕾,居建国.石墨烯纳米片/环氧树脂的导热性能研究[J].热固性树脂,2019,34(04):40-44.)。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (7)

1.一种石墨烯增强的树脂基全碳复合材料的制备方法,其特征在于,包括以下步骤:
1)将碳纳米管薄膜在50~70℃的过氧化氢水溶液中浸泡60~72h,再在盐酸水溶液中浸泡10-12h,用去离子水冲洗,得到纯化碳纳米管薄膜,所述碳纳米管薄膜为未经压实;
2)对步骤1)所得纯化碳纳米管薄膜进行机械单向拉伸,用于将纯化碳纳米管薄膜上的碳纳米管排列方向调整为一致,得到拉伸后碳纳米管薄膜,所述机械拉伸的速度不大于5mm/min;
3)将拉伸后碳纳米管薄膜沉浸在第一液体中10~15min,用于向拉伸后碳纳米管薄膜表面引入环氧基,用二氯甲烷冲洗拉伸后碳纳米管薄膜,60~80℃真空静置,得到处理后薄膜,其中,第一液体为m-CPBA和CH2Cl2的混合物,第一液体中m-CPBA为饱和浓度;
4)将处理后薄膜浸入第二液体中,再采用提拉法进行提拉,得到层状结构,再于30~35MP的机械压力下沿层状结构的厚度方向压制30~50min,压制时从室温20~25℃升温至180~200℃,压制后自然冷却至室温20~25℃,再在惰性气体或氮气环境下从室温20~25℃升温至1000-1100℃并于该温度保持30min,冷却至室温20~25℃,得到石墨烯增强的树脂基全碳复合材料,其中,第二液体为酚醛树脂、异丙醇和石墨烯的混合物,按质量份数计,所述酚醛树脂和石墨烯的比为4:1,每35g酚醛树脂和石墨烯的混合物与100mL异丙醇混合。
2.根据权利要求1所述的制备方法,其特征在于,在所述步骤1)中,所述过氧化氢水溶液的浓度为30~35 wt %,盐酸水溶液的浓度为36-38wt%。
3.根据权利要求1所述的制备方法,其特征在于,在所述步骤3)中,真空静置的时间为30~60min。
4.根据权利要求1所述的制备方法,其特征在于,在所述步骤3)中,所述饱和浓度为室温20~25℃。
5.根据权利要求1所述的制备方法,其特征在于,在所述步骤4)中,所述压制时的升温速率不高于0.4℃/min。
6.根据权利要求1所述的制备方法,其特征在于,在所述步骤4)中,从室温20~25℃升温至1000~1100℃的升温时间为8~10h,升温速率为不高于2℃/min。
7.如权利要求1~6中任意一项所述制备方法获得的石墨烯增强的树脂基全碳复合材料。
CN202010699521.6A 2020-07-20 2020-07-20 石墨烯增强的树脂基全碳复合材料及其制备方法 Expired - Fee Related CN111747767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010699521.6A CN111747767B (zh) 2020-07-20 2020-07-20 石墨烯增强的树脂基全碳复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010699521.6A CN111747767B (zh) 2020-07-20 2020-07-20 石墨烯增强的树脂基全碳复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111747767A CN111747767A (zh) 2020-10-09
CN111747767B true CN111747767B (zh) 2021-12-03

Family

ID=72711527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010699521.6A Expired - Fee Related CN111747767B (zh) 2020-07-20 2020-07-20 石墨烯增强的树脂基全碳复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111747767B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349478A (zh) * 1999-04-16 2002-05-15 联邦科学和工业研究组织 多层碳纳米管薄膜
CN102161814A (zh) * 2011-03-01 2011-08-24 复旦大学 一种取向碳纳米管/聚合物复合膜的制备方法
CN102718432A (zh) * 2012-06-08 2012-10-10 河海大学 碳纳米管改性树脂/玻璃纤维复合筋材及其制备方法
JP5296849B2 (ja) * 2011-05-27 2013-09-25 ツィンファ ユニバーシティ グラフェン−カーボンナノチューブ複合構造体の製造方法
CN104529545A (zh) * 2015-01-05 2015-04-22 福州大学 一种具有良好电化学性能的解开的氮掺杂碳纳米管衍生物
CN105909705A (zh) * 2016-01-31 2016-08-31 张泽伟 一种耐高温复合材料刹车片
CN106783217A (zh) * 2017-01-16 2017-05-31 天津大学 高效率制备氮掺杂石墨烯碳纳米管薄膜的方法
CN109134934A (zh) * 2018-08-21 2019-01-04 吉祥三宝高科纺织有限公司 一种碳纳米管-石墨烯增强复合材料及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964522B (zh) * 2016-05-05 2019-10-11 中国科学院长春应用化学研究所 一种石墨烯导热膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349478A (zh) * 1999-04-16 2002-05-15 联邦科学和工业研究组织 多层碳纳米管薄膜
CN102161814A (zh) * 2011-03-01 2011-08-24 复旦大学 一种取向碳纳米管/聚合物复合膜的制备方法
JP5296849B2 (ja) * 2011-05-27 2013-09-25 ツィンファ ユニバーシティ グラフェン−カーボンナノチューブ複合構造体の製造方法
CN102718432A (zh) * 2012-06-08 2012-10-10 河海大学 碳纳米管改性树脂/玻璃纤维复合筋材及其制备方法
CN104529545A (zh) * 2015-01-05 2015-04-22 福州大学 一种具有良好电化学性能的解开的氮掺杂碳纳米管衍生物
CN105909705A (zh) * 2016-01-31 2016-08-31 张泽伟 一种耐高温复合材料刹车片
CN106783217A (zh) * 2017-01-16 2017-05-31 天津大学 高效率制备氮掺杂石墨烯碳纳米管薄膜的方法
CN109134934A (zh) * 2018-08-21 2019-01-04 吉祥三宝高科纺织有限公司 一种碳纳米管-石墨烯增强复合材料及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bioinspired layered composites based on flattened double-walled carbon nanotubes;Qunfeng Cheng 等;《Advanced Materials》;20121031;第24卷(第14期);1838-1843 *
石墨烯纳米片/环氧树脂的导热性研究;杨坤好等;《热固性树脂》;20190731;第34卷(第4期);40-44 *

Also Published As

Publication number Publication date
CN111747767A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN108530676B (zh) 基于模板的三维网状碳材料/高分子功能复合材料及其制备方法
Wang et al. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@ f-CNTs networks via self-sacrificing template method
CN110872193B (zh) 一种高导热石墨烯/短切碳纤维复合材料的制备方法
CN113881228B (zh) 一种高导热碳素纤维复合材料及其制备方法
CN109535659B (zh) 一种高导热环氧树脂复合材料及其制备方法与应用
CN110626030B (zh) 一种高导热聚酰亚胺多层复合薄膜及其制备方法
CN109777044B (zh) 一种基于石墨烯蜂窝结构的电磁屏蔽复合材料及其制备方法和应用
JP2013021260A (ja) 電磁波吸収材及びその製造方法、フレキシブルプリント配線板、並びに、電子機器
CN110809395A (zh) 一种磁性碳纳米纤维气凝胶吸波材料及制备方法
WO2017011828A1 (en) Graphene fiber and method of manufacturing same
CN111747767B (zh) 石墨烯增强的树脂基全碳复合材料及其制备方法
CN108275674B (zh) 一种具有热电效应的超弹性石墨烯气凝胶及其制备方法
CN103342574A (zh) 增强型块体纳米碳纤维/碳复合材料及其制备方法
CN105696116A (zh) 一种新型高导热炭纤维的制备方法
CN110845752B (zh) 一种具有仿生结构的复合石墨烯导热薄膜及其制备
CN112759788B (zh) 一种具有固液互穿网络结构的导热复合水凝胶及制备方法
CN114180558B (zh) 石墨烯微纳腔超导膜的制备方法及相关产品和应用
JP2020521712A (ja) 高熱伝導のポリイミド系複合炭素膜およびその製造方法
CN111002668A (zh) 人造石墨复合膜及其制备方法
CN111270171A (zh) 一种纳米碳增强Mo-Cu-Zr复合材料及其制备方法
CN110871270B (zh) 一种高弹性高导热的三维碳纳米管复合材料的制备方法
CN113353926A (zh) 一种用于制备石墨膜的聚酰亚胺薄膜、该聚酰亚胺薄膜制备的高导热石墨膜及其制备方法
CN113353927A (zh) 一种导热复合石墨膜及其制备方法
CN110614691A (zh) 一种密实化木基石墨烯导电复合材料的制备方法
CN113121961A (zh) 一种mfs@cnt环氧树脂复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211203