CN111721198A - 一种复合式线激光测量系统多轴空间坐标系标定方法 - Google Patents

一种复合式线激光测量系统多轴空间坐标系标定方法 Download PDF

Info

Publication number
CN111721198A
CN111721198A CN202010438155.9A CN202010438155A CN111721198A CN 111721198 A CN111721198 A CN 111721198A CN 202010438155 A CN202010438155 A CN 202010438155A CN 111721198 A CN111721198 A CN 111721198A
Authority
CN
China
Prior art keywords
line laser
laser sensor
measuring
measuring head
contact type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010438155.9A
Other languages
English (en)
Inventor
苏锋
刘超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Huarui Shengde Technology Co ltd
Original Assignee
Beijing Huarui Shengde Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Huarui Shengde Technology Co ltd filed Critical Beijing Huarui Shengde Technology Co ltd
Priority to CN202010438155.9A priority Critical patent/CN111721198A/zh
Publication of CN111721198A publication Critical patent/CN111721198A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines

Abstract

本发明公开了一种基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,以及利用球形目标进行多轴空间坐标系标定优化的方法。利用两个测头,线激光传感器以及接触式测头分别测量同一标准平面,两测头测量值理论上同时符合同一个平面方程。可求解出两测头之间的转换关系初值。后续通过两个测头测量多个角度的标准球,可以优化整个系统的误差,得到两测头之间的精确转换关系。是一种对于原始图像不可获得的二维线激光传感器测量系统的标定有效方法。

Description

一种复合式线激光测量系统多轴空间坐标系标定方法
技术领域:
本发明属于光学测量领域,涉及一种基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,以及利用球形目标进行多轴空间坐标系标定优化的方法。
背景技术:
光学测量是一种在运用计算机技术的基础上,通过将光电技术与机械测量的结合,从而达到快速、准确测量工作的一门新技术。目前广泛应用于电子、机械、齿轮加工等精密作领域,其测量结果准确,偏差极小。对比传统接触式测量方式,光学三维测量由于具有非接触、高精高和速度快的优势,已在工业制造、动画特技制作、游戏娱乐和医学等行业崭露头角。激光线扫描测量法,是以一条或多条激光光线 (光刀)图像来重现物体三维形貌,即从光刀图像中提取光刀中心位置,然后利用三角测量原理对光刀中心逐点进行求解,来获得型面三维数据。该技术以其非接触性、灵敏度高、实时性好、抗干扰能力强等优点。
光学测量系统通常把光学传感器安装到三坐标测量机上,光学传感器可精确非接触测量被测物体轮廓,通过标定光学传感器和三坐标测量机的位置关系,可以把光学传感器测量数据转化为三坐标机坐标系数据。
光学测量系统的标定是测量系统中重要的一步,它需要标定出光学测量系统到接触式测量系统的转换关系,其标定精度直接决定了测量结果的精度。现有的标定方法有基于标准球的点激光光学测头的系统标定方法,有将光学测头的激光束等效成接触式测头的测针进行标定的方法。但对于线激光二维传感器组成的复合式多轴测量系统标定,一方面线激光传感器为二维传感器,利用点激光标定的方法无法同时标定出线激光传感器的二维坐标轴方向,一方面利用球状物体进行标定会因为线激光二维传感器对于激光入射法线方向不同,导致精度有所差异,存在球面拟合误差。还有一些方法要求获知线激光传感器原始采集图像。而有些线激光传感器无法获知原始图像。所以,对于原始图像不可获得的二维线激光传感器测量系统的标定,没有有效的标定方法。
发明内容:
针对现有技术的以上缺陷或改进需求,本发明提出了一种基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,以及利用球形目标进行多轴空间坐标系标定优化的方法。本方法适用于四轴测量机结构,对于原始图像不可获得的二维线激光传感器和测量机接触式测头之间的标定。本方法能同时标定出二维线激光传感器的两个方向以及线激光传感器到接触式测头的平移关系,同时能减小采用球形目标标定的球拟合误差。
本方法利用两个测头,线激光传感器以及接触式测头分别测量同一标准平面,两测头测量值理论上同时符合同一个平面方程。可求解出两测头之间的转换关系初值。后续通过两个测头测量多个角度的标准球,可以优化整个系统的误差,得到两测头之间的精确转换关系,该方法包含以下步骤:
步骤一、利用接触式测头直接在标准平面上采集测量点,利用最小二乘法拟合平面方程。得到平面方程:
Ax+By+Cz+D=0
步骤二、利用线激光传感器扫描同一平面,得到一系列线激光传感器采集点Ps和与之对应的机床光栅坐标值为ΔTm,其中用齐次坐标表示
Figure RE-GDA0002643808310000031
重复扫描另外两个平面,得到相应数据。
步骤三、建立数学模型,使得线激光传感器所有测量点符合相应的接触式测头测量的平面方程。
Figure RE-GDA0002643808310000032
其中i0,i1,j0,j1,k0,k1为线激光传感器坐标系到接触式测头坐标系旋转矩阵中的元素,x0,y0,z0为线激光传感器坐标系到接触式测头坐标系平移矩阵中的元素,及
Figure RE-GDA0002643808310000033
数学模型可以写成矩阵形式为:
(KPs+ΔTm)TX=0
式中:
Figure RE-GDA0002643808310000041
Figure RE-GDA0002643808310000042
Figure RE-GDA0002643808310000043
步骤四、牛顿迭代法求解方程。选取目标函数为测量的点到拟合的平面的距离作为误差值,非线性优化目标函数达到最小。
步骤五、放置已经校准后标准球在转台上,标准球半径为 Rsphere,通过接触式测头测量标准球的方法,先标定出转台坐标系。之后接触式测头和线激光传感器同时测量同一角度下的标准球,得到相同角度θ下标准球的轮廓数据。转台带动标准球进行旋转,重复测量标准球。
接触式测头测量得到的标准球数据,通过转台拼接,得到转台坐标系的标准球球心坐标Ocenter(xcenter,ycenter,zcenter,1)T。线激光传感器测量数据带入下述公式:
Figure RE-GDA0002643808310000044
式中:K,Ps,ΔTm为步骤三所述;
Figure RE-GDA0002643808310000045
Figure RE-GDA0002643808310000051
式中:符号.^2——代表矩阵各个元素分别求平方,即 (A.^2)i,j=(A)i,j(A)i,j
步骤六、采用Levenberg-Marquardt迭代法求解方程。选取目标函数为线激光测量点到接触式测量球面的距离,优化目标函数使距离和最小。
本发明与现有技术相比,能够取得下列有益效果:
1.本标定方法不需要知道二维线激光传感器的原始图像,只需要知道其测量数据就可进行标定。
2、本方法可以同时标定出二维线激光传感器到接触式测头坐标系的旋转矩阵和平移矩阵,不需要分别进行标定。
3、本方法基于平面目标进行参数初始标定,避免小角度的标准球拟合误差和线激光传感器入射法向不同导致的精度不同问题。
4、本方法最后利用不同角度的标准球进行标定,可以优化得到系统全局最优的标定参数。
附图说明:
图1复合式线激光测量系统结构图
图2线激光位移传感器测量原理图
图3线激光位移传感器测量输出值示意图
图4线激光位移传感器标定模型简化图
1-接触式测头,2-线激光传感器,3-刚性连接件结构,4-三坐标主轴,5-转台,
6-激光光源,7-半球型被测物,8-光心Q,9-透镜,10—CCD,11-标准工作平面,
具体实施方式:
下面结合附图对本发明做进一步详细描述:
一种基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,以及利用球形目标进行多轴空间坐标系标定优化的方法。其硬件结构类似图1所示,
在复合式四轴测量系统中,接触式测头1和线激光传感器2通过刚性连接件结构3进行连接,并同时安装在三坐标主轴4上。四轴坐标机附有转台5。
如图2所示,为线激光传感器的测量系统图,线激光传感器为二维传感器,其测量原理为激光三角法,不同于采用点光源逐点扫描的方式,线激光传感器采用激光光源6对半球型被测物7形貌进行测量,具有更高的测量速度和效率。其中RO为入射光源,光线经过物体反射通过透镜在10CCD上成像。A点成像于10的A'点,B点成像于10 的B'点,而位置O对应成像于10的中心位置O'。由图可以看出,高度不同的点对应10不同的位置。
对于可以获取CCD图像的线激光传感器,通常利用标定相机的原理,通过拍摄标定板标定出传感器到测量机的转换关系。而当无法获取CCD图像时,上述方法不再适用,只能通过传感器的输出值作为计算依据。
如图3所示,线激光传感器是一个二维系统,其线长方向为测头坐标系下的XL轴方向,光源出射方向为YL轴方向,坐标系的原点 OL(0,0)位于标准工作平面10内激光线长的中点位置,即线激光传感器CCD10的中心。记任意被测点A在传感器中的输出值为(xA L,yA L),则yA L为A点到标准工作平面的距离,xA L为A点在基准平面上的投影点距离坐标系原点OL(0,0)的距离。
为获取线激光传感器与测量机之间的位姿关系,本专利提出一种基于标准平面目标的标定方法,利用两个测头分别测量同一标准平面,通过拟合该平面的方程即可求得两测头坐标系间的变换矩阵。标定模型及具体步骤如下:
步骤一、利用接触式测头直接在标准平面上采集测量点,利用最小二乘法拟合平面方程。
Ax+By+Cz+D=0
步骤二、利用线激光传感器扫描同一平面,得到一系列线激光传感器采集点Ps和与之对应的机床光栅坐标值为ΔTm,其中用齐次坐标表示
Figure RE-GDA0002643808310000071
重复扫描另外两个平面,得到相应数据。
步骤三、简化线激光测量系统数学模型,如图4所示,OM-XYZ 为机床坐标系,三个坐标轴方向与机床光栅方向相同,原点OM为光栅处于零位时,接触式测针的红宝石球心位置。在此零位时,线激光传感器标准工作平面上的光心在OM-XYZ中的坐标为P0(x0,y0,z0),在任意位置时Pn(x0+Δxn,y0+Δyn,z0+Δzn)
当激光器测量某一标准平面时,设正对光心的一点为N0,则此时P0N0的方向则为激光出射方向,记其方向向量为(i0,j0,k0),激光线长方向向量为(i1,j1,k1)。设光线上任意一点为M0,M0距N0的距离为w0,距标准工作平面的距离为l0,则此时M0在OM-XYZ中的坐标为 (x0,y0,z0)+l0·(i0,j0,k0)+w0·(i1,j1,k1)。同时,(i0,j0,k0)和(i1,j1,k1)正交,可以得到(i2,j2,k2)=(i0,j0,k0)×(i1,j1,k1)。
令机床带动激光器在标准平面上滑扫测量,Δx,Δy,Δz分别为机床各轴光栅尺读数的增量,则初始测量点M0随之变化为任意测点 M1,M2,…,Mn,其距N0的距离变化为w1,w2,…,wn,距标准工作平面的距离变化为l1,l2,…,ln
此时,M1,M2,…,Mn坐标改变为:
Figure RE-GDA0002643808310000081
这些点坐标符合该平面的平面方程Ax+By+Cz+D=0,(C≠0),而这一平面方程可通过接触式测头采点拟合得到。
把Mn的坐标轴带入平面方程Ax+By+Cz+D=0,连列形成方程组如下:
Figure RE-GDA0002643808310000082
写成矩阵形式如下:
(KPs+ΔTm)TX=0
式中:
Figure RE-GDA0002643808310000091
Figure RE-GDA0002643808310000092
其中R可以转换为3个自由度的矩阵,t有3个未知数,其余参数为已知数。
R为旋转矩阵,根据罗德里格斯变换,旋转矩阵可以仅用一个向量来表示绕坐标轴的旋转。向量的长度表示旋转角度,向量本身表示旋转轴。设罗德里格斯转换的向量为r=[rx,ry,rz],则
Figure RE-GDA0002643808310000093
所以方程组共有6个未知参数。采用牛顿迭代法求解[rx,ry,rz]和t。
步骤四、牛顿迭代法求解方程。由于系统误差的存在,实际被测点无法完全分布在标准平面上,选取目标函数为测量的点到拟合的平面的距离作为误差值,非线性优化目标函数达到最小。牛顿迭代的过程就是要使该项误差值达到最小,从而获得此时的未知参数为线激光传感器标定参数。
即令如下目标函数达到最小:
Figure RE-GDA0002643808310000094
式中:
Figure RE-GDA0002643808310000095
进一步简化为:
fi 2(x)=(a(x0+Δxi+lii0+wii1)+b(y0+Δyi+lij0+wij1)+c(z0+Δzi+lik0+wik1)+d)2
上式中的fi(x)是非线性函数,且F(x)存在连续偏导数。求解非线性最小二乘的基本思想是通过解一系列线性最小二乘问题求非线性最小二乘问题的解。
步骤五、放置已经校准后标准球在转台上,标准球半径为 Rsphere,通过接触式测头测量标准球的方法,先标定出转台坐标系。转台坐标系到接触式测头坐标系的转换关系为:
Figure RE-GDA0002643808310000101
其中
Figure RE-GDA0002643808310000102
之后接触式测头和线激光传感器同时测量同一角度下的标准球,得到相同角度θ下标准球的轮廓数据。转台带动标准球进行旋转,重复测量标准球。
接触式测头测量得到的标准球数据,通过转台拼接,得到转台坐标系的标准球球心坐标Ocenter(xcenter,ycenter,zcenter,1)T。线激光传感器测量数据带入下述公式:
Figure RE-GDA0002643808310000103
式中:K,Ps,ΔTm为步骤三所述;
Figure RE-GDA0002643808310000104
式中:符号.^2——代表矩阵各个元素分别求平方,即 (A.^2)i,j=(A)i,j(A)i,j
步骤六、采用Levenberg-Marquardt迭代法求解方程。目标函数为线激光测量点到接触式测量球面的距离,优化目标函数使距离和最小。
即目标函数为:
Figure RE-GDA0002643808310000111
式中:
Figure RE-GDA0002643808310000112
如采用高斯牛顿法进行求解,迭代结果不容易收敛,故采用选取Levenberg-Marquardt迭代法。Levenberg-Marquardt迭代法对初值较为敏感,所以需要步骤一至步骤四求解出较为精确的线激光传感器标定初始值,以此为基础进行步骤六的求解。此结果包含了机床转台坐标系,接触式测头坐标系,线激光传感器坐标系的综合测量结果,所以最终能求解得到整个系统最优的线激光测量系统标定参数。

Claims (6)

1.一种基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,其特征在于:分别利用线激光传感器和接触式测头测量同一标准平面,线激光传感器测量值和接触式测头测量值都同时符合同一个平面方程;求解出线激光传感器测量值和接触式测头测量值之间的转换关系初值;通过线激光传感器和接触式测头测量多个角度的标准球,优化整个系统的误差,得到线激光传感器和接触式测头之间的精确转换关系。
2.如权利要求1所述的基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,其特征在于,包含如下步骤:
步骤一、利用接触式测头直接在标准平面上采集测量点,利用最小二乘法拟合平面方程;
步骤二、利用线激光传感器扫描同一平面,得到一系列线激光传感器采集点Sn和与之对应的机床光栅坐标值为ΔPn
步骤三、建立数学模型,使得线激光传感器所有测量点符合相应的接触式测头测量的平面方程;
步骤四、牛顿迭代法求解方程;选取目标函数为测量的点到拟合的平面的距离作为误差值,非线性优化目标函数达到最小。
3.如权利要求1所述的线激光传感器为二维传感器,其特征在于,线激光传感器的CCD原始采集图像无法获取。
4.如权利要求1所述的线激光测量系统标定,其特征在于,。同时得到线激光传感器两个坐标轴在接触式测头坐标系中的方向,形成旋转和平移矩阵。
5.一种利用球形目标进行线激光测量系统多轴空间坐标系标定优化的方法,其特征在于,先通过平面目标标定线激光传感器和测量机接触式测头之间的关系;以此标定结果作为较为初始值,再利用转台不同角度的球目标优化系统标定参数;优化方法为带入转台标定数据后,线激光传感器测量数据应符合接触式测头测量得到的球面方程;选取目标函数为线激光测量点到接触式测量球面的距离,优化目标函数使距离和最小。
6.如权利要求6所述的优化方法,其特征在于,包含如下步骤:
步骤一、通过接触式测头测量标准球的方法,先标定出转台坐标系;之后接触式测头和线激光传感器同时测量多角度下的标准球;将线激光传感器测量数据带入下述公式:
Figure FDA0002503072390000021
步骤二、采用Levenberg-Marquardt迭代法求解方程;选取目标函数为线激光测量点到接触式测量球面的距离,优化目标函数使距离和最小。
CN202010438155.9A 2020-05-21 2020-05-21 一种复合式线激光测量系统多轴空间坐标系标定方法 Withdrawn CN111721198A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010438155.9A CN111721198A (zh) 2020-05-21 2020-05-21 一种复合式线激光测量系统多轴空间坐标系标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010438155.9A CN111721198A (zh) 2020-05-21 2020-05-21 一种复合式线激光测量系统多轴空间坐标系标定方法

Publications (1)

Publication Number Publication Date
CN111721198A true CN111721198A (zh) 2020-09-29

Family

ID=72564756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010438155.9A Withdrawn CN111721198A (zh) 2020-05-21 2020-05-21 一种复合式线激光测量系统多轴空间坐标系标定方法

Country Status (1)

Country Link
CN (1) CN111721198A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366070A (zh) * 2018-12-25 2020-07-03 苏州笛卡测试技术有限公司 一种复合式线激光测量系统多轴空间坐标系标定方法
CN112781496A (zh) * 2021-01-20 2021-05-11 湘潭大学 一种非接触测量系统的测头位姿标定技术
CN114111672A (zh) * 2021-11-26 2022-03-01 南京航空航天大学 一种多位移传感器法向测量的传感器安装位置参数快速标定方法
CN114777607A (zh) * 2022-04-26 2022-07-22 天津商业大学 一种回转体同轴度误差检测装置及方法
CN115752293A (zh) * 2022-11-22 2023-03-07 哈尔滨工业大学 一种航空发动机封严篦齿盘测量系统标定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726980A (zh) * 2017-09-25 2018-02-23 北京华睿盛德科技有限公司 一种基于四轴测量机的线激光位移传感器的标定方法
CN109029293A (zh) * 2018-10-19 2018-12-18 西安交通大学 一种叶片面型检测中的线扫描测头位姿误差标定方法
CN109884659A (zh) * 2019-03-04 2019-06-14 北京工业大学 基于激光追踪仪多站位测量系统的大型精密转台标定方法
CN111366070A (zh) * 2018-12-25 2020-07-03 苏州笛卡测试技术有限公司 一种复合式线激光测量系统多轴空间坐标系标定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726980A (zh) * 2017-09-25 2018-02-23 北京华睿盛德科技有限公司 一种基于四轴测量机的线激光位移传感器的标定方法
CN109029293A (zh) * 2018-10-19 2018-12-18 西安交通大学 一种叶片面型检测中的线扫描测头位姿误差标定方法
CN111366070A (zh) * 2018-12-25 2020-07-03 苏州笛卡测试技术有限公司 一种复合式线激光测量系统多轴空间坐标系标定方法
CN109884659A (zh) * 2019-03-04 2019-06-14 北京工业大学 基于激光追踪仪多站位测量系统的大型精密转台标定方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366070A (zh) * 2018-12-25 2020-07-03 苏州笛卡测试技术有限公司 一种复合式线激光测量系统多轴空间坐标系标定方法
CN112781496A (zh) * 2021-01-20 2021-05-11 湘潭大学 一种非接触测量系统的测头位姿标定技术
CN112781496B (zh) * 2021-01-20 2022-03-08 湘潭大学 一种非接触测量系统的测头位姿标定方法
CN114111672A (zh) * 2021-11-26 2022-03-01 南京航空航天大学 一种多位移传感器法向测量的传感器安装位置参数快速标定方法
CN114777607A (zh) * 2022-04-26 2022-07-22 天津商业大学 一种回转体同轴度误差检测装置及方法
CN114777607B (zh) * 2022-04-26 2023-10-13 天津商业大学 一种回转体同轴度误差检测方法
CN115752293A (zh) * 2022-11-22 2023-03-07 哈尔滨工业大学 一种航空发动机封严篦齿盘测量系统标定方法
CN115752293B (zh) * 2022-11-22 2023-11-14 哈尔滨工业大学 一种航空发动机封严篦齿盘测量系统标定方法

Similar Documents

Publication Publication Date Title
CN111366070B (zh) 一种复合式线激光测量系统多轴空间坐标系标定方法
CN111721198A (zh) 一种复合式线激光测量系统多轴空间坐标系标定方法
CN107042528B (zh) 一种工业机器人的运动学标定系统及方法
WO2018103694A1 (zh) 一种机器人三维扫描装置及方法
CN109870125B (zh) 一种空心轴的孔轴同轴度测量装置及方法
CN102607457B (zh) 基于惯性导航技术的大尺寸三维形貌测量装置及方法
Che et al. A ball-target-based extrinsic calibration technique for high-accuracy 3-D metrology using off-the-shelf laser-stripe sensors
CN108908337B (zh) 基于数字散斑干涉的机械手重复定位精度测量装置和方法
JP2012517907A (ja) ロボットアーム用位置情報測定装置及び方法
CN107726980B (zh) 一种基于四轴测量机的线激光位移传感器的标定方法
TWI639494B (zh) 機械手臂校正方法與裝置
CN112288823B (zh) 一种标准圆柱体曲面点测量设备的标定方法
CN111562563A (zh) 激光雷达转台标定方法、装置和计算机可读存储介质
TWI708667B (zh) 運動裝置之位置與姿態校正裝置及系統與方法
Zhang et al. Summary on calibration method of line-structured light sensor
CN115371545A (zh) 激光跟踪仪姿态测量校准装置及方法
JP7204806B2 (ja) ロボットアームの繰り返し位置決め精度測定の装置及び方法
CN110458894B (zh) 一种测量机的相机与接触式测头的标定方法
Zexiao et al. A novel approach for the field calibration of line structured-light sensors
Zhang et al. A system for measuring high-reflective sculptured surfaces using optical noncontact probe
CN111360585B (zh) 一种机器人铣削系统中刀具端实时位置误差的获取方法
Zexiao et al. Modeling and calibration of a structured-light-sensor-based five-axis scanning system
WO2023060717A1 (zh) 一种物体表面高精度定位方法及系统
CN112378367B (zh) 可测量分布在内腔的多自由曲面反射镜面形和位置的方法
CN114049324A (zh) 超视场尺度下的关联基准远心测量快速标定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200929

WW01 Invention patent application withdrawn after publication