CN111707820B - Pdhb在神经元细胞中表达量的检测方法及pdhb基因的应用 - Google Patents
Pdhb在神经元细胞中表达量的检测方法及pdhb基因的应用 Download PDFInfo
- Publication number
- CN111707820B CN111707820B CN202010379787.2A CN202010379787A CN111707820B CN 111707820 B CN111707820 B CN 111707820B CN 202010379787 A CN202010379787 A CN 202010379787A CN 111707820 B CN111707820 B CN 111707820B
- Authority
- CN
- China
- Prior art keywords
- pdhb
- drg
- virus
- cells
- rat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0619—Neurons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Virology (AREA)
- Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Neurology (AREA)
- Medicinal Chemistry (AREA)
- Neurosurgery (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供一种PDHB在神经元细胞中表达量的检测方法,步骤如下:(1)通过分离大鼠坐骨神经损伤后不同时间点的DRG神经元,进行PCR检测mRNA,确定PDHB在神经再生过程中表达量变化趋势;(2)用PDHB干扰病毒或其对照病毒感染体外培养的DRG神经元细胞,PCR检测PDHB的干扰效率,统计重悬后DRG神经元轴突的最长长度和总长度,提示体外干扰PDHB的表达可以影响DRG神经元的轴突再生;(3)大鼠鞘内注入PDHB干扰病毒或其对照病毒,统计坐骨神经损伤后不同时间点的SCG10荧光强度变化趋势和轴突再生指数,与体外实验获得的结果趋势一致。本发明明确了PDHB在神经元细胞中的表达量变化,发现了PDHB对神经再生的调节作用。
Description
技术领域
本发明属于神经科学基础医学领域,具体涉及一种PDHB在神经元细胞中的表达量检测方法及PDHB基因的应用。
背景技术
丙酮酸脱氢酶β(pyruvate dehydrogenaseβ, PDHB)是构成丙酮酸脱氢酶复合物(PDH)的必需亚基之一。参与催化由糖酵解或者乳酸代谢衍生的丙酮酸生成乙酰辅酶A,乙酰辅酶A进入三羧酸循环被分解成CO2和H2O,并释放ATP,为细胞增殖、分化提供能量。广泛存在于细胞质中,在生长因子、致癌信号和线粒体应激等刺激下可进入细胞核,参与促进组蛋白H3K9和H3K18的乙酰化调控基因表达。PDHB在肿瘤细胞中表达增加,并表现为原癌基因的作用,促进肿瘤细胞的增殖和迁移。然而,PDHB在神经损伤及修复中的作用及机制尚不明确。
发明内容
本发明要解决的技术问题是提供一种PDHB在神经元细胞中的表达量检测方法及PDHB基因的应用,明确PDHB在神经元细胞中的表达量变化,发现了PDHB对神经元轴突再生的调节作用。
为解决上述技术问题,本发明的实施例提供一种PDHB在神经元细胞中表达量的检测试剂盒,其特征在于,包括含PDHB干扰RNA的病毒pAAV-CMV-bGlobin-eGFP-U6-shRNA及其对照病毒、Tuj1抗体 。
本发明还提供了一种利用PDHB在神经元细胞中表达量的检测试剂盒的PDHB在神经元细胞中表达量的检测方法,其特征在于,包括如下步骤:
(1)通过分离大鼠坐骨神经损伤后不同时间点的DRG神经元,进行实时定量PCR,检测PDHB的mRNA;
(2)用PDHB干扰RNA的病毒及其对照病毒感染体外培养的DRG神经元细胞,5天后收集被感染的DRG神经元细胞进行实时定量PCR检测PDHB干扰病毒的干扰效率;同时,用0.025%胰酶消化被感染的DRG神经元20s,加10% FBS终止反应,离心900rpm,5min,弃上清,加入新鲜Neurobasal培养基重悬被感染的DRG神经元细胞,将细胞以1:2的比例孔铺入有小圆玻片的24孔板中,体外模拟神经损伤,1天后用Tuj1抗体标记神经元细胞,ZEN2软件统计神经元轴突总长度和最长长度;
(3)SD大鼠鞘内注射入PDHB干扰RNA的病毒及其对照病毒,感染大鼠DRG神经元细胞;3周以后进行坐骨神经夹伤手术,术后3天灌注取损伤侧坐骨神经,用SCG10染色标记再生轴突, Photoshop软件统计SCG10荧光强度以及鞘内注射入PDHB干扰RNA病毒的实验组和对照病毒组的大鼠坐骨神经损伤后再生的轴突再生指数。
其中,步骤(2)中,体外培养DRG神经元细胞的步骤为:
麻醉大鼠,收集所有DRG组织,1XPBS清洗3遍,加入4ml胶原酶,剪碎DRG,37℃消化90min; 室温离心1200rpm、5 min,弃上清;加1ml胰酶,37℃消化15min;加3倍胰酶体积的10% FBS终止胰酶反应;过筛网收集细胞于15ml离心管;离心1200rpm、5min,弃上清;加入10ml 15% BSA,离心900rpm、5min,弃上清絮状物,留沉淀,并重复一次;加入含双抗和B27的Neurobasal培养基,将细胞2ml/孔铺入PLL预包被的6孔板,置于37℃二氧化碳培箱培养,12h左右用含阿糖胞苷的新鲜Neurobasal培养基换液。
其中,步骤(2)中,含PDHB干扰RNA的病毒是pAAV-CMV-bGlobin-eGFP-U6-shRNA。
其中,步骤(3)中,SD大鼠的周龄为8周,性别为雄性。
本发明还提供一种PDHB基因的应用,用于制备促进神经再生修复的药物。
本发明的上述技术方案的有益效果如下:
本发明明确了PDHB在神经元细胞中的表达量的变化,发现了PDHB对神经元轴突再生的调节作用。
附图说明
图 1. DRG 神经元感染 PDHB干扰病毒或对照病毒后轴突生长变化;
图 2. 鞘内注射 PDHB 干扰病毒或对照病毒后坐骨神经再生修复结果。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
实施例1:一种PDHB在神经元细胞中表达量的检测试剂盒,其特征在于,包括含PDHB干扰RNA的病毒pAAV-CMV-bGlobin-eGFP-U6-shRNA及其对照病毒、Tuj1抗体。
实施例2:一种利用PDHB在神经元细胞中表达量的检测试剂盒的PDHB在神经元细胞中表达量的检测方法,其特征在于,包括如下步骤:
(2-1)通过分离大鼠坐骨神经损伤后不同时间点的DRG神经元,进行实时定量PCR,检测PDHB的mRNA,在损伤后3小时内迅速上升,随后3天回到正常水平;
(2-2)用PDHB干扰RNA的病毒及其对照病毒感染体外培养的DRG神经元细胞,5天后收集被感染的DRG神经元细胞进行实时定量PCR检测PDHB干扰病毒的干扰效率;同时,用0.025%胰酶消化被感染的DRG神经元20s,加10% FBS终止反应,离心900rpm、5min,弃上清,加入新鲜Neurobasal培养基重悬被感染的DRG神经元细胞,将细胞以1:2的比例孔铺入有小圆玻片的24孔板中,体外模拟神经损伤,1天后用Tuj1抗体标记神经元细胞,ZEN2软件统计神经元轴突总长度和最长长度,发现干扰PDHB表达明显抑制了DRG神经元细胞的轴突再生,提示体外干扰PDHB 的表达可以影响DRG神经元的轴突再生。
本步骤中:体外培养DRG神经元细胞的步骤为:
麻醉大鼠,收集所有DRG组织,1XPBS清洗3遍,加入4ml胶原酶,剪碎DRG,37℃消化90min; 室温离心1200rpm、5min,弃上清;加1ml胰酶,37℃消化15min;加3倍胰酶体积的10%FBS终止胰酶反应;过筛网收集细胞于15ml离心管;离心1200rpm,5min,弃上清;加入10ml15% BSA,离心900rpm,5min,弃上清絮状物,留沉淀,并重复一次;加入含双抗和B27的Neurobasal培养基,将细胞2ml/孔铺入PLL预包被的6孔板,置于37℃二氧化碳培箱培养,12h左右用含阿糖胞苷的新鲜Neurobasal培养基换液。
(2-3)SD大鼠鞘内注射入PDHB干扰RNA的病毒及其对照病毒,感染大鼠DRG神经元细胞;3周以后进行坐骨神经夹伤手术,术后3天灌注取损伤侧坐骨神经,用SCG10染色标记再生轴突,Photoshop软件统计SCG10荧光强度以及鞘内注射入PDHB干扰RNA病毒的实验组和对照病毒组的大鼠坐骨神经损伤后再生的轴突再生指数。
具体实验步骤和结果如下所述:
(a)应用实时定量PCR技术(Polymerase Chain Reaction,聚合酶链式反应),检测PDHB的相关信使RNA(message RNA,mRNA)结果表达量及表达趋势。
(b-1)通过分离大鼠坐骨神经损伤后不同时间点的DRG神经元,进行实时定量 PCR检测其mRNA;
(b-2)发现PDHB的mRNA表达在损伤后3小时内迅速上升,随后3天回到正常水平。
(c)含PDHB干扰RNA的病毒及其对照病毒是从上海和元生物技术有限公司购买的,由其构建并包装的含 PDHB 干扰 RNA(shPDHB-1或shPDHB-2,shPDHB-1:
正义链:5’–GATCCCCGCTATTGACCAGGTCATAATTCAAGAGATTATGACCTGGTCAATAGCTTTTT-3’。
反义链:5’-TCGAAAAAAGCTATTGACCAGGTCATAATCTCTTGAATTATGACCTGGTCAATAGCGGG-3’;
shPDHB-2:
正义链:5’-GATCCCCGCTGCAGCTGTATTGTCTATTCAAGAGATAGACAATACAGCTGCAGCTTTTT-3’。
反义链:5’-TCGAAAAAAGCTGCAGCTGTATTGTCTATCTCTTGAATAGACAATACAGCTGCAGCGGG-3’。)的病毒pAAV-CMV-bGlobin-eGFP-U6-shRNA及其对照(shNC)病毒。
(d-1)用含PDHB干扰RNA(shPDHB-1或shPDHB-2)的病毒pAAV-CMV-bGlobin-eGFP-U6-shRNA及其对照(shNC)病毒感染体外培养的DRG神经元细胞;
(d -2)5天后收集被感染的DRG神经元进行实时定量PCR检测PDHB干扰病毒的干扰效率,DRG神经元细胞内PDHB的mRNA表达量,结果如图1A所示;
(d -3)重悬被感染的DRG细胞,体外模拟神经损伤,1天后用Tuj1 染色标记神经元细胞,结果如图1B所示。
(d -4)ZEN 2软件统计神经元轴突总长度,如图 1C所示;最长长度如图1D所示。
(d -5)发现干扰PDHB表达明显抑制了DRG神经元细胞的轴突再生,提示体外干扰PDHB的表达可以影响DRG神经元的轴突再生,图1中标尺=20 μm。
实施例3:本发明还提供一种PDHB基因的应用,用于制备促神经再生药物,也可用于研究PDHB在神经损伤及修复中的作用及机制,明确干预PDHB的表达是否会影响神经再生修复。
具体实验步骤和结果如下所述:
(3-1)SD大鼠鞘内注射入PDHB干扰病毒或其对照病毒,感染大鼠DRG神经元,结果如图2A所示,图2A中标尺=50 μm;
(3-2)3周以后进行坐骨神经夹伤手术,术后3天灌注取损伤测坐骨神经,用SCG10染色标记再生轴突,结果如图2B所示,图2B中标尺=1 mm;
(3-3)用Photoshop软件统计SCG10荧光强度,结果如图2C所示;轴突再生指数结果如图2D所示,图2C、2D中,*P<0.05,**P<0.01;
(3-4)发现 PDHB 敲低的实验组大鼠坐骨神经损伤后再生的轴突长度较对照组有明显缩短,提示体内干扰PDHB的表达可以影响坐骨神经损伤后的轴突再生。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (4)
1.一种PDHB在神经元细胞中表达量的检测方法,其特征在于,包括如下步骤:
(1)通过分离大鼠坐骨神经损伤后不同时间点的DRG神经元,进行实时定量PCR,检测PDHB的mRNA;
(2)用含PDHB干扰RNA的病毒或其对照病毒感染体外培养的DRG神经元细胞,5天后收集被感染的DRG神经元细胞进行实时定量PCR检测PDHB干扰病毒的干扰效率;同时,用0.025%胰酶消化被感染的DRG神经元20s,加10%FBS终止反应,离心900rpm,5min,弃上清,加入新鲜Neurobasal培养基重悬被感染的DRG神经元细胞,将细胞以1:2的比例孔铺入有小圆玻片的24孔板中,体外模拟神经损伤,1天后用Tuj1抗体标记神经元细胞,ZEN2软件统计神经元轴突总长度和最长长度;
(3)SD大鼠鞘内注射入PDHB干扰RNA的病毒及其对照病毒,感染大鼠DRG神经元细胞;3周以后进行坐骨神经夹伤手术,术后3天灌注取损伤侧坐骨神经,用SCG10染色标记再生轴突,Photoshop软件统计SCG10荧光强度以及鞘内注射入PDHB干扰RNA病毒的实验组和对照病毒组的大鼠坐骨神经损伤后再生的轴突再生指数。
2.根据权利要求1所述的检测方法,其特征在于,步骤(2)中,体外培养DRG神经元细胞的步骤为:
麻醉大鼠,收集所有DRG组织,1XPBS清洗3遍,加入4ml胶原酶,剪碎DRG,37℃消化90min;室温离心1200rpm,5min,弃上清;加1ml胰酶,37℃消化15min;加3倍胰酶体积的10%FBS终止胰酶反应;过筛网收集细胞于15ml离心管;离心1200rpm、5min,弃上清;加入10ml15%BSA,离心900rpm、5min,弃上清絮状物,留沉淀,并重复一次;加入含双抗和B27的Neurobasal培养基,将细胞2ml/孔铺入PLL预包被的6孔板,置于37℃二氧化碳培箱培养,12h左右用含阿糖胞苷的新鲜Neurobasal培养基换液。
3.根据权利要求1所述的检测方法,其特征在于,步骤(2)中,含PDHB干扰RNA的病毒是pAAV-CMV-bGlobin-eGFP-U6-shRNA。
4.根据权利要求1所述检测方法,其特征在于,步骤(3)中,SD大鼠的周龄为8周,性别为雄性。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010379787.2A CN111707820B (zh) | 2020-05-08 | 2020-05-08 | Pdhb在神经元细胞中表达量的检测方法及pdhb基因的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010379787.2A CN111707820B (zh) | 2020-05-08 | 2020-05-08 | Pdhb在神经元细胞中表达量的检测方法及pdhb基因的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111707820A CN111707820A (zh) | 2020-09-25 |
CN111707820B true CN111707820B (zh) | 2023-06-20 |
Family
ID=72536791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010379787.2A Active CN111707820B (zh) | 2020-05-08 | 2020-05-08 | Pdhb在神经元细胞中表达量的检测方法及pdhb基因的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111707820B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008102495A1 (ja) * | 2007-02-22 | 2008-08-28 | Banyu Pharmaceutical Co., Ltd. | Mark4に作用する化合物の評価方法 |
CN106811484A (zh) * | 2017-01-11 | 2017-06-09 | 西北农林科技大学 | 一种牛pdhb基因腺病毒干扰载体构建及其鉴定方法 |
CN107236750A (zh) * | 2017-05-05 | 2017-10-10 | 西北农林科技大学 | 牛pdhb基因过表达重组腺病毒载体构建及包装方法 |
CN109718377A (zh) * | 2017-10-31 | 2019-05-07 | 中国科学院上海生命科学研究院 | KPNB1抑制剂和Bcl-xL抑制剂在制备抗肿瘤药物中的应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2969145A1 (en) * | 2014-11-26 | 2016-06-02 | The Regents Of The University Of California | Therapeutic compositions comprising transcription factors and methods of making and using the same |
-
2020
- 2020-05-08 CN CN202010379787.2A patent/CN111707820B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008102495A1 (ja) * | 2007-02-22 | 2008-08-28 | Banyu Pharmaceutical Co., Ltd. | Mark4に作用する化合物の評価方法 |
CN106811484A (zh) * | 2017-01-11 | 2017-06-09 | 西北农林科技大学 | 一种牛pdhb基因腺病毒干扰载体构建及其鉴定方法 |
CN107236750A (zh) * | 2017-05-05 | 2017-10-10 | 西北农林科技大学 | 牛pdhb基因过表达重组腺病毒载体构建及包装方法 |
CN109718377A (zh) * | 2017-10-31 | 2019-05-07 | 中国科学院上海生命科学研究院 | KPNB1抑制剂和Bcl-xL抑制剂在制备抗肿瘤药物中的应用 |
Non-Patent Citations (2)
Title |
---|
Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting;Vuu My Dung 等;《Experimental Cell Researc》;20180306;第366卷;摘要,"4. Discussion"节 * |
siRNA沉默大鼠Robo2对培养DRGs神经元突起生长的影响;张海英 等;《海南医学院学报》;20100728(第07期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111707820A (zh) | 2020-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Elsaeidi et al. | Notch suppression collaborates with Ascl1 and Lin28 to unleash a regenerative response in fish retina, but not in mice | |
Yu et al. | Knockdown of lnc RNA AK 139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR‐204‐3p and inhibiting autophagy | |
Yang et al. | Generation of pure GABAergic neurons by transcription factor programming | |
Filion et al. | Survival responses of human embryonic stem cells to DNA damage | |
Thummel et al. | Inhibition of Müller glial cell division blocks regeneration of the light‐damaged zebrafish retina | |
Chanda et al. | Generation of induced neuronal cells by the single reprogramming factor ASCL1 | |
Wu et al. | MicroRNA-431 accelerates muscle regeneration and ameliorates muscular dystrophy by targeting Pax7 in mice | |
Sharma et al. | Oct4 mediates Müller glia reprogramming and cell cycle exit during retina regeneration in zebrafish | |
US20160263160A1 (en) | Mesenchymal Stem Cells Producing Inhibitory RNA for Disease Modification | |
Guo et al. | Cardiomyocyte‐specific role of miR‐24 in promoting cell survival | |
Barretto et al. | ASCL1-and DLX2-induced GABAergic neurons from hiPSC-derived NPCs | |
CN103814126A (zh) | 多核巨核细胞以及血小板的制造方法 | |
Nishiyama et al. | miR-142-3p is essential for hematopoiesis and affects cardiac cell fate in zebrafish | |
Zhang et al. | Targeted microRNA interference promotes postnatal cardiac cell cycle re-entry | |
Lamba et al. | Baf60c is a component of the neural progenitor‐specific BAF complex in developing retina | |
CN111707820B (zh) | Pdhb在神经元细胞中表达量的检测方法及pdhb基因的应用 | |
CN111041052A (zh) | mir-206在抑制猪脂肪细胞内的甘油三酯生成以及瘦肉猪育种中的应用 | |
CN108841864A (zh) | 一种利用rna干扰机制的分子传感器 | |
Chen et al. | MicroRNA‐1 Regulates the Differentiation of Adipose‐Derived Stem Cells into Cardiomyocyte‐Like Cells | |
CN105873617A (zh) | 通过调节微RNA miR-130a和miR-130b治疗与PGC1-α相关的疾病 | |
CN115607689A (zh) | Klf7基因在制备逆转细胞衰老的药物中的应用 | |
Macadangdang et al. | Engineered developmental niche enables predictive phenotypic screening in human dystrophic cardiomyopathy | |
CN106692176B (zh) | miR-342-5p在制备防治心脏病的药物中的应用 | |
KR20140046339A (ko) | miRNA-203의 억제를 이용한 줄기세포의 망막세포로의 분화방법 | |
Li et al. | TRIM71 reactivation enhances the mitotic and hair cell–forming potential of cochlear supporting cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |