CN111692332B - 湿式双离合变速器拨叉控制流量阀死区自适应控制方法 - Google Patents

湿式双离合变速器拨叉控制流量阀死区自适应控制方法 Download PDF

Info

Publication number
CN111692332B
CN111692332B CN201910183196.5A CN201910183196A CN111692332B CN 111692332 B CN111692332 B CN 111692332B CN 201910183196 A CN201910183196 A CN 201910183196A CN 111692332 B CN111692332 B CN 111692332B
Authority
CN
China
Prior art keywords
gear
self
flow valve
dead zone
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910183196.5A
Other languages
English (en)
Other versions
CN111692332A (zh
Inventor
宋秀锋
宋勇道
唐莹
王小飞
李育
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Automobile Gear Works
Original Assignee
Shanghai Automobile Gear Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Automobile Gear Works filed Critical Shanghai Automobile Gear Works
Priority to CN201910183196.5A priority Critical patent/CN111692332B/zh
Publication of CN111692332A publication Critical patent/CN111692332A/zh
Application granted granted Critical
Publication of CN111692332B publication Critical patent/CN111692332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4035Control of circuit flow

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

湿式双离合变速器拨叉控制流量阀死区自适应控制方法。一种湿式双离合变速器拨叉控制流量阀死区电流值获得方法,在特定工况下,挡位对应的流量阀控制的拨叉处于中位且该拨叉对应的离合器处于打开状态时,流量阀死区自适应策略被激活,即可得到该挡位的死区电流值;本发明提出了流量阀死区自适应控制,可以实时得到精确的流量阀死区电流值,避免了环境对死区电流的影响,使得拨叉控制更加精确,有效改善了换挡冲击问题并缩短了换挡时间。

Description

湿式双离合变速器拨叉控制流量阀死区自适应控制方法
技术领域
本发明涉及的是一种自动变速器控制领域的技术,具体是一种湿式双离合变速器拨叉控制流量阀死区自适应控制方法。
背景技术
目前市场上主流自动变速器主要有AT、DCT、CVT和AMT,其中DCT表现更优。为了满足换挡迅速,同时无换挡冲击和噪声的要求,对拨叉的要求也逐步提高。现有的DCT多采用压力阀与流量阀组合控制拨叉动作,但由于流量阀存在死区且会受到磨损等外界因素的影响,因而并不能保证拨叉控制的最佳效果。
经过对现有技术的检索发现,中国专利文献号CN106886244B,公开了一种用于获取电磁比例流量阀的零流量控制电流的方法,该方法包括:获取第一控制电流(I1),其中,该第一控制电流为同步器挂左侧档位且其速度稳定在第一目标速度时的电磁阀电流;获取第二控制电流(I2),其中,该第二控制电流为同步器挂右侧档位且其速度稳定在第一目标速度时的电磁阀电流;以及根据所获取的第一控制电流(I1)和第二控制电流(I2)来获取该电磁比例流量阀的零流量控制电流(Izero)及死区范围(Izone)。但该技术无法消除随着车辆运行,外界环境等因素对流量阀死区造成的影响。
发明内容
本发明针对现有技术存在的上述不足,提出了一种湿式双离合变速器拨叉控制流量阀死区自适应控制方法,通过对拨叉控制流量阀死区进行实时自适应控制,最大程度地提高了拨叉控制流量阀的鲁棒性,有效地提高了拨叉控制的精确性。
本发明是通过以下技术方案实现的:
本发明在特定工况下,挡位对应的流量阀控制的拨叉处于中位且该拨叉对应的离合器处于打开状态时,流量阀死区自适应策略被激活,即可得到该挡位的死区电流值。
所述的特定工况是指满足以下两个条件中任意一个条件的工况,具体为:1)没有上挡和退挡指令且换挡杆位于P或N位置且车辆处于静止状态;2)没有上挡和退挡指令且车辆处于稳定行驶工况。
所述的稳定行驶工况是指以下两个条件中满足任意一个条件的工况,具体为:1)车辆处于巡航状态且车速变化率绝对值小于3Km/h维持2s以上;2)车辆处于非巡航状态且车速变化率绝对值小于3Km/h维持2s以上且油门开度变化率绝对值小于5%维持2s以上。
所述的流量阀死区自适应策略是指:给相应流量阀输入电流,在设定的零流量对应的电流值的基础上每个周期增加或者减少标定步长值电流,当拨叉位移大于等于特定标定值时,将此时的电流值存储到带电可擦可编程读写存储器中,进行记录,该电流值即为死区电流值,进而更新流量控制阀的Q-I曲线。
技术效果
与现有技术相比,本发明提出了流量阀死区自适应控制,可以实时得到精确的流量阀死区电流值,避免了环境对死区电流的影响,使得拨叉控制更加精确,有效改善了换挡冲击问题并缩短了换挡时间。
附图说明
图1为拨叉控制液压系统原理图;
图2为各流量阀的Q-I特性曲线图;
图3为拨叉控制流量阀死区自适应控制流程图;
图中:i为1挡~7挡或R挡中的任一;X为与i由同一流量阀控制的另一挡位;
图4为流量阀死区自适应策略验证数据图。
具体实施方式
如图1所示,本实施例采用7速湿式双离合器变速器拨叉控制液压系统,包括:位于奇数轴上的1/3/5/7挡、位于偶数轴上的2/4/6/R挡、四个三位四通换向流量阀(SCV1~SCV4)、两个二位三通压力阀(GPCV1、GPCV2)和四个拨叉,其中:R挡和4挡通过SCV1和GPCV2控制第一拨叉实现上挡和退挡,2挡和6挡通过SCV2和GPCV2控制第二拨叉实现上挡和退挡,1挡和5挡通过SCV3和GPCV1控制第三拨叉实现上挡和退挡,3挡和7挡通过控制SCV4和GPCV1控制第四拨叉实现上挡和退挡。
所述的压力阀为减压阀。
如图2所示,显示了SCV1~SCV4的Q-I特性。
本实施例在特定工况下,挡位对应的流量阀控制的拨叉处于中位且该拨叉对应的离合器处于打开状态时,流量阀死区自适应策略被激活,即可得到该挡位的死区电流值。
所述的特定工况是指满足以下任一条件的工况:1)没有上挡和退挡指令且换挡杆位于P或N位置且车辆处于静止状态;2)没有上挡和退挡指令且车辆处于稳定行驶工况。
所述的稳定行驶工况是指满足以下任一条件的工况:1)车辆处于巡航状态且车速变化率绝对值小于3Km/h维持2s以上;2)车辆处于非巡航状态且车速变化率绝对值小于3Km/h维持2s以上且油门开度变化率绝对值小于5%维持2s以上。
所述的流量阀死区是指流量对电流变化不敏感的区域。
所述的流量阀死区自适应策略是指:给相应流量阀输入电流,在设定的零流量对应的电流值的基础上每个周期增加或者减少标定步长值电流,当拨叉位移大于等于特定标定值时,将此时的电流值存储到带电可擦可编程读写存储器中,进行记录。
如图3所示,默认状态为自适应不激活的状态,实时判断拨叉控制流量阀死区自适应工况是否满足上述特定工况,当满足上述工况时,进入自适应激活初始化状态,此时依次判断1挡、2挡、3挡、4挡、5挡、6挡、7挡和倒挡的流量阀是否满足流量阀死区自适应条件,即是否对应拨叉处于中位且对应离合器处于打开状态的条件,当满足该条件时进入流量阀死区自适应策略,进入该策略后依然实时判断是否满足流量阀死区自适应条件,当满足该条件时继续自适应;否则返回初始化状态。
所述的1挡满足自适应条件:1挡拨叉处于中位且奇数轴离合器处于分离状态,将1挡自适应完成标志位置0。
1挡流量阀死区自适应策略具体包括:
1)SCV3在设定的零流量对应的电流值的基础上每个周期增加标定步长的电流值,如0.02A;给GPCV1固定电流值,以提供支撑拨叉运动的压力;
2)实时判断1挡拨叉位移是否满足相对中位偏移-0.5mm,当满足时则将此时的电流值保存到EEPROM中,由于1挡和5挡均由第三拨叉控制,二者满足的自适应条件相同,即:第三拨叉在中位且奇数离合器处于分离状态,所以必须引入第三个条件才能使1挡和5挡都能够自适应,所以,当电流值保存好后,将1挡自适应完成标志位置1并将5挡自适应完成标志位置0;否则继续上一步骤;
3)开始计时,经过标定时间,如500ms,重新进入初始化状态;
4)1挡自适应结束,由于1挡自适应完成标志位置1,在5挡自适应时将1挡自适应完成标志位置0,所以在5挡自适应发生前,不会再次激活1挡自适应。
所述的2挡满足自适应条件:2挡拨叉处于中位且偶数轴离合器处于分离状态,将2挡自适应完成标志位置0。
2挡流量阀死区自适应策略具体包括:
1)SCV2在设定的零流量对应的电流值的基础上每个周期增加标定步长的电流值,如0.02A;给GPCV2固定电流值,以提供支撑拨叉运动的压力;
2)实时判断2挡拨叉位移是否满足相对中位偏移0.5mm,当满足时则将此时的电流值保存到EEPROM中,由于2挡和6挡均由第二拨叉控制,二者满足的自适应条件相同,即:第二拨叉在中位且偶数离合器处于分离状态,所以必须引入第三个条件才能使2挡和6挡都能够自适应,所以,当电流值保存好后,将2挡自适应完成标志位置1并将6挡自适应完成标志位置0;否则继续上一步骤;
3)开始计时,经过标定时间,如500ms,重新进入初始化状态;
4)2挡自适应结束,由于2挡自适应完成标志位置1,在6挡自适应时将2挡自适应完成标志位置0,所以在6挡自适应发生前,不会再次激活2挡自适应。
所述的3挡满足自适应条件:3挡拨叉处于中位且奇数轴离合器处于分离状态,将3挡自适应完成标志位置0。
3挡流量阀死区自适应策略具体包括:
1)SCV4在设定的零流量对应的电流值的基础上每个周期增加标定步长的电流值,如0.02A;给GPCV1固定电流值,以提供支撑拨叉运动的压力;
2)实时判断3挡拨叉位移是否满足相对中位偏移-0.5mm,当满足时则将此时的电流值保存到EEPROM中,由于3挡和7挡均由第四拨叉控制,二者满足的自适应条件相同,即:第四拨叉在中位且奇数离合器处于分离状态,所以必须引入第三个条件才能使3挡和7挡都能够自适应,所以,当电流值保存好后,将3挡自适应完成标志位置1并将7挡自适应完成标志位置0;否则继续上一步骤;
3)开始计时,经过标定时间,如500ms,重新进入初始化状态;
4)3挡自适应结束,由于3挡自适应完成标志位置1,在7挡自适应时将3挡自适应完成标志位置0,所以在7挡自适应发生前,不会再次激活3挡自适应。
所述的4挡满足自适应条件:4挡拨叉处于中位且偶数轴离合器处于分离状态,将4挡自适应完成标志位置0。
4挡流量阀死区自适应策略具体包括:
1)SCV1在设定的零流量对应的电流值的基础上每个周期增加标定步长的电流值,如0.02A;给GPCV2固定电流值,以提供支撑拨叉运动的压力;
2)实时判断4挡拨叉位移是否满足相对中位偏移-0.5mm,当满足时则将此时的电流值保存到EEPROM中,由于4挡和R挡均由第一拨叉控制,二者满足的自适应条件相同,即:第一拨叉在中位且偶数离合器处于分离状态,所以必须引入第三个条件才能使4挡和R挡都能够自适应,所以,当电流值保存好后,将4挡自适应完成标志位置1并将R挡自适应完成标志位置0;否则继续上一步骤;
3)开始计时,经过标定时间,如500ms,重新进入初始化状态;
4)4挡自适应结束,由于4挡自适应完成标志位置1,在R挡自适应时将4挡自适应完成标志位置0,所以在R挡自适应发生前,不会再次激活4挡自适应。
所述的5挡满足自适应条件:5挡拨叉处于中位且奇数轴离合器处于分离状态,将5挡自适应完成标志位置0。
5挡流量阀死区自适应策略具体包括:
1)SCV3在设定的零流量对应的电流值的基础上每个周期减小标定步长的电流值,如0.02A;给GPCV1固定电流值,以提供支撑拨叉运动的压力;
2)实时判断5挡拨叉位移是否满足相对中位偏移0.5mm,当满足时则将此时的电流值保存到EEPROM中,由于1挡和5挡均由第三拨叉控制,二者满足的自适应条件相同,即:第三拨叉在中位且奇数离合器处于分离状态,所以必须引入第三个条件才能使1挡和5挡都能够自适应,所以,当电流值保存好后,将5挡自适应完成标志位置1并将1挡自适应完成标志位置0;否则继续上一步骤;
3)开始计时,经过标定时间,如500ms,重新进入初始化状态;
4)5挡自适应结束,由于5挡自适应完成标志位置1,在1挡自适应时将5挡自适应完成标志位置0,所以在1挡自适应发生前,不会再次激活5挡自适应。
所述的6挡满足自适应条件:6挡拨叉处于中位且偶数轴离合器处于分离状态,将6挡自适应完成标志位置0。
6挡流量阀死区自适应策略具体包括:
1)SCV2在设定的零流量对应的电流值的基础上每个周期减小标定步长的电流值,如0.02A;给GPCV2固定电流值,以提供支撑拨叉运动的压力;
2)实时判断6挡拨叉位移是否满足相对中位偏移-0.5mm,当满足时则将此时的电流值保存到EEPROM中,由于2挡和6挡均由第二拨叉控制,二者满足的自适应条件相同,即:第二拨叉在中位且偶数离合器处于分离状态,所以必须引入第三个条件才能使2挡和6挡都能够自适应,所以,当电流值保存好后,将6挡自适应完成标志位置1并将2挡自适应完成标志位置0;否则继续上一步骤;
3)开始计时,经过标定时间,如500ms,重新进入初始化状态;
4)6挡自适应结束,由于6挡自适应完成标志位置1,在2挡自适应时将6挡自适应完成标志位置0,所以在2挡自适应发生前,不会再次激活6挡自适应。
所述的7挡满足自适应条件:7挡拨叉处于中位且奇数轴离合器处于分离状态,将7挡自适应完成标志位置0。
7挡流量阀死区自适应策略具体包括:
1)SCV4在设定的零流量对应的电流值的基础上每个周期减小标定步长的电流值,如0.02A;给GPCV1固定电流值,以提供支撑拨叉运动的压力;
2)实时判断7挡拨叉位移是否满足相对中位偏移0.5mm,当满足时则将此时的电流值保存到EEPROM中,由于3挡和7挡均由第四拨叉控制,二者满足的自适应条件相同,即:第四拨叉在中位且奇数离合器处于分离状态,所以必须引入第三个条件才能使3挡和7挡都能够自适应,所以,当电流值保存好后,将7挡自适应完成标志位置1并将3挡自适应完成标志位置0;否则继续上一步骤;
3)开始计时,经过标定时间,如500ms,重新进入初始化状态;
4)7挡自适应结束,由于7挡自适应完成标志位置1,在3挡自适应时将7挡自适应完成标志位置0,所以在3挡自适应发生前,不会再次激活7挡自适应。
所述的R挡满足自适应条件:R挡拨叉处于中位且偶数轴离合器处于分离状态,将R挡自适应完成标志位置0。
R挡流量阀死区自适应策略具体包括:
1)SCV1在设定的零流量对应的电流值的基础上每个周期减小标定步长的电流值,如0.02A;给GPCV2固定电流值,以提供支撑拨叉运动的压力;
2)实时判断R挡拨叉位移是否满足相对中位偏移0.5mm,当满足时则将此时的电流值保存到EEPROM中,由于4挡和R挡均由第一拨叉控制,二者满足的自适应条件相同,即:第一拨叉在中位且偶数离合器处于分离状态,所以必须引入第三个条件才能使4挡和R挡都能够自适应,所以,当电流值保存好后,将R挡自适应完成标志位置1并将4挡自适应完成标志位置0;否则继续上一步骤;
3)开始计时,经过标定时间,如500ms,重新进入初始化状态;
4)R挡自适应结束,由于R挡自适应完成标志位置1,在4挡自适应时将R挡自适应完成标志位置0,所以在4挡自适应发生前,不会再次激活R挡自适应。
图4为流量阀死区自适应策略验证数据,可以实时得到精确的流量阀死区电流值,避免了环境对死区电流的影响,使得拨叉控制更加精确,有效地降低了流量阀死区发生微小变动引起多挡啮合的风险,有效降低行车安全隐患。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (1)

1.一种湿式双离合变速器拨叉控制流量阀死区电流值获得方法,其特征在于,在特定工况下,挡位对应的流量阀控制的拨叉处于中位且该拨叉对应的离合器处于打开状态时,流量阀死区自适应策略被激活,即可得到该挡位的死区电流值;
所述的特定工况是指满足以下任一条件的工况:
1)没有上挡和退挡指令且换挡杆位于P或N位置且车辆处于静止状态;
2)没有上挡和退挡指令且车辆处于稳定行驶工况;
所述的稳定行驶工况是指以下两个条件中满足任意一个条件的工况,具体为:
1)车辆处于巡航状态且车速变化率绝对值小于3Km/h维持2s以上;
2)车辆处于非巡航状态且车速变化率绝对值小于3Km/h维持2s以上且油门开度变化率绝对值小于5%维持2s以上;
所述的流量阀死区自适应策略是指:给相应流量阀输入电流,在设定的零流量对应的电流值的基础上每个周期增加或者减少标定步长值电流,当拨叉位移大于等于特定标定值时,将此时的电流值存储到带电可擦可编程读写存储器中,进行记录,该电流值即为死区电流值,进而更新流量控制阀的Q-I曲线;
所述的相应流量阀控制的拨叉处于中位且该拨叉对应的离合器处于打开状态,满足这个条件的挡位有两个,需要引入另一个条件,即一个挡位的自适应结束后,将该挡位的自适应完成标志位置1,另一个挡位自适应时将先前挡位的自适应完成标志位置0,标志位置0的挡位激发自适应,以此保证两个挡位不会同时激发自适应;
所述的流量阀死区自适应策略具体是指:默认状态为自适应不激活的状态,实时判断拨叉控制流量阀死区自适应工况是否满足特定工况,当满足上述工况时进入自适应激活初始化状态,此时依次判断1挡、2挡、3挡、4挡、5挡、6挡、7挡和倒挡的流量阀是否满足流量阀死区自适应条件,即是否对应拨叉处于中位且对应离合器处于打开状态的条件,当满足该条件时进入流量阀死区自适应策略,进入该策略后依然实时判断是否满足流量阀死区自适应条件,当满足该条件时继续自适应;否则返回初始化状态;
所述的湿式双离合变速器包括:位于奇数轴上的1/3/5/7挡、位于偶数轴上的2/4/6/R挡、四个三位四通换向流量阀、两个二位三通压力阀和四个拨叉,其中:R挡和4挡通过第一三位四通换向流量阀和第二二位三通压力阀控制第一拨叉实现上挡和退挡,2挡和6挡通过第二三位四通换向流量阀和第二二位三通压力阀控制第二拨叉实现上挡和退挡,1挡和5挡通过第三三位四通换向流量阀和第一二位三通压力阀控制第三拨叉实现上挡和退挡,3挡和7挡通过控制第四三位四通换向流量阀和第一二位三通压力阀控制第四拨叉实现上挡和退挡。
CN201910183196.5A 2019-03-12 2019-03-12 湿式双离合变速器拨叉控制流量阀死区自适应控制方法 Active CN111692332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910183196.5A CN111692332B (zh) 2019-03-12 2019-03-12 湿式双离合变速器拨叉控制流量阀死区自适应控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910183196.5A CN111692332B (zh) 2019-03-12 2019-03-12 湿式双离合变速器拨叉控制流量阀死区自适应控制方法

Publications (2)

Publication Number Publication Date
CN111692332A CN111692332A (zh) 2020-09-22
CN111692332B true CN111692332B (zh) 2022-01-04

Family

ID=72475213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910183196.5A Active CN111692332B (zh) 2019-03-12 2019-03-12 湿式双离合变速器拨叉控制流量阀死区自适应控制方法

Country Status (1)

Country Link
CN (1) CN111692332B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113236765B (zh) * 2021-05-12 2023-01-06 中国第一汽车股份有限公司 一种变速器换挡流量电磁阀中位死区修正方法
CN115388166A (zh) * 2021-05-24 2022-11-25 上海汽车集团股份有限公司 双离合器式变速器及其拨叉控制方法、系统
CN115143278A (zh) * 2022-06-27 2022-10-04 中国第一汽车股份有限公司 一种变速器换挡方法、装置、设备和存储介质
CN115523289A (zh) * 2022-11-01 2022-12-27 中国第一汽车股份有限公司 车辆变速器的控制方法、装置、车辆及存储介质
CN115750781B (zh) * 2022-11-26 2024-05-14 重庆长安汽车股份有限公司 变速器的流量阀qi特性数据的自学习方法、系统及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257823A (zh) * 2015-10-13 2016-01-20 哈尔滨东安汽车发动机制造有限公司 一种自动变速器电磁阀的控制方法
CN106886244A (zh) * 2015-12-15 2017-06-23 上海汽车集团股份有限公司 用于获取零流量控制电流的方法及换挡执行机构
CN206874703U (zh) * 2017-05-24 2018-01-12 捷孚传动科技有限公司 混合动力汽车及其变速箱液压控制系统
CN107901897A (zh) * 2017-11-16 2018-04-13 中车株洲电力机车有限公司 比例减压阀闭环控制方法、装置及轨道车辆控制系统
CN108412912A (zh) * 2017-02-10 2018-08-17 上海汽车集团股份有限公司 流量变力电磁阀的q-i曲线调整方法及装置
CN109114292A (zh) * 2018-09-12 2019-01-01 浙江大学 一种先导式液压阀先导级驱动特性检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257823A (zh) * 2015-10-13 2016-01-20 哈尔滨东安汽车发动机制造有限公司 一种自动变速器电磁阀的控制方法
CN106886244A (zh) * 2015-12-15 2017-06-23 上海汽车集团股份有限公司 用于获取零流量控制电流的方法及换挡执行机构
CN108412912A (zh) * 2017-02-10 2018-08-17 上海汽车集团股份有限公司 流量变力电磁阀的q-i曲线调整方法及装置
CN206874703U (zh) * 2017-05-24 2018-01-12 捷孚传动科技有限公司 混合动力汽车及其变速箱液压控制系统
CN107901897A (zh) * 2017-11-16 2018-04-13 中车株洲电力机车有限公司 比例减压阀闭环控制方法、装置及轨道车辆控制系统
CN109114292A (zh) * 2018-09-12 2019-01-01 浙江大学 一种先导式液压阀先导级驱动特性检测方法

Also Published As

Publication number Publication date
CN111692332A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN111692332B (zh) 湿式双离合变速器拨叉控制流量阀死区自适应控制方法
EP2290254B1 (en) Multiple clutch transmission control apparatus and multiple clutch transmission control method
JP4257328B2 (ja) 自動変速機の制御装置
EP1750040B1 (en) Shift control device and method for automated manual transmission
JP4210681B2 (ja) 自動変速機の制御装置
CN105673729B (zh) 双离合变速器的滑动系数学习方法
US20030178278A1 (en) Twin-clutch transmission system
RU2362929C2 (ru) Способ реализации переключений с исходной передачи на целевую передачу в коробке переключения передач с двухпоточной муфтой сцепления
CN103527772B (zh) 控制变速器的同步器致动叉的方法
US8340877B2 (en) Engine speed synchronizer and engine speed synchronization method for manual transmission with engine clutch
CN103244663B (zh) 一种控制湿式双离合变速器档位接合的方法
CN103291905B (zh) 双离合变速器档位预选的控制方法
CN103291903B (zh) 双离合变速器的主油压控制方法
JP2008064240A (ja) 自動変速機の制御装置、制御方法およびその方法をコンピュータに実現させるプログラムならびにそのプログラムを記録した記録媒体
JPWO2011111496A1 (ja) 自動変速機の制御装置
US20110257855A1 (en) Control system and method for shift fork position in dual clutch transmissions
DE102015113549A1 (de) Steuerung eines Herunterschaltens mit anstehender Leistung eines Doppelkupplungsgetriebes
JPH10318361A (ja) ツインクラッチ式自動変速機の変速制御装置
JP2009257408A (ja) 自動変速機の制御方法
JP4257329B2 (ja) 自動変速機の制御装置
JP2013194893A (ja) 自動変速機の制御装置
CN111412278A (zh) 双离合变速器的优化退挡控制方法
JP2010112434A (ja) 変速制御装置
CN114738478B (zh) 双离合自动变速箱的拨叉控制方法及装置
JPH081246B2 (ja) 自動変速機のギヤ抜け処理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant