CN111671769B - 含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用 - Google Patents

含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用 Download PDF

Info

Publication number
CN111671769B
CN111671769B CN202010456930.3A CN202010456930A CN111671769B CN 111671769 B CN111671769 B CN 111671769B CN 202010456930 A CN202010456930 A CN 202010456930A CN 111671769 B CN111671769 B CN 111671769B
Authority
CN
China
Prior art keywords
copper
containing ferrite
water
iron
ferrite nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010456930.3A
Other languages
English (en)
Other versions
CN111671769A (zh
Inventor
田原僮
陈冠宇
陈智鹏
钟毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganzhou Kangprai Biotechnology Co ltd
Gannan Medical University
Original Assignee
Ganzhou Kangprai Biotechnology Co ltd
Gannan Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ganzhou Kangprai Biotechnology Co ltd, Gannan Medical University filed Critical Ganzhou Kangprai Biotechnology Co ltd
Priority to CN202010456930.3A priority Critical patent/CN111671769B/zh
Publication of CN111671769A publication Critical patent/CN111671769A/zh
Application granted granted Critical
Publication of CN111671769B publication Critical patent/CN111671769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/34Copper; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Public Health (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用。含铜铁氧体纳米粒子,其结构式为Cu0.5Fe(II) 0.5Fe(III) 2O4。本发明通过将Fe3O4纳米粒子中1/2的二价铁用二价铜进行取代,从而对在Cu0.5Fe(II) 0.5Fe(III) 2O4中的
Figure DDA0002509561550000011
的电子耦合作用进行消除。所获得的Cu0.5Fe(II) 0.5Fe(III) 2O4纳米粒子具有非常优良的抗肿瘤效果,具有广泛的应用前景。

Description

含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用
技术领域:
本发明属于纳米材料医学领域,具体涉及一种含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用。
背景技术:
铁死亡(Ferroptosis)是一种新发现的、由铁介导的调节性细胞死亡方式。与凋亡、坏死和自噬不同,铁死亡以铁离子依赖的ROS过度积累和脂质过氧化物(LipidPeroxidation,LPO)堆积为特征,可通过添加过量的铁离子充分诱导。
体循环中的铁通常以稳定的三价铁(Fe3+)形式存在与转运。Fe3+与转铁蛋白结合后可以通过转铁蛋白受体1(Transferrin Receptor 1,TFR1)进入细胞,储存于内涵体(Endosome)。内涵体的铁氧化还原酶(Six Transmembrane Epithelial Antigen of theProstate3,STEAP3)可将Fe3+还原为不稳定的、具有催化活性的二价铁(Fe2+)。过量的Fe2+可经二价金属转运体1(Divalent Metal Transporter 1,DMT1)从内涵体释放到细胞浆,存储于铁蛋白(Ferritin)中形成不稳定铁池。当Fe2+过载超出铁蛋白缓冲能力时,溶酶体将使之降解,释放出的Fe2+将通过芬顿反应生成大量的羟基自由基(·OH,最具氧化活性的ROS)。当ROS产生的量超过细胞抗氧化系统的清除能力时,将导致LPO堆积,细胞铁死亡。因此,利用铁离子通过芬顿反应诱导铁死亡成为当今抗肿瘤研究的新方向。
芬顿(Fenton)反应或芬顿样反应作为生物体内OH-(活性最强的ROS之一)的主要来源,是诱导细胞铁死亡的重要途径。由于纳米材料具有向肿瘤组织的特性,细胞酸性溶酶体又能够使之水解并释放纳米递送体系中的Fe2+,因此近年出现了大量以芬顿反应诱导铁死亡为目标的纳米载铁递送体系,其中以四氧化三铁纳米粒(Fe3O4 NPs)的研究最为广泛。然而,研究显示,单纯纳米铁递送体系不能有效诱导肿瘤细胞铁死亡。这是因为Fe3O4NPs中Fe2+和Fe3+之间的间隔电荷可能阻碍了其氧化还原活性,并因此降低了Fe2+的催化活性,最终将导致芬顿反应效率低下,以致于其生成的ROS不足以引发铁死亡。因此如何克服一般芬顿反应局限性、增加细胞铁死亡率,是当今该领域研究的科学难题。
发明内容:
本发明的第一个目的是提供含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用。
本发明的含铜铁氧体纳米粒子,其结构式为Cu(II) xFe(II) 1-xFe(III) 2O4,其中1≥X≥0.5。
本发明进一步通过将Fe3O4纳米粒子中1/2的二价铁(Fe2+)用二价铜(Cu2+)进行取代,合成了新的含铜铁氧体纳米粒子Cu0.5Fe(II) 0.5Fe(III) 2O4(以下简称为Cu@Fe NPs),从而对在Fe3O4纳米粒子中的
Figure GDA0004006914750000021
的电子耦合作用进行消除。所获得的Cu0.5Fe(II) 0.5Fe(III) 2O4纳米粒子具有非常优良的抗肿瘤作用,由此,优选所述的含铜铁氧体纳米粒子,其结构式为Cu0.5Fe(II) 0.5Fe(III) 2O4
所述的含铜铁氧体纳米粒子是通过以下方法制备的,其是将Fe3O4纳米粒子中X的二价铁用二价铜进行取代,得到含铜铁氧体纳米粒子,其中1≥X≥0.5。
优选,将Fe2+和Gu2+按照物质的量之比(1-X):X加入到水中、并加入过量的Fe3+,以及聚乙烯吡咯酮,制得铜铁前驱体溶液,加热条件下,再加入含氢氧化钠和聚乙烯吡咯酮的水溶液,反应生成含铜铁氧体纳米粒子。
进一步优选,是将CuCl2、FeCl2、FeCl3溶于水中,使得Cu2+,Fe2+,Fe3+物质的量之比为1:1:4,加入聚乙烯吡咯酮,制得铜铁前驱体溶液,将铜铁前驱体溶液加热至85℃至90℃,然后滴加预热至85℃至90℃的含氢氧化钠和聚乙烯吡咯酮的水溶液进行反应,反应后取出固体产物,依次用水、乙醇、丙酮和水洗涤,获得洗涤后的产物,即为含铜铁氧体纳米粒子Cu0.5Fe(II) 0.5Fe(III) 2O4
进一步优选,所述的铜铁前驱体溶液,其含0.1mM的CuCl2,0.1mM的FeCl2,0.4mM的FeCl3和5mg/ml的聚乙烯吡咯酮,所述的含氢氧化钠和聚乙烯吡咯酮的水溶液是含1.6mM的NaOH和5mg/ml的聚乙烯吡咯酮;将铜铁前驱体溶液加热至85℃至90℃,然后滴加预热至85℃至90℃的含氢氧化钠和聚乙烯吡咯酮的水溶液进行反应,反应后取出固体产物,依次用水、乙醇、丙酮和水洗涤,获得洗涤后的产物。
本发明的第二个目的是提供一种抗肿瘤药物,其含有上述含铜铁氧体纳米粒子作为活性成分。
所述的抗肿瘤药物是抗乳腺癌或卵巢癌的药物。
本发明通过将Fe3O4纳米粒子中的二价铁用二价铜进行取代,从而对在Fe3O4纳米粒子中的
Figure GDA0004006914750000031
的电子耦合作用进行消除。所获得的含铜铁氧体纳米粒子具有非常优良的抗肿瘤效果,具有广泛的应用前景。
附图说明:
图1是含铜铁氧体纳米粒子Cu@Fe NPs反应装置的组成图,A:三颈圆底烧瓶;B:冷凝管;C:温度计;D:注射器;
图2是Fe3O4 NPs和Cu@Fe NPs的X射线衍射分析图;
图3是(A)为Cu@Fe NPs的3D结构图,蓝球(图中的1):Cu2+/Fe2+;棕球(图中的2):Fe3 +;白球:O;(B)为Cu@Fe NPs的透射电镜图(50μM);(C)为Cu@Fe NPs的动态光散射图(DLS);
图4是Cu@Fe NPs对卵巢癌A2780细胞ROS生成的影响(72h)。
具体实施方式:
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
1、本发明的含铜铁氧体纳米粒子Cu@Fe NPs的制备与鉴定。
将CuCl2、FeCl2、FeCl3溶于100ml水中,使得浓度为0.1mM的CuCl2,0.1mM的FeCl2,0.4mM的FeCl3,并加入500mg聚乙烯吡咯酮(K40),混合均匀得到Cu2+,Fe2+,Fe3+摩尔比为1:1:4的铜铁前驱体溶液。将NaOH溶解于装有100mL去离子水的三颈圆底烧瓶中,使NaOH浓度为1.6mM,并加入500mg聚乙烯吡咯酮(K40),保持在800rpm~1200rpm的转速下混合均匀,在油浴中加热至85℃至90℃。按照图1所示在铁架台上组装冷凝管B、烧瓶A、温度计C和注射器D,将铜铁前驱体溶液放入冷凝管下的烧瓶中。当NaOH溶液温度达到85℃至90℃时,使用注射器以3.5mL/min的速度滴加铜铁前驱体溶液,反应30min后,取出产物,在转速为5000rpm的条件下后,离心产物依次经5mL水、5mL乙醇、5mL丙酮和5mL水离心洗涤,最后得到洗涤后的产物(即为Cu0.5Fe(II) 0.5Fe(III) 2O4纳米粒子,命名为Cu@Fe NPs),将洗涤后的产物分散于水中,得到Cu0.5Fe(II) 0.5Fe(III) 2O4纳米粒子溶液。经X射线衍射分析显示,Cu@Fe NPs为物相组分单一且纯度高的纳米粒子,无其他杂质物相组分(图2)。经透射电镜(TEM)和动态光散射(DLS)检测,Cu@Fe NPs的粒径为10nm至60nm(图3)。
2、本发明的Cu@Fe NPs的抗肿瘤作用
体外培养MDA-MB-231、A2780、A2780cis、CAOV-3和SKOV3以及A549细胞。利用噻唑蓝(MTT)法,研究Cu@Fe NPs对多种肿瘤细胞的作用。
实验方案:上述细胞以1×104/孔的数量种96孔板,加DMEM培养液,放于含5%CO2,的37℃培养箱培养,待细胞贴壁后,每孔加入100μL不同浓度的Cu@Fe NP(0.04μM-20μM),对照组加等体水。Cu@Fe NPs处理72h后,每孔加入10μL MTT溶液,继续培养2h后,加入二甲基亚砜(DMSO),再用酶联免疫检测仪检测540nm的光吸收值,与对照组相比,研究肿瘤细胞增殖情况,利用Excel的FORECAST命令计算IC50
结果显示,与顺铂相比较,Cu@Fe NPs对体外培养的三阴性乳腺癌MDA-MB-231细胞、卵巢癌细胞如A2780、A2780cis、CAOV-3和SKOV3细胞以及肺癌A549细胞均具有强大的抑制作用(表1)。
表1 Cu@Fe NPs对体外培养肿瘤细胞抑制作用的IC50(CCK8法,72h)
Figure GDA0004006914750000051
3、Cu@Fe3O4 NP对活性氧的诱发作用。
实验方案:A2780细胞以2×104/孔的数量接种于96孔板中,细胞贴壁后吸弃培养液,参照加入不同浓度的Cu@Fe NPs,继续培养72h,用PBS洗涤2次。以DCFH-DA为检测细胞内活性氧的水平荧光探针,每孔加入100μL DCFH-DA(25μM),于37℃染色45分钟,然后再次用PBS洗涤2次,酶标仪检测细胞荧光强度(激发=485nm,发射=535nm),计算ROS含量。
结果显示,当使用不同浓度的Cu@Fe NPs处理A2780细胞时,细胞内ROS水平能够以剂量依赖性方式升高,且在72h观察点肿瘤细胞内ROS含量仍然较高(图4),这说明Cu@FeNPs通过向肿瘤细胞递送铜铁,诱发芬顿反应,使细胞处于持久且异常高的ROS内环境状态,最终诱发死亡。

Claims (3)

1.含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用,所述的含铜铁氧体纳米粒子,其结构
式为Cu0.5Fe(II)0.5Fe(III)2O4,所述的抗肿瘤药物是抗三阴性乳腺癌或卵巢癌的药物。
2.根据权利要求1 所述的应用,其特征在于,是将CuCl2、FeCl2、FeCl3 溶于水中,使得Cu2+,Fe2+,Fe3+物质的量之比为1:1:4,加入聚乙烯吡咯酮,制得铜铁前驱体溶液,将铜铁前驱体溶液加热至85℃至90℃,然后滴加预热至85℃至90℃的含氢氧化钠和聚乙烯吡
咯酮的水溶液进行反应,反应后取出固体产物,依次用水、乙醇、丙酮和水洗涤,获得
洗涤后的产物,即为含铜铁氧体纳米粒子Cu0.5Fe(II)0.5Fe(III)2O4。
3.根据权利要求2 所述的应用,其特征在于,所述的铜铁前驱体溶液,其含0.1mM 的CuCl2,0.1mM 的FeCl2,0.4mM 的FeCl3 和5mg/ml 的聚乙烯吡咯酮,所述的含氢氧化钠和聚乙烯吡咯酮的水溶液是含1.6mM 的NaOH 和5mg/ml 的聚乙烯吡咯酮;将铜铁前驱体溶液加热至85℃至90℃,然后滴加预热至85℃至90℃的含氢氧化钠和聚乙烯吡咯酮的水溶液进行反应,反应后取出固体产物,依次用水、乙醇、丙酮和水洗涤,获得洗涤后的产
物。
CN202010456930.3A 2020-05-26 2020-05-26 含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用 Active CN111671769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010456930.3A CN111671769B (zh) 2020-05-26 2020-05-26 含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010456930.3A CN111671769B (zh) 2020-05-26 2020-05-26 含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用

Publications (2)

Publication Number Publication Date
CN111671769A CN111671769A (zh) 2020-09-18
CN111671769B true CN111671769B (zh) 2023-02-28

Family

ID=72434443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010456930.3A Active CN111671769B (zh) 2020-05-26 2020-05-26 含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用

Country Status (1)

Country Link
CN (1) CN111671769B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111773248A (zh) * 2020-05-26 2020-10-16 赣南医学院 一种含铜铁氧体纳米粒子及其制备方法和抗菌作用
CN114655993A (zh) * 2022-03-25 2022-06-24 滨州医学院 一种纳米铜铁氧体、制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737709A (ja) * 1993-07-20 1995-02-07 Tokin Corp 磁性発熱素子及びそれに用いる磁性材料
CN101456078A (zh) * 2009-01-06 2009-06-17 中北大学 一种纳米级镍铜锌铁氧体粉末的制备方法
CN101573142A (zh) * 2006-12-18 2009-11-04 意大利库劳比公司 用于高热的磁性纳米颗粒、它们的制备方法以及在药理应用的构建物中的用途
CN103818971A (zh) * 2014-03-12 2014-05-28 厦门大学 一种超顺磁性铁氧体纳米粒子的制备方法
CN104193317A (zh) * 2014-08-28 2014-12-10 电子科技大学 抗偏置低温烧结NiCuZn铁氧体材料及其制备方法
CN104623658A (zh) * 2014-12-29 2015-05-20 上海师范大学 一种水溶性铁酸盐复合纳米粒子及其制备方法和应用
CN109317162A (zh) * 2018-11-14 2019-02-12 扬州大学 一种高效非均相类芬顿催化剂MnFe2O4/SiO2的制备方法
CN111773248A (zh) * 2020-05-26 2020-10-16 赣南医学院 一种含铜铁氧体纳米粒子及其制备方法和抗菌作用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140044648A1 (en) * 2012-07-06 2014-02-13 University Of Central Florida Research Foundation, Inc. Activatable imaging contrast agents
CN105031651B (zh) * 2015-09-01 2018-05-15 郑州大学 一种酶响应型磁性纳米粒及其制备方法与应用
US11643335B2 (en) * 2019-01-17 2023-05-09 Imam Abdulrahman Bin Faisal University Method of making chromium-substituted spinel ferrite nanoparticles for microbe treatment
CN110354079A (zh) * 2019-08-28 2019-10-22 中国药科大学 一种脂质过氧化物生成器及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737709A (ja) * 1993-07-20 1995-02-07 Tokin Corp 磁性発熱素子及びそれに用いる磁性材料
CN101573142A (zh) * 2006-12-18 2009-11-04 意大利库劳比公司 用于高热的磁性纳米颗粒、它们的制备方法以及在药理应用的构建物中的用途
CN101456078A (zh) * 2009-01-06 2009-06-17 中北大学 一种纳米级镍铜锌铁氧体粉末的制备方法
CN103818971A (zh) * 2014-03-12 2014-05-28 厦门大学 一种超顺磁性铁氧体纳米粒子的制备方法
CN104193317A (zh) * 2014-08-28 2014-12-10 电子科技大学 抗偏置低温烧结NiCuZn铁氧体材料及其制备方法
CN104623658A (zh) * 2014-12-29 2015-05-20 上海师范大学 一种水溶性铁酸盐复合纳米粒子及其制备方法和应用
CN109317162A (zh) * 2018-11-14 2019-02-12 扬州大学 一种高效非均相类芬顿催化剂MnFe2O4/SiO2的制备方法
CN111773248A (zh) * 2020-05-26 2020-10-16 赣南医学院 一种含铜铁氧体纳米粒子及其制备方法和抗菌作用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Berberine inhibits androgen synthesis by interaction with aldo‑keto reductase 1C3 in 22Rv1 prostate cancer cells;Yuantong Tian,等;《Asian Journal of Andrology》;20151211(第18期);第607-612页 *
Copper ferrite nanoparticle-induced cytotoxicity and oxidative stressin human breast cancer MCF-7 cells;Maqusood Ahamed,等;《Colloids and Surfaces B: Biointerfaces》;20160222;第142卷;摘要,第46页右栏第1段,第47页第2.2节,第54页第5节 *
Effect of Magnetic Fluid Hyperthermia on Implanted Melanoma in Mouse Models;Maryam Heidari,等;《Iranian Journal of Medical Sciences》;20160731;第41卷(第4期);第1-8页 *
Electrical Properties of Cu Substituted Fe3O4 Nanoparticles;Md. Amir,等;《Journal of Superconductivity and Novel Magnetism》;20151107(第29期);摘要,第389-390页第1节,第390页第2.2节,第398页第4节 *
Maqusood Ahamed,等.Copper ferrite nanoparticle-induced cytotoxicity and oxidative stressin human breast cancer MCF-7 cells.《Colloids and Surfaces B: Biointerfaces》.2016,第142卷 *
基于铁死亡调控机制的抗肿瘤药物研究进展;杨英杰,等;《中国药学杂志》;20220228;第57卷(第3期);第165-169页 *

Also Published As

Publication number Publication date
CN111671769A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
Sathishkumar et al. Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies
Barahuie et al. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system
CN111671769B (zh) 含铜铁氧体纳米粒子在制备抗肿瘤药物中的应用
Bisht et al. Synthesis, characterization, and study of in vitro cytotoxicity of ZnO-Fe3O4 magnetic composite nanoparticles in human breast cancer cell line (MDA-MB-231) and mouse fibroblast (NIH 3T3)
Gu et al. Vitamin B 2 functionalized iron oxide nanozymes for mouth ulcer healing
Banach et al. Proecological method for the preparation of metal nanoparticles
Zangeneh et al. Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies
Khorramizadeh et al. Umbelliprenin-coated Fe3O4 magnetite nanoparticles: Antiproliferation evaluation on human Fibrosarcoma cell line (HT-1080)
Li et al. Doxorubicin-loaded hydrogen peroxide self-providing copper nanodots for combination of chemotherapy and acid-induced chemodynamic therapy against breast cancer
Amiri et al. Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis
Ghazanfari et al. Synthesis, characterization, and X-ray attenuation properties of polyacrylic acid-coated ultrasmall heavy metal oxide (Bi2O3, Yb2O3, NaTaO3, Dy2O3, and Gd2O3) nanoparticles as potential CT contrast agents
Peng et al. Second near-infrared photoactivatable hydrogen selenide nanogenerators for metastasis-inhibited cancer therapy
He et al. Nucleolin-targeted selenium nanocomposites with enhanced theranostic efficacy to antagonize glioblastoma
Naderi et al. Improving the anti-cancer activity of quercetin-loaded AgFeO2 through UV irradiation: Synthesis, characterization, and in vivo and in vitro biocompatibility study
Naderi et al. The effect of calcination temperature on the anticancer activity of CaFe 2 O 4@ PVA nanocarriers: photodynamic therapy and drug delivery study
Amina et al. Synthesis of diosgenin conjugated gold nanoparticles using algal extract of Dictyosphaerium sp. and in-vitro application of their antiproliferative activities
CN111317812B (zh) 一种自组装肌肽荧光纳米颗粒、制备方法和应用
CN113181211A (zh) 一种Fe2O3@TA-Pt纳米复合材料及制备方法和应用
Zhang et al. Hydrogen peroxide self-sufficient and glutathione-depleted nanoplatform for boosting chemodynamic therapy synergetic phototherapy
Srinivasan et al. Enhanced in vitro inhibition of MCF-7 and magnetic properties of cobalt incorporated calcium phosphate (HAp and β-TCP) nanoparticles
CN115054613A (zh) 一种多功能纳米催化剂及其制备方法
Yin et al. Intelligent gold nanoparticles for malignant tumor treatment via spontaneous copper manipulation and on-demand photothermal therapy based on copper induced click chemistry
Wu et al. Fe3S4 nanozyme inhibits tumor growth by synergistic effects of ferroptosis and apoptosis
Zeng et al. Current status and prospect of ZIF-based materials for breast cancer treatment
Guo et al. Facile synthesis of multifunctional germanium nanoparticles as a carrier of quercetin to achieve enhanced biological activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant