CN111661841B - 石墨烯-磁性纳米线探针及其制备方法 - Google Patents

石墨烯-磁性纳米线探针及其制备方法 Download PDF

Info

Publication number
CN111661841B
CN111661841B CN202010588174.XA CN202010588174A CN111661841B CN 111661841 B CN111661841 B CN 111661841B CN 202010588174 A CN202010588174 A CN 202010588174A CN 111661841 B CN111661841 B CN 111661841B
Authority
CN
China
Prior art keywords
metal wire
graphene
applying
nanowire array
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010588174.XA
Other languages
English (en)
Other versions
CN111661841A (zh
Inventor
张瑞秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ding Daoqi
Original Assignee
Ding Daoqi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ding Daoqi filed Critical Ding Daoqi
Priority to CN202010588174.XA priority Critical patent/CN111661841B/zh
Publication of CN111661841A publication Critical patent/CN111661841A/zh
Application granted granted Critical
Publication of CN111661841B publication Critical patent/CN111661841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/22Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the construction of the column
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种石墨烯‑Fe3O4固相微萃取探针,该探针的基体为金属丝,其特征在于:在金属丝表面依次沉积有Fe3O4纳米线阵列和石墨烯纳晶。Fe3O4纳米线阵列通过模板‑水热法制得;石墨烯纳晶通过电子回旋等离子体溅射沉积得到。充分利用石墨烯二维纳米材料,其具有大的比表面积,使得探针具有良好的萃取、富集效果,探针的灵敏度高、稳定性好。通过模板‑水热法,预先在金属丝表面获得多孔结构的阳极氧化铝,实现Fe3O4纳米线阵列的可控生长,保障了后续的石墨烯纳晶的沉积。直接将磁性Fe3O4纳米线阵列沉积在金属丝和石墨烯纳晶之间,探针在对样品进行处理的过程中,可以通过施加外加磁场来优化萃取效果,方法简便。

Description

石墨烯-磁性纳米线探针及其制备方法
技术领域
本发明涉及一种探针,用于固相微萃取领域,具体涉及一种石墨烯-磁性纳米线阵列固相微萃取探针及其制备方法。
背景技术
固相微萃取(Solid Phase Microextraction,SPME)技术是一种样品分析测定技术,可以于气相色谱、液相色谱、质谱、电泳等仪器配合使用,广泛应用于食品分析、环境分析、生物样品分析、药物分析等领域。
固相微萃取探针是固相微萃取技术中的核心部件。但是目前的固相微萃取探针主要是基于熔融石英纤维,价格高、稳定性差、寿命短。需要开发新的灵敏度高、稳定性好、成本低、绿色环保的固相微萃取探针。
石墨烯(graphene)作为一种新型材料,由于其独特的二维蜂窝状晶体结构,具有超高的比表面积,良好的导电、导热性,硬度强,吸附能力强等性质,具有应用在各类传感器、分析检测等领域中的前景。
此外,磁分离技术是一种绿色分离技术,且在化工、冶金等领域已经有一定的应用基础,其是以磁性粒子为核心,利用磁力分离和收集目标物质,具有效率高、灵敏度高、应用范围广等优点。
本发明的研究者发现,将石墨烯材料和磁分离技术结合,可以获得成本低、灵敏度高、稳定性好的固相微萃取探针。即,本发明旨在提供一种磁性纳米线辅助强化的石墨烯固相微萃取探针。
发明内容
针对现有的固相微萃取探针中存在的不足,本发明提供了一种磁性纳米线阵列辅助强化的石墨烯固相微萃取探针,具体为石墨烯-Fe3O4固相微萃取探针,通过将石墨烯和磁性Fe3O4纳米线阵列相结合,改善固相微萃取探针的灵敏度、稳定性。
即,本发明提供一种石墨烯-Fe3O4固相微萃取探针,该探针的基体为金属丝,其特征在于:在金属丝表面依次沉积有Fe3O4纳米线阵列和石墨烯纳晶。
其中,金属丝选自钛丝或不锈钢丝,金属丝的直径为0.2-1mm。
其中,Fe3O4纳米线阵列通过模板-水热法制得。
其中,石墨烯纳晶通过电子回旋等离子体溅射沉积得到。
具体而言,本发明提供的一种石墨烯-Fe3O4固相微萃取探针的制备方法如下:
(1)将金属丝清洗、干燥后,在金属丝表面热浸镀铝,镀铝层厚度为5-50um,然后对镀铝层进行阳极氧化,在镀铝层上形成纳米级孔道后,清洗、干燥备用;
(2)将FeCl3、柠檬酸钠、乙酸钠、乙二醇混合,搅拌溶解,超声分散均匀,得到溶胶;所述FeCl3、柠檬酸钠、乙酸钠的质量比为2:1:4;所述乙二醇的体积用量以FeCl3的质量计为30~50mL/g;
(3)将步骤(2)的溶胶施加在步骤(1)制得的金属丝表面,并施加超声振动10-30min,促使溶胶渗透到纳米级孔道中,然后将其浸没于步骤(2)的溶胶中,加热至200°C反应5-10h后,冷却取出,置于1mol/L的NaOH溶液,所述浸泡的时间为30-60min,将表面的阳极氧化铝以及未氧化的铝层完全溶解,得到表面生长有Fe3O4纳米线阵列的金属丝;
(4)将表面生长有Fe3O4纳米线阵列的金属丝置于电子回旋等离子体溅射沉积腔室中,抽真空至1×10-4Pa时通入氩气,使气压保持在1×10-2Pa;施加线圈磁场并导入微波,在磁场和微波的耦合作用下产生氩等离子体,施加200V的靶材偏压,轰击碳靶,基底施加-100V的偏压,溅射沉积5-20min,在Fe3O4纳米线阵列表面沉积石墨烯纳晶。
相较于现有的固相微萃取探针,本发明具有以下有益效果:
1、充分利用石墨烯二维纳米材料,其具有大的比表面积,使得探针具有良好的萃取、富集效果,探针的灵敏度高、稳定性好。具体采用电子回旋等离子体溅射沉积方法来制备石墨烯纳晶,通过磁场和微波的耦合作用下产生的氩等离子体轰击碳靶,使得所得到的石墨烯纳晶膜层与基底的结合性良好,且呈现输送多孔结构,进一步增加其比表面积,进而增强探针的萃取、富集效果。
2、直接将磁性Fe3O4纳米线阵列沉积在金属丝和石墨烯纳晶之间,探针在对样品进行处理的过程中,可以通过施加外加磁场来优化萃取效果,方法简便,不需要在样品中增加额外的磁性颗粒。
3、由于直接进行水热反应制备磁性Fe3O4容易团聚,无法获得Fe3O4纳米线阵列,本发明通过模板-水热法,预先在金属丝表面获得多孔结构的阳极氧化铝,实现Fe3O4纳米线阵列的可控生长,保障了后续的石墨烯纳晶的沉积。
附图说明
图1 实施例1和对比例的探针的电化学发光信号比较图。
具体实施方式
下面,将结合具体的实例对本发明进行详细说明。当然,所描述的实施例仅仅是本发明的一部内创造内容,而不是全部。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的情况下所获得的其他实例均落入本发明的保护范围內。
实施例1
一种石墨烯-Fe3O4固相微萃取探针,其制备方法如下:
(1)将金属丝清洗、干燥后,在金属丝表面热浸镀铝,镀铝层厚度为20um,然后对镀铝层进行阳极氧化,在镀铝层上形成纳米级孔道后,清洗、干燥备用;
(2)将FeCl3、柠檬酸钠、乙酸钠、乙二醇混合,搅拌溶解,超声分散均匀,得到溶胶;所述FeCl3、柠檬酸钠、乙酸钠的质量比为2:1:4;所述乙二醇的体积用量以FeCl3的质量计为30mL/g;
(3)将步骤(2)的溶胶施加在步骤(1)制得的金属丝表面,并施加超声振动20min,促使溶胶渗透到纳米级孔道中,然后将其浸没于步骤(2)的溶胶中,加热至200°C反应6h后,冷却取出,置于1mol/L的NaOH溶液,所述浸泡的时间为40min,将表面的阳极氧化铝以及未氧化的铝层完全溶解,得到表面生长有Fe3O4纳米线阵列的金属丝;
(4)将表面生长有Fe3O4纳米线阵列的金属丝置于电子回旋等离子体溅射沉积腔室中,抽真空至1×10-4Pa时通入氩气,使气压保持在1×10-2Pa;施加线圈磁场并导入微波,在磁场和微波的耦合作用下产生氩等离子体,施加200V的靶材偏压,轰击碳靶,基底施加-100V的偏压,溅射沉积10min,在Fe3O4纳米线阵列表面沉积石墨烯纳晶。
其中,所述金属丝为金属钛丝。
实施例2
一种石墨烯-Fe3O4固相微萃取探针,其制备方法如下:
(1)将金属丝清洗、干燥后,在金属丝表面热浸镀铝,镀铝层厚度为50um,然后对镀铝层进行阳极氧化,在镀铝层上形成纳米级孔道后,清洗、干燥备用;
(2)将FeCl3、柠檬酸钠、乙酸钠、乙二醇混合,搅拌溶解,超声分散均匀,得到溶胶;所述FeCl3、柠檬酸钠、乙酸钠的质量比为2:1:4;所述乙二醇的体积用量以FeCl3的质量计为50mL/g;
(3)将步骤(2)的溶胶施加在步骤(1)制得的金属丝表面,并施加超声振动30min,促使溶胶渗透到纳米级孔道中,然后将其浸没于步骤(2)的溶胶中,加热至200°C反应10h后,冷却取出,置于1mol/L的NaOH溶液,所述浸泡的时间为60min,将表面的阳极氧化铝以及未氧化的铝层完全溶解,得到表面生长有Fe3O4纳米线阵列的金属丝;
(4)将表面生长有Fe3O4纳米线阵列的金属丝置于电子回旋等离子体溅射沉积腔室中,抽真空至1×10-4Pa时通入氩气,使气压保持在1×10-2Pa;施加线圈磁场并导入微波,在磁场和微波的耦合作用下产生氩等离子体,施加200V的靶材偏压,轰击碳靶,基底施加-100V的偏压,溅射沉积15min,在Fe3O4纳米线阵列表面沉积石墨烯纳晶。
其中,所述金属丝为不锈钢丝。
实施例3
一种石墨烯-Fe3O4固相微萃取探针,其制备方法如下:
(1)将金属丝清洗、干燥后,在金属丝表面热浸镀铝,镀铝层厚度为5um,然后对镀铝层进行阳极氧化,在镀铝层上形成纳米级孔道后,清洗、干燥备用;
(2)将FeCl3、柠檬酸钠、乙酸钠、乙二醇混合,搅拌溶解,超声分散均匀,得到溶胶;所述FeCl3、柠檬酸钠、乙酸钠的质量比为2:1:4;所述乙二醇的体积用量以FeCl3的质量计为30mL/g;
(3)将步骤(2)的溶胶施加在步骤(1)制得的金属丝表面,并施加超声振动10min,促使溶胶渗透到纳米级孔道中,然后将其浸没于步骤(2)的溶胶中,加热至200°C反应5h后,冷却取出,置于1mol/L的NaOH溶液,所述浸泡的时间为30min,将表面的阳极氧化铝以及未氧化的铝层完全溶解,得到表面生长有Fe3O4纳米线阵列的金属丝;
(4)将表面生长有Fe3O4纳米线阵列的金属丝置于电子回旋等离子体溅射沉积腔室中,抽真空至1×10-4Pa时通入氩气,使气压保持在1×10-2Pa;施加线圈磁场并导入微波,在磁场和微波的耦合作用下产生氩等离子体,施加200V的靶材偏压,轰击碳靶,基底施加-100V的偏压,溅射沉积20min,在Fe3O4纳米线阵列表面沉积石墨烯纳晶。
其中,所述金属丝为金属钛丝。
实施例4
一种石墨烯-Fe3O4固相微萃取探针,其制备方法如下:
(1)将金属丝清洗、干燥后,在金属丝表面热浸镀铝,镀铝层厚度为40um,然后对镀铝层进行阳极氧化,在镀铝层上形成纳米级孔道后,清洗、干燥备用;
(2)将FeCl3、柠檬酸钠、乙酸钠、乙二醇混合,搅拌溶解,超声分散均匀,得到溶胶;所述FeCl3、柠檬酸钠、乙酸钠的质量比为2:1:4;所述乙二醇的体积用量以FeCl3的质量计为45mL/g;
(3)将步骤(2)的溶胶施加在步骤(1)制得的金属丝表面,并施加超声振动25min,促使溶胶渗透到纳米级孔道中,然后将其浸没于步骤(2)的溶胶中,加热至200°C反应9h后,冷却取出,置于1mol/L的NaOH溶液,所述浸泡的时间为50min,将表面的阳极氧化铝以及未氧化的铝层完全溶解,得到表面生长有Fe3O4纳米线阵列的金属丝;
(4)将表面生长有Fe3O4纳米线阵列的金属丝置于电子回旋等离子体溅射沉积腔室中,抽真空至1×10-4Pa时通入氩气,使气压保持在1×10-2Pa;施加线圈磁场并导入微波,在磁场和微波的耦合作用下产生氩等离子体,施加200V的靶材偏压,轰击碳靶,基底施加-100V的偏压,溅射沉积20min,在Fe3O4纳米线阵列表面沉积石墨烯纳晶。
其中,所述金属丝为不锈钢丝。
实施例5
一种石墨烯-Fe3O4固相微萃取探针,其制备方法如下:
(1)将金属丝清洗、干燥后,在金属丝表面热浸镀铝,镀铝层厚度为15um,然后对镀铝层进行阳极氧化,在镀铝层上形成纳米级孔道后,清洗、干燥备用;
(2)将FeCl3、柠檬酸钠、乙酸钠、乙二醇混合,搅拌溶解,超声分散均匀,得到溶胶;所述FeCl3、柠檬酸钠、乙酸钠的质量比为2:1:4;所述乙二醇的体积用量以FeCl3的质量计为35mL/g;
(3)将步骤(2)的溶胶施加在步骤(1)制得的金属丝表面,并施加超声振动15min,促使溶胶渗透到纳米级孔道中,然后将其浸没于步骤(2)的溶胶中,加热至200°C反应8h后,冷却取出,置于1mol/L的NaOH溶液,所述浸泡的时间为45min,将表面的阳极氧化铝以及未氧化的铝层完全溶解,得到表面生长有Fe3O4纳米线阵列的金属丝;
(4)将表面生长有Fe3O4纳米线阵列的金属丝置于电子回旋等离子体溅射沉积腔室中,抽真空至1×10-4Pa时通入氩气,使气压保持在1×10-2Pa;施加线圈磁场并导入微波,在磁场和微波的耦合作用下产生氩等离子体,施加200V的靶材偏压,轰击碳靶,基底施加-100V的偏压,溅射沉积5min,在Fe3O4纳米线阵列表面沉积石墨烯纳晶。
其中所述金属丝为金属钛丝。
对比例
相较于实施例1,省略其中的Fe3O4纳米线阵列,直接在金属钛丝表面沉积石墨烯纳晶。
为了测试本发明的固相微萃取探针的萃取效率,分别将实施例1和对比例的探针萃取相同浓度的BPA,然后采用相同的实验条件测定电化学发光强度,结果如图1所示。结果表明,在探针中沉积磁性Fe3O4纳米线阵列中间层,电化学发光信号更强,表明其萃取的BPA更多,萃取效率更高。

Claims (2)

1.一种石墨烯-Fe3O4固相微萃取探针的制备方法,该探针的基体为金属丝,在金属丝表面依次沉积有Fe3O4纳米线阵列和石墨烯纳晶,其特征在于:包括如下步骤:
(1)将金属丝清洗、干燥后,在金属丝表面热浸镀铝,镀铝层厚度为5-50um,然后对镀铝层进行阳极氧化,在镀铝层上形成纳米级孔道后,清洗、干燥备用;
(2)将FeCl3、柠檬酸钠、乙酸钠、乙二醇混合,搅拌溶解,超声分散均匀,得到溶胶;所述FeCl3、柠檬酸钠、乙酸钠的质量比为2:1:4;所述乙二醇的体积用量以FeCl3的质量计为30~50mL/g;
(3)将步骤(2)的溶胶施加在步骤(1)制得的金属丝表面,并施加超声振动10-30min,促使溶胶渗透到纳米级孔道中,然后将其浸没于步骤(2)的溶胶中,加热至200°C反应5-10h后,冷却取出,置于1mol/L的NaOH溶液,浸泡的时间为30-60min,将表面的阳极氧化铝以及未氧化的铝层完全溶解,得到表面生长有Fe3O4纳米线阵列的金属丝;
(4)将表面生长有Fe3O4纳米线阵列的金属丝置于电子回旋等离子体溅射沉积腔室中,抽真空至1×10-4Pa时通入氩气,使气压保持在1×10-2Pa;施加线圈磁场并导入微波,在磁场和微波的耦合作用下产生氩等离子体,施加200V的靶材偏压,轰击碳靶,基底施加-100V的偏压,溅射沉积5-20min,在Fe3O4纳米线阵列表面沉积石墨烯纳晶;
金属丝选自钛丝或不锈钢丝,金属丝的直径为0.2-1mm。
2.如权利要求1所述的一种石墨烯-Fe3O4固相微萃取探针的制备方法制备得到的石墨烯-Fe3O4固相微萃取探针。
CN202010588174.XA 2020-06-24 2020-06-24 石墨烯-磁性纳米线探针及其制备方法 Active CN111661841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010588174.XA CN111661841B (zh) 2020-06-24 2020-06-24 石墨烯-磁性纳米线探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010588174.XA CN111661841B (zh) 2020-06-24 2020-06-24 石墨烯-磁性纳米线探针及其制备方法

Publications (2)

Publication Number Publication Date
CN111661841A CN111661841A (zh) 2020-09-15
CN111661841B true CN111661841B (zh) 2021-12-21

Family

ID=72389818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010588174.XA Active CN111661841B (zh) 2020-06-24 2020-06-24 石墨烯-磁性纳米线探针及其制备方法

Country Status (1)

Country Link
CN (1) CN111661841B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083344A (zh) * 2017-12-25 2018-05-29 浙江工业大学 模板-水热法制备四氧化三铁纳米线的方法
CN109323914A (zh) * 2018-10-26 2019-02-12 宁波大学 一种磁场强化固相微萃取效果的方法
CN110396661A (zh) * 2019-06-27 2019-11-01 深圳大学 调节ecr离子照射密度控制石墨烯纳晶碳膜生长的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083344A (zh) * 2017-12-25 2018-05-29 浙江工业大学 模板-水热法制备四氧化三铁纳米线的方法
CN109323914A (zh) * 2018-10-26 2019-02-12 宁波大学 一种磁场强化固相微萃取效果的方法
CN110396661A (zh) * 2019-06-27 2019-11-01 深圳大学 调节ecr离子照射密度控制石墨烯纳晶碳膜生长的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于新型材料的固相微萃取探针的制备与应用;殷立等;《化学进展》;20170924;第1127-1141页 *

Also Published As

Publication number Publication date
CN111661841A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
Zheng et al. Review of vertical graphene and its applications
Hosono et al. Synthesis of polypyrrole/MoO3 hybrid thin films and their volatile organic compound gas-sensing properties
Yao et al. Experimental and theoretical studies of a novel electrochemical sensor based on molecularly imprinted polymer and B, N, F-CQDs/AgNPs for enhanced specific identification and dual signal amplification in highly selective and ultra-trace bisphenol S determination in plastic products
Lin et al. Negative ion laser desorption/ionization time‐of‐flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices
US20090166523A1 (en) Use of carbon nanotubes (cnts) for analysis of samples
Hao et al. Electrochemical determination of bisphenol A on a glassy carbon electrode modified with gold nanoparticles loaded on reduced graphene oxide-multi walled carbon nanotubes composite
CN110550597B (zh) 一种直立少层石墨烯-金属纳米粒子复合催化电极
CN106442689B (zh) 基于氧化镍‑碳纳米管的多巴胺传感器的制备与应用
Bayev et al. CVD graphene sheets electrochemically decorated with “core-shell” Co/CoO nanoparticles
Yiwei et al. A self‐assembled L‐cysteine and electrodeposited gold nanoparticles‐reduced graphene oxide modified electrode for adsorptive stripping determination of copper
Zheng et al. Sandwich-type electrochemical immunosensor for carcinoembryonic antigen detection based on the cooperation of a gold–vertical graphene electrode and gold@ silica–methylene blue
CN104437441A (zh) 一种石墨烯涂层固相微萃取纤维的制备方法
CN111661841B (zh) 石墨烯-磁性纳米线探针及其制备方法
CN111665110B (zh) 石墨烯-Co3O4固相微萃取探针及其制备方法
CN102019168B (zh) 一种碳纳米管固相微萃取头的制备方法
CN111036184A (zh) 基于mof的羟基化磁性氮掺杂碳纳米管的制备及其用于茶叶中生长素含量的检测
CN108435138B (zh) 利用MOFs为前驱体合成的N掺杂的碳纳米管涂层制备的固相微萃取装置与应用
CN107043929B (zh) 一种在原子力显微镜探针表面可控区域生成金属镀层的方法
CN113774447B (zh) 一步电沉积制备的卟啉基共价有机骨架固相微萃取涂层及其应用
CN101880040B (zh) 一步反应制备γ-Fe2O3纳米线填充碳氮多壁纳米管的方法
Oleinikov et al. The study of the desorption/ionization from the replicas of etched ion tracks
Wu et al. One-step synthesis of Ni (OH) 2/MWCNT nanocomposites for constructing a nonenzymatic hydroquinone/O 2 fuel cell
CN108593607A (zh) 一种泡沫镍/go/纳米银sers基底的制备方法
Kang et al. Selective solid‐phase microextraction of polycyclic aromatic hydrocarbons in water based on oriented phosphorus‐containing titanium oxide nanofibers grown on titanium support prior to high‐performance liquid chromatography with ultraviolet detection
CN114487084A (zh) 一种垂直纳米线基板及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211202

Address after: 325600 Qing Jiang Zhen Jiang Yan Cun, Leqing City, Wenzhou City, Zhejiang Province

Applicant after: Ding Daoqi

Address before: 266000 room 224, 2nd floor, building 2, 20 Shanghai Road, Qianwan bonded port area, China (Shandong) pilot Free Trade Zone, Qingdao, Shandong Province (high tech industry center centralized office area) (b)

Applicant before: Qingdao feican New Material Technology Service Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant