CN111653790A - 一种全固态铁空电池 - Google Patents

一种全固态铁空电池 Download PDF

Info

Publication number
CN111653790A
CN111653790A CN202010561273.9A CN202010561273A CN111653790A CN 111653790 A CN111653790 A CN 111653790A CN 202010561273 A CN202010561273 A CN 202010561273A CN 111653790 A CN111653790 A CN 111653790A
Authority
CN
China
Prior art keywords
solid
iron
air battery
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010561273.9A
Other languages
English (en)
Other versions
CN111653790B (zh
Inventor
王建强
彭程
张诗雨
程李威
杨云
关成志
肖国萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Applied Physics of CAS
Original Assignee
Shanghai Institute of Applied Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Applied Physics of CAS filed Critical Shanghai Institute of Applied Physics of CAS
Priority to CN202010561273.9A priority Critical patent/CN111653790B/zh
Publication of CN111653790A publication Critical patent/CN111653790A/zh
Priority to US18/002,261 priority patent/US20230275212A1/en
Priority to PCT/CN2021/074351 priority patent/WO2021253837A1/zh
Application granted granted Critical
Publication of CN111653790B publication Critical patent/CN111653790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种全固态铁空电池,其包括正极、负极、隔膜和固态电解质,其中,正极和负极分别设置于固态电解质的相对两侧,隔膜被设置于负极和固态电解质之间形成夹层结构,负极为碱金属掺杂的氧化铁形成的铁酸盐材料,正极为具有高效氧化还原催化活性的金属或金属氧化物材料,固态电解质为能够高效传导氧离子的电解质材料,隔膜为薄膜状或片状的具有氧离子传导性和电子绝缘性的材料。根据本发明的全固态铁空电池,负极通过碱金属掺杂进入氧化铁晶格中,能够显著提高铁电极的电化学反应活性,改善电池过充带来的安全隐患问题,进而显著提高铁空电池的性能,隔膜设置于固体电解质与负极之间,能够有效缓解电池漏电问题。

Description

一种全固态铁空电池
技术领域
本发明涉及铁空电池,更具体地涉及一种全固态铁空电池。
背景技术
金属空气电池是一种利用金属的氧化还原过程实现电池充放电的储能技术,其容量远远高于常规的电池储能技术,特别适合于大规模电网储能领域。铁是地壳中含量第四的元素,它储量丰富、有多种稳定的氧化态、成本低,易氧化,是一种很有潜力的金属电极材料。铁空电池的理论能量密度为2000Wh/kg,这个数值足够适应一系列储能应用。
高温的条件能够明显提高电化学反应速率,尽可能地利用活性物质氧化还原反应产生的能量,有效提高电池的能量利用率。近些年,基于工业废热、余热等能源综合利用政策,有关高温电池的研究也在加大投入,关于高温铁空电池的研究工作也有相关报道。2013年起,美国乔治华盛顿大学Stuart Licht的团队以熔融的Li2CO3盐、Li0.87Na0.63K0.5CO3共晶熔盐作为电解质设计组装了高温熔盐铁空电池,实现了熔盐电池的大电流循环充放电。2017年,中国科学院上海应用物理研究所的研究团队设计以高温导电陶瓷YSZ片隔绝液态熔盐与电池正极,提出了双相电解质的高温熔盐铁空电池概念。然而,液态熔盐极易流动,只能用于静态储能,液态熔盐难以支撑正负极,使得高温铁空电池的放大存在技术性的难题,另外,由于铁空电池的正极活性物质为空气,使得其正极部分是裸露在空气中的,形成了半开放的电池结构,然而高温下液态熔盐极易挥发,半开放的电池结构存在电解液干涸的安全隐患,因此对于电池的密封也是必不可少的,而高温熔盐对于正极材料以及密封材料的腐蚀问题也是影响电池长期运行稳定性的重要因素。针对以上存在的问题,不难发现,将高温熔盐电池用于大型储能领域相对于常规的电池具有更大的难度。考虑以固态电解质替换液态熔盐能够有效解决高温熔盐带来的一系列问题。有关高温全固态铁空电池研究主要以近两年意大利CNR-ITAE的工作较为突出,他们设计以600-800℃范围内具有优异的氧离子传导性能的La0.8Sr0.2Ga0.8Mg0.2O3(LSGM)作为电解质,混合了Fe2O3的C0.8Gd0.2O2(Fe-CGO)作为负极,La0.6Sr0.4Fe0.8Co0.2O3(LSFCO)作为空气电极的全固态铁空电池,电池的实际能量密度高达460Wh/kg,容量高达0.5Ah/g,对比其他类型的电池性能有了极大的提升。
然而,相比于铁空电池的理论参数,全固态铁空电池的提升空间依旧很大。负极活性物质氧化铁与CGO粉体简单混合,在电池工作过程中,铁的氧化还原反应极易导致氧化铁与CGO的分层,从而极大地增加电池内阻,增大电池内部消耗,影响电池性能。因此,制备高效铁氧化还原催化活性的负极材料至关重要。另外,铁空电池的理论开路电压为1.2V,而固态电解质中的Ce离子在高于1V的电压下极易被还原为金属铈,增大了电解质的电子传导性,使得电池工作过程中存在漏电行为,降低了电池寿命。
发明内容
为了解决现有技术中的负极活性低和电池漏电等问题,本发明提供一种全固态铁空电池。
根据本发明的全固态铁空电池,其包括正极、负极、隔膜和固态电解质,其中,正极和负极分别设置于固态电解质的相对两侧,隔膜被设置于负极和固态电解质之间形成夹层结构,负极为碱金属掺杂的氧化铁形成的铁酸盐材料,正极为具有高效氧化还原催化活性的金属或金属氧化物材料,固态电解质为能够高效传导氧离子的电解质材料,隔膜为薄膜状或片状的具有氧离子传导性和电子绝缘性的材料。
本发明借鉴高温固体氧化物燃料电池(SOFC)技术,在高温铁空电池中引入了能够高效传导氧离子的全固态电解质,同时利用碱金属掺杂的氧化铁材料作为负极,提供一种全新的稳定的全固态铁空电池结构。特别地,SOFC的正负极活性物质都是气体,而本发明的高温铁空电池其负极端活性物质为铁,其状态一般为固态,这就涉及到在SOFC的研究中并不需要涉及的有关铁电极的活性问题。而且,本发明创新性地引入隔膜以改善过充电带来的电解质漏电行为。
优选地,正极选自由银(Ag)、铂(Pt)、镧锶锰氧(LSM)、镧锶铁钴氧(LSFCO)和钡锶钴铁氧(BSCF)组成的组中的至少一种金属以及金属氧化物导电材料。应该理解,正极还可以是其他具有高效氧催化活性的金属以及金属氧化物材料。
优选地,固态电解质为适用于600-1000℃温度区间内的氧离子导体。相对应地,全固态铁空电池的工作温度区间为600-1000℃。
优选地,固态电解质选自由掺杂的氧化铈(GDC、SDC)、碱金属掺杂的镧镓氧(LSGM)、氧化钇稳定的氧化锆(YSZ)和氧化钪稳定的氧化锆(SSZ)组成的组中的至少一种氧离子导体。
优选地,固态电解质中混有2-4wt%的氧化钇稳定的氧化锆(YSZ)或二氧化锆(ZrO2)。这对于提高全固态铁空电池的过充电的耐受性是特别有利的。在一个优选的实施例中,固态电解质为GDC和YSZ的混合物,其中,YSZ含量为3wt%。
优选地,隔膜为二氧化锆(ZrO2)或氧化钇稳定的氧化锆(YSZ)。更优选地,隔膜为致密的片状或薄膜材料,可利用涂覆、蒸镀、沉积等方式得到不同的厚度。特别地,考虑到固态电解质,如GDC、SDC、LSGM在高于1.05V的电压时极易发生Ce的还原,使得电解质的电子传导率增强,隔膜能够有效隔绝正负极,减弱内部电子传导性,降低电池内部电荷损失。
优选地,负极选自由钾掺杂的氧化铁、钠掺杂的氧化铁和锂掺杂的氧化铁组成的组中的至少一种铁酸盐材料。特别地,氧化铁本身导电性以及催化活性很低,经碱金属掺杂的氧化铁材料在导电性以及催化活性方面均有较大的提升。更优选地,通过熔盐法在氧化铁中掺杂碱金属。
优选地,负极中混有氧化钇稳定的氧化锆(YSZ)或二氧化锆(ZrO2)。这对于改善负极与隔膜的接触是特别有利的。更优选地,负极为钾掺杂的氧化铁和氧化钇稳定的氧化锆(YSZ)的混合物、钠掺杂的氧化铁和二氧化锆(ZrO2)的混合物、锂掺杂的氧化铁和氧化钇稳定的氧化锆(YSZ)的混合物。更优选地,钾掺杂的氧化铁与YSZ的摩尔比为1:1,钠掺杂的氧化铁与ZrO2的摩尔比为1:1,锂掺杂的氧化铁与YSZ的摩尔比为2:1。应该理解,YSZ的混入还可以提高负极的导电性。
优选地,全固态铁空电池还包括相对两端直接连接负极和正极的引线。
优选地,引线为Ag丝、不锈钢、或Ni线。
根据本发明的全固态铁空电池,负极通过碱金属掺杂进入氧化铁晶格中,可明显增加氧化铁晶胞体积,在铁的嵌入/脱除过程中能够保持晶胞完整性,使得在电池充放电过程中不至于由于铁的氧化还原而发生晶格坍塌的问题,有效提高电池结构稳定性,即能够显著提高铁电极的电化学反应活性,改善电池过充带来的安全隐患问题,进而显著提高铁空电池的性能。根据本发明的全固态铁空电池,隔膜在高温下优异的氧离子传导性能,同时其电势窗口大于铁的氧化还原电位,设置于固体电解质与负极之间能够有效缓解电池漏电问题。总之,根据本发明的全固态铁空电池,不使用液态电解质能够有效解决电池不易移动、电解液挥发干涸导致正负极接触从而发生短路的问题,具有良好的氧离子传导率,不存在高温熔盐易挥发、流动、腐蚀的问题,显著降低了电池成本,同时使用高效的负极材料以及添加隔膜降低电池漏电行为,安全性高、绿色环保、使用寿命长。
附图说明
图1是根据本发明的一个优选实施例的全固态铁空电池的结构示意图;
图2是根据本发明的实施例1的电池充放电曲线示意图;
图3是根据本发明的实施例2的电池充放电曲线示意图;
图4是根据本发明的实施例3的电池充放电曲线示意图;
图5是根据本发明的实施例4的电池充放电曲线示意图;
图6是根据本发明的实施例5的电池充放电曲线示意图。
具体实施方式
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
如图1所示,根据本发明的一个优选实施例的全固态铁空电池包括负极1、隔膜2、固态电解质3、正极4和引线5,其中,负极1和正极4分别设置于固态电解质3的相对两侧,隔膜2被设置于负极1和固态电解质3之间形成夹层结构,引线5的相对两端直接连接负极1和正极4。
实施例1
负极1为钾掺杂的氧化铁+YSZ(1:1),隔膜2为ZrO2,固态电解质3为GDC,正极4为Ag,引线5为Ag。
通过离子溅射的方法将ZrO2沉积在GDC片的表面,再将负极涂敷在ZrO2上,将银浆涂在GDC另一侧,最后用银线引出导线,银线的固定用银浆粘贴。待银浆固化后将电池放入600℃的电炉中恒温,进行充放电测试。测试时,使用中国兰电电池测试系统的工作电极分别与电池的正负极相联,设置充电电流为10mA,充电时间为30min,放电电流为10mA,放电终止电压为0.3V,得到电池的充放电曲线。
如图2的GDC电解质充放电曲线所示,充电电流为10mA,充电电压约为1.08V,放电电流为10mA,放电终止电压约为0.3V。
实施例2
负极1为钠掺杂的氧化铁+ZrO2(1:1),隔膜2为ZrO2,固态电解质3为LSGM,正极4为Ag,引线5为Ag。
通过原子层沉积技术将ZrO2沉积在LSGM片的表面,再将负极涂敷在ZrO2上,将Ag浆涂在LSGM另一侧,最后用银线引出导线,银线的固定用银浆粘贴。待银浆固化后将电池放入750℃的电炉中恒温,进行充放电测试。测试时,使用中国兰电电池测试系统的工作电极分别与电池的正负极相联,设置充电电流为10mA,充电时间为30min,放电电流为10mA,放电终止电压为0.3V,得到电池的充放电曲线。
如图3的LSGM电解质充放电曲线所示,充电电流为10mA,充电电压约为1.13V,放电电流为10mA,放电终止电压约为0.3V。
实施例3
负极1为锂掺杂的氧化铁+YSZ(2:1),隔膜2为ZrO2,固态电解质3为YSZ,正极4为Ag,引线5为Ag。
通过原子层沉积技术将ZrO2沉积在YSZ片的表面,再将负极涂敷在ZrO2上,将Ag浆涂在YSZ另一侧,最后用银线引出导线,银线的固定用银浆粘贴。待银浆固化后将电池放入850℃的电炉中恒温,进行充放电测试。测试时,使用中国兰电电池测试系统的工作电极分别与电池的正负极相联,设置充电电流为10mA,充电时间为30min,放电电流为10mA,放电终止电压为0.3V,得到电池的充放电曲线。
如图4的YSZ电解质充放电曲线所示,充电电流为10mA,充电电压约为1.15V,放电电流为10mA,放电终止电压约为0.3V。
实施例4
负极1为钾掺杂的氧化铁+YSZ(1:1),隔膜2为ZrO2,固态电解质3为YSZ,正极4为Ag,引线5为Ag。
通过离子溅射法将ZrO2沉积在YSZ片的表面,再将负极涂敷在YSZ上,将Ag浆涂在YSZ另一侧,最后用银线引出导线,银线的固定用银浆粘贴。待银浆固化后将电池放入850℃的电炉中恒温,进行充放电测试。测试时,使用中国兰电电池测试系统的工作电极分别与电池的正负极相联,设置充电电流为10mA,充电时间为60min,放电电流为10mA,放电终止电压为0.5V,得到电池的充放电曲线。
如图5的氧化铁电极充放电曲线所示,充电电流为10mA,充电电压约为1.18V,放电电流为10mA,放电终止电压约为0.5V。
实施例5
负极1为钾掺杂的氧化铁+YSZ(1:1),隔膜2为YSZ,固态电解质3为GDC+YSZ(YSZ含量为3wt%),正极4为Ag,引线5为Ag。
通过离子溅射法将YSZ沉积在GDC+YSZ片的表面,再将负极涂敷在YSZ上,将Ag浆涂在GDC+YSZ另一侧,最后用银线引出导线,银线的固定用银浆粘贴。待银浆固化后将电池放入850℃的电炉中恒温,进行充放电测试。测试时,使用中国兰电电池测试系统的工作电极分别与电池的正负极相联,设置充电电流为10mA,充电时间为30min,放电电流为10mA,放电终止电压为0.3V,得到电池的充放电曲线。
如图6的YSZ隔膜充放电曲线所示,充电电流为10mA,充电电压约为1.15V,放电电流为10mA,放电终止电压约为0.5V。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

1.一种全固态铁空电池,其特征在于,该全固态铁空电池包括正极、负极、隔膜和固态电解质,其中,正极和负极分别设置于固态电解质的相对两侧,隔膜被设置于负极和固态电解质之间形成夹层结构,负极为碱金属掺杂的氧化铁形成的铁酸盐材料,正极为具有高效氧化还原催化活性的金属或金属氧化物材料,固态电解质为能够高效传导氧离子的电解质材料,隔膜为薄膜状或片状的具有氧离子传导性和电子绝缘性的材料。
2.根据权利要求1所述的全固态铁空电池,其特征在于,正极选自由银、铂、镧锶锰氧、镧锶铁钴氧和钡锶钴铁氧组成的组中的至少一种金属以及金属氧化物导电材料。
3.根据权利要求1所述的全固态铁空电池,其特征在于,固态电解质为适用于600-1000℃温度区间内的氧离子导体。
4.根据权利要求1所述的全固态铁空电池,其特征在于,固态电解质选自由掺杂的氧化铈、碱金属掺杂的镧镓氧、氧化钇稳定的氧化锆和氧化钪稳定的氧化锆组成的组中的至少一种氧离子导体。
5.根据权利要求1所述的全固态铁空电池,其特征在于,固态电解质中混有2-4wt%的氧化钇稳定的氧化锆或二氧化锆。
6.根据权利要求1所述的全固态铁空电池,其特征在于,隔膜为二氧化锆或氧化钇稳定的氧化锆。
7.根据权利要求1所述的全固态铁空电池,其特征在于,负极选自由钾掺杂的氧化铁、钠掺杂的氧化铁和锂掺杂的氧化铁组成的组中的至少一种铁酸盐材料。
8.根据权利要求1所述的全固态铁空电池,其特征在于,负极中混有氧化钇稳定的氧化锆或二氧化锆。
9.根据权利要求1所述的全固态铁空电池,其特征在于,全固态铁空电池还包括相对两端直接连接负极和正极的引线。
10.根据权利要求1所述的全固态铁空电池,其特征在于,引线为Ag丝、不锈钢、或Ni线。
CN202010561273.9A 2020-06-18 2020-06-18 一种全固态铁空电池 Active CN111653790B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010561273.9A CN111653790B (zh) 2020-06-18 2020-06-18 一种全固态铁空电池
US18/002,261 US20230275212A1 (en) 2020-06-18 2021-02-25 All-solid-state iron-air battery
PCT/CN2021/074351 WO2021253837A1 (zh) 2020-06-18 2021-02-25 一种全固态铁空电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010561273.9A CN111653790B (zh) 2020-06-18 2020-06-18 一种全固态铁空电池

Publications (2)

Publication Number Publication Date
CN111653790A true CN111653790A (zh) 2020-09-11
CN111653790B CN111653790B (zh) 2021-12-03

Family

ID=72344207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010561273.9A Active CN111653790B (zh) 2020-06-18 2020-06-18 一种全固态铁空电池

Country Status (3)

Country Link
US (1) US20230275212A1 (zh)
CN (1) CN111653790B (zh)
WO (1) WO2021253837A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253837A1 (zh) * 2020-06-18 2021-12-23 中国科学院上海应用物理研究所 一种全固态铁空电池
WO2021253836A1 (zh) * 2020-06-18 2021-12-23 中国科学院上海应用物理研究所 一种碱金属掺杂的铁空电池负极的制备方法以及由此得到的铁空电池负极

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033623A1 (en) * 2010-09-07 2012-03-15 Siemens Energy, Inc. Oxidation-resistant metal supported rechargeable oxide-ion battery cells and methods to produce the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739831B2 (ja) * 2012-01-11 2015-06-24 株式会社神戸製鋼所 空気電池用材料及びこれを用いた全固体空気電池
CN111653790B (zh) * 2020-06-18 2021-12-03 中国科学院上海应用物理研究所 一种全固态铁空电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033623A1 (en) * 2010-09-07 2012-03-15 Siemens Energy, Inc. Oxidation-resistant metal supported rechargeable oxide-ion battery cells and methods to produce the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JULIAN EIGEN等: ""Redox cycling stability of Fe2NiO4/YSZ composite storage materials for rechargeable oxide batteries"", 《ENERGY STORAGE MATERIALS》 *
张诗雨: ""高温熔盐金属空气电池及其电解质和电极材料的研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
李鑫: ""高能可充熔盐Fe-空气电池体系构建与性能研究"", 《中国知网硕士论文数据库 理工B辑》 *
连芳主编: "《电化学储能器件及关键材料》", 30 June 2019, 北京:冶金工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253837A1 (zh) * 2020-06-18 2021-12-23 中国科学院上海应用物理研究所 一种全固态铁空电池
WO2021253836A1 (zh) * 2020-06-18 2021-12-23 中国科学院上海应用物理研究所 一种碱金属掺杂的铁空电池负极的制备方法以及由此得到的铁空电池负极

Also Published As

Publication number Publication date
CN111653790B (zh) 2021-12-03
WO2021253837A1 (zh) 2021-12-23
US20230275212A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
Huang et al. A high-performance ceramic fuel cell with samarium doped ceria–carbonate composite electrolyte at low temperatures
Fan et al. Recent development of ceria-based (nano) composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells
Ishihara et al. Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor: I. Doped as a new cathode material
CN109904497B (zh) 一种抗积碳金属支撑固体氧化物燃料电池及其制备方法
Inoishi et al. High capacity of an Fe–air rechargeable battery using LaGaO 3-based oxide ion conductor as an electrolyte
US9627703B2 (en) Medium and high-temperature carbon-air cell
CN102569786B (zh) 一种钙钛矿型Co基复合阴极材料及其制备和应用
Ishihara et al. Oxide ion conductivity in La0. 8Sr0. 2Ga0. 8Mg0. 2− X Ni X O3 perovskite oxide and application for the electrolyte of solid oxide fuel cells
Ishihara et al. Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell
WO2013093044A1 (en) Electrochemical energy storage device
Chen et al. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs
EP2761691A1 (en) Composite solid oxide fuel cell electrolyte
Yu et al. Performance of Ni-Fe bimetal based cathode for intermediate temperature solid oxide electrolysis cell
CN111653790B (zh) 一种全固态铁空电池
CN105839138A (zh) 一种固体氧化物电解池高温熔融碳酸盐空气电极的制备方法
JP5481611B2 (ja) 高温水蒸気電解セル
JP3218555B2 (ja) 保護層付きセリア系固体電解質
Yugami et al. Protonic SOFCs using perovskite-type conductors
Ishihara et al. An intermediate temperature solid oxide fuel cell utilizing superior oxide ion conducting electrolyte, doubly doped LaGaO 3 perovskite
CN107994234B (zh) 陶瓷燃料电池及其制备方法
CN109360991A (zh) 一种低温固体氧化物燃料电池复合阴极及其制备方法
CN202633438U (zh) 一种阳极支撑固体氧化物燃料电池
Guo et al. Anode-supported LaGaO3-based electrolyte SOFCs with Y2O3-doped Bi2O3 and La-doped CeO2 buffer layers
JP3160993B2 (ja) 固体電解質型燃料電池
JPH10255832A (ja) 低温動作固体燃料電池用複合型空気極材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant