CN111653378B - 基于多光纤光镊的sted超分辨显微成像装置 - Google Patents

基于多光纤光镊的sted超分辨显微成像装置 Download PDF

Info

Publication number
CN111653378B
CN111653378B CN202010503092.0A CN202010503092A CN111653378B CN 111653378 B CN111653378 B CN 111653378B CN 202010503092 A CN202010503092 A CN 202010503092A CN 111653378 B CN111653378 B CN 111653378B
Authority
CN
China
Prior art keywords
fiber
optical
light
double
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010503092.0A
Other languages
English (en)
Other versions
CN111653378A (zh
Inventor
邓洪昌
王瑞
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202010503092.0A priority Critical patent/CN111653378B/zh
Publication of CN111653378A publication Critical patent/CN111653378A/zh
Application granted granted Critical
Publication of CN111653378B publication Critical patent/CN111653378B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/006Manipulation of neutral particles by using radiation pressure, e.g. optical levitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明提供的是基于多光纤光镊的STED超分辨显微成像装置。其特征是:它由用于STED成像的激光器、延时单元、光束生成器、成像显示仪、用于操控微球透镜的激光器、光功率控制模块、反馈控制模块、计算机、光纤耦合器以及多根单模光纤组成。本发明基于双包层光纤中的螺旋光栅的调制作用以及延时单元的延时作用,使两束激光在荧光样品表面发生受激发射损耗,实现“单点”的超分辨显微成像。又采用多根处于同一平面的单芯光纤实现对微球透镜的捕获及其在二维平面上精准可控移动,实现对荧光样品“全平面”的超分辨显微成像。本发明的优点在于,提高了现有STED成像器件的灵活性与集成度,使之能够适用于微小尺度的内窥多方位超分辨成像。

Description

基于多光纤光镊的STED超分辨显微成像装置
(一)技术领域
本发明涉及的是一种基于多光纤光镊的STED超分辨显微成像装置,主要涉及光子学技术领域,更具体地,涉及一种光纤STED超分辨成像方法与装置。
(二)背景技术
由于传统荧光显微镜的分辨率存在衍射极限,近十多年来发展一些突破分辨率衍射极限的超分辨成像技术,如受激发射损耗显微术(STED)、结构光照明显微镜(structuredillumination microscopy,SIM)、光激活定位显微术(PALM)、随机光学重构显微镜(stochastic optical reconstruction microscopy,STORM)等。其中STED是在激光扫描共聚焦荧光显微镜的基础上引入另外一路波长比激发光较长的环形的损耗光。一个聚焦的激光束将荧光团激发到高的能量状态(激发态),与此同时一个不同波长的环形损耗光斑聚焦叠加到前面的那束光斑上。这样两者的重叠区域激发态的荧光团会被拉低到最低能级(即基态),只有中心区域的小区域发出荧光信号,受激点扩展函数(PSF)的有效尺寸比衍射极限PSF来的小,达到提高分辨率的目的。
这些技术上的进步势必极大地推动生命科学的发展。而这些技术之一、由专利号为US5731588的美国专利公开的受激发射损耗显微镜(Stimulated Emissio n Depletion(STED)microscopy)被誉为最有应用前景的方法。它是从物理上打破衍射光学极限的远场荧光显微技术,对传统物理学观点的极大挑战。从1994年ST ED理论的提出,经过多年的实验后,直到2000年Hell开发了超高分辨率显微技术,通过三维扫描可以得到100nm以下的超高分辨率三维图像。尽管STED显微技术得到了一定的发展,然而到目前为止STED原理和方法还没有得到广泛的应用,具体表现在:(1)现有的脉冲STED测量系统光路复杂,使用的光学元器件多,包括昂贵的脉冲激光器、复杂的电子控制系统等。(2)对系统的稳定性要求非常高,为了保证分辨率,一般工作2-3个小时需要重新校准。
实现超分辨STED显微成像的关键是如何形成具有超小尺寸的激发光斑和损耗光斑,而STED显微镜的分辨率主要由有效荧光光斑的大小损耗效果决定的。可以通过各种措施改善STED光在焦平面相干形成的损耗光斑的方式来改善STED的照明装置的稳定性。
STED显微成像技术多种多样。例如,中国专利CN211817464U提出了基于切向偏振的超分辨荧光显微装置,虽然获得良好的显微照明效果,但是实现这一效果需要复杂的光路、昂贵的精密仪器,且稳定性也不是很高。中国专利CN103617330A提出了基于超连续产生的宽带激光光源激发的超分辨STED显微成像装置,虽然改进了两激光同步调节的功能,实现良好的显微照明,但整体光路复杂。中国专利CN211910469073.3提出了一种全光纤型超分辨成像方法与装置,该装置利用光涡旋光纤和光栅型光纤光涡旋转换器来得到光涡旋损耗光,实现超分辨成像。中国专利CN109752830A提出了一种全光纤STED超分辨显微照明装置,该装置中光束生成器的高度集成化,使得设备比较灵活稳定,实现了“单点”的全光纤STED超分辨显微照明。
有研究指出利用一根双包层多芯光纤完成全平面STED超分辨显微成像。但在分析单根多芯光纤汇聚在纤端光场时较为复杂,因此对微粒的操控精度大大下降,由于多芯光纤复杂的纤芯结构,使光源注入与多个纤芯之间的光功率分配控制也十分困难。并且,研究中提出的多芯光纤或者环形芯拉制成本较高,不易购买。因此采用多根单芯光纤更利于多光纤光镊技术的推广。
光纤STED系统中,激发光与光涡旋损耗光,在同一根光纤中传输,激发光与损耗光是自然对准的,因此不需要额外的严格对准过程,可以提升系统稳定性,并降低成本。此外,由于光纤具有尺寸小、易弯折的特性,光纤STED还可以用来实现活体内窥超分辨成像,因此研究光纤STED具有十分重要的科学意义和应用前景。
与在先技术相比,本专利提出了一种基于多光纤光镊的STED超分辨显微成像装置,该装置主要仅依靠双包层光纤就可实现高斯形激发光和中空环形损耗光的生成,得到荧光样品上“单点”的超分辨显微成像,并且把多芯光纤中周围纤芯解放出来,都换做单芯光纤,形成多根单芯光纤形成的多光纤光镊系统,通过改变通入同一平面内单芯光纤的光功率,在捕获微球透镜的同时还能实现其在捕获位置附近横向可控移动,获得一幅荧光样品的二维超分辨图像,不仅简化了对汇聚光场的分析过程,而且捕获的微球透镜实现了对垂直于此平面光纤中光束的强汇聚,大大提高了操控精度。
(三)发明内容
针对现有技术的缺陷,本发明的目的在于提供一种基于多光纤光镊的STED超分辨显微成像装置。该装置主要仅依靠双包层光纤就可实现高斯形激发光和中空环形损耗光的生成,得到荧光样品上“单点”的超分辨显微成像,并且利用多根处于同一平面的单芯光纤汇聚光束捕获的微球透镜进行二维平面扫描,获得一幅二维超分辨图像。从而降低了成本和提升了装置的稳定性,使整个装置更加微型化和集成化。
本发明的目的是这样实现的:
该基于多光纤光镊的STED超分辨显微成像装置是由用于STED成像的激光器、延时单元、光束生成器、STED成像显示仪、用于操控微球透镜的激光器、光功率控制模块、反馈控制模块、对光功率进行调节的计算机、一个1×6光纤耦合器、两个1×2宽带光纤耦合器以及多根单模光纤组成。所述器件中光束生成器3主要由处于同一平面Y的多根单芯光纤1201、垂直于平面Y的双包层光纤1202、双包层光纤圆锥台纤端13和可在纤端上自由滑动的微球透镜14构成,该双包层光纤1202由中央双包层纤芯1203、螺旋光栅1204、外包层1205组成,该单芯光纤1201有纤芯1206和包层1207组成。激光器5输出的捕获光22通过光功率控制模块6输入到多根单芯光纤1201的纤芯1206中,然后在多根单芯光纤1201纤端输出多个自由传输光束23,并稳定地三维捕获住微球透镜14。一方面,激光器101输出的激发光15通过光功率控制模块6和两个1×2宽带光纤耦合器10后被注入到中央双包层纤芯1203中,由于激发光15不会被螺旋光栅1204调制,因此直接从双包层光纤1202的纤端出射后被微球透镜14聚焦生成强聚焦激发光17,最后作用到荧光样品20表面使其发出荧光18;另一方面,激光器102输出的损耗光16经过延时单元2、光功率控制模块6和两个1×2宽带光纤耦合器10后被注入到中央双包层纤芯1202中,由于损耗光会被螺旋光栅1204调制生成涡旋模式,因此损耗光16从双包层光纤1202的光纤端出射并被微球透镜14聚焦后形成强聚焦中空环形损耗光19,然后到达荧光样品20表面。由于荧光18和强聚焦中空环形损耗光19的光斑中心完全重合,使得大部分处于荧光18光斑外围部分的荧光物质通过光学非线性作用被强行回到基态抑制其发荧光,随着中空环形损耗光19的光强不断增加,能荧光的光斑越来越小,最终分辨率不再受光的衍射所限制,从而打破衍射极限,最后形成的超分辨荧光成像信号21被微球透镜14收集到中央双包层纤芯1203中,并通过一个1×2宽带光纤耦合器10收集到STED成像显示仪4中,实现“单点”超分辨显微成像。由于可以通过光功率控制模块6独立控制每根单芯光纤1201传输捕获光22的光功率,当每根单芯光纤的光功率相同时,形成的干涉光场分布能够精准捕获处于空间中心的微球透镜,此时在STED成像显示仪4上显示的是荧光样品中“单点”的成像信息;当利用光功率控制模块对光功率进行有预期的改变时,从而对多个自由传输光束23的干涉光场分布实施调控,实现对微球透镜14的捕获点的空间位置的调节,最终实现微球透镜14在平面内的二维扫描移动24。通过微球透镜14的这种二维扫描移动24就可实现对强聚焦激发光17和强聚焦中空环形损耗光19的传输方向Z的改变,最终在荧光样品整个探测区域上实现面扫描,获得“平面”超分辨荧光成像信号。
下面将详细阐述利用双包层光纤实现高斯形激发光束和中空环形损耗光束生成以及对荧光样品实现二维平面超分辨成像的基本原理。
我们知道,当特定的荧光分子被特定波长的激光照射时,可以被强行猝灭回到基准态。基于这样的特性,假设可以用一束波长较短的激发光使荧光物质发光的同时,用另外的高能量脉冲激光器发射一束紧挨着的、环型的波长较长的损耗光将第一束光斑中大部分的荧光物质通过受激发射损耗过程猝灭,从而减少荧光光点的衍射面积,显著地提高了显微镜的分辨率。通过这样的物理过程可以有效的减少激发光的光斑大小,从而直接减少点扩散函数的半高宽来提高分辨率,这就是STED超分辨显微成像的基本原理。要实现这一目的,需要构造两种光束:一是高斯形激发光束,二是中空环形损耗光束。为此,本发明采用双包层光纤的螺旋光栅来生成这两束光。一方面,波长较短的激发光不会被螺旋光栅调制,可以直接在双包层光纤纤芯和内包层组成的波导结构中近似单模传输,从而直接从纤端出射后经过微球透镜聚焦形成强汇聚激发光束(高斯形光场),然后照射到荧光样品上激发出荧光;另一方面,波长较长的损耗光通入中央双包层纤芯时会被螺旋光栅调制而形成涡旋光波,涡旋光波从纤端出射后同样经过微球透镜聚焦形成强汇聚损耗光束(中空环形光场),然后照射到荧光样品上,形成超分辨STED荧光。
在对处于同一平面上的多根单芯光纤纤芯光源输入由光功率控制模块来实现。该光功率控制模块将光源与多根单芯光纤连接时,通过对每一根纤芯光功率大小的控制,当纤芯处于同一光功率时,多根单芯光纤中的自由传输光束在纤端形成的干涉光场分布能够精准捕获处于空间中心的尺寸在微米级别的微球透镜,当通入每根单芯光纤纤芯的光功率不一致时,从而对多个自由传输光束的干涉光场分布实施调控,实现对微球透镜的捕获点的空间位置的调节,最终实现微球透镜在平面内的二维扫描移动,原理类似于“光手”功能。微球透镜对超分辨荧光信号进行汇聚收集,收集的荧光信号由中央双包层纤芯收集,实现“单点”的超分辨STED荧光探测成像。通过微球透镜在纤端上的二维扫描即可实现对荧光光斑的连续移动,最终获得在荧光样品上整个探测区域的超分辨荧光成像信号。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
(1)相对于传统的STED超分辨成像器件,本发明采用特制双包层光纤结构,激发光、损耗光、信号光的传输全部依靠光纤与光纤器件实现,激发光与损耗光是自然对准的,不需要额外的严格对准过程,光路可以任意弯折,灵活度大,光束在光纤中传输,可以有效避免外界干扰,提升了系统的稳定性。为受激发射损耗超分辨成像提供了一种全新的思路及一种简单易于实现的装置。
(2)本发明方案所采用主体器件全部为光纤器件,各器件小巧、紧凑且易于加工,极大的提高了系统集成度,降低了系统的复杂度和成本。
(3)本发明采用光纤微球透镜作为成像显微物镜,以扩展STED系统的成像深度,使之可以应用于微小尺度下的超分辨内窥成像。微型光纤透镜可以直接在光纤端面加工获得,尖端尺寸仅为几微米,尺寸极小,可深入细胞间隙进行观测,在生物医学、微观物理等需要高分辨成像的领域具有广泛的应用前景,并且具有较高的实用性。
(四)附图说明
图1是基于多光纤光镊的STED超分辨显微成像装置的结构示意图。它由用于STED成像的激光器101和激光器102、延时单元2、光束生成器3、STED成像显示仪4、用于操控微球透镜的激光器5、光功率控制模块6、反馈控制模块7、对光功率进行调节的计算机8、一个1×6光纤耦合器9、两个1×2宽带光纤耦合器10以及多根单模光纤组成。
图2是双包层光纤的制备示意图。由预制棒201、加热炉202、激光测径仪203、涂敷及固化设备204、反馈电路205、涂层测径仪206、绞盘207、光纤208、成品卷绕209组成。
图3(a)是拉锥制得弧形锥面的圆锥台纤端的制备示意图。由CMOS相机301、左手拉锥平台302、加热平台303、右手拉锥平台304、加热系统305、光纤对准、拉锥系统306、光纤图像检测系统307、硬件系统操控平台308、光纤图像309以及计算机操控系统310组成。(b)是弧形锥面的圆锥台纤端的结构示意图。
图4是磨锥制得圆锥台纤端的制备示意图。由光纤夹具401、双包层光纤402、研磨盘403组成。
图5是二氧化碳激光器分别刻写介质手性螺旋光栅以及结构手性螺旋光栅系统结构示意图。由电脑控制系统、二氧化碳激光器、激光扫描系统、透镜以及双包层光纤组成。(a)图中给出了均匀介质手性螺旋光栅的结构示意图。(b)图中给出了非均匀介质手性螺旋光栅时的结构示意图。(c)图中给出了均匀结构手性螺旋光栅的结构示意图。(d)图中给出了非均匀结构手性螺旋光栅的结构示意图。
图6给出了中央双包层纤芯的折射率分布。分别为单层阶跃、双层阶跃、多层阶跃、单层渐变、双层渐变以及多层渐变的结构示意图。
图7给出了多根单芯光纤以及双包层光纤内包层、光纤纤芯的不同形状的结构示意图。(a)-(c)图中给出了处于同一平面内的多根单芯光纤的结构示意图,标号依次为处于同一平面内的两根、六根、N根单芯光纤1201、单芯光纤纤芯1206、外包层1207、通入1201中各个纤芯光功率变化的光束1102、多根单芯光纤产生的多个自由传输光束23、微米级别的微球透镜14、微球透镜在二维平面内的操控路径24组成。(d)-(f)图中给出了双包层光纤中内包层的不同形状的结构示意图。(d)图中给出了内包层形状为圆形时的结构示意图。(e)图中给出了内包层形状为三角形时的结构示意图。(f)图中给出了内包层形状为六边形时的结构示意图。(g)-(i)图中给出了光纤纤芯的不同形状的结构示意图。(g)图中给出了纤芯形状为三角形时的结构示意图。(h)图中给出了纤芯形状为正方形时的结构示意图。(i)图中给出了纤芯形状为环形时的结构示意图。
(五)具体实施方式
下面结合附图举例来进一步阐述本发明。
结合图1,本发明实施方式是激光器5输出的捕获光22通过光功率控制模块6输入到多根单芯光纤1201的纤芯1206中,然后在多根单芯光纤1201纤端输出多个自由传输光束23,并稳定地三维捕获住微球透镜14。一方面,激光器101输出的激发光15通过光功率控制模块6和两个1×2宽带光纤耦合器10后被注入到中央双包层纤芯1203中,由于激发光15不会被螺旋光栅1204调制,因此直接从双包层光纤1202的纤端出射后被微球透镜14聚焦生成强聚焦激发光17,最后作用到荧光样品20表面使其发出荧光18;另一方面,激光器102输出的损耗光16经过延时单元2、光功率控制模块6和两个1×2宽带光纤耦合器10后被注入到中央双包层纤芯1202中,由于损耗光会被螺旋光栅1204调制生成涡旋模式,因此损耗光16从双包层光纤1202的光纤端出射并被微球透镜14聚焦后形成强聚焦中空环形损耗光19,然后到达荧光样品20表面。由于荧光18和强聚焦中空环形损耗光19的光斑中心完全重合,使得大部分处于荧光18光斑外围部分的荧光物质通过光学非线性作用被强行回到基态抑制其发荧光,随着中空环形损耗光19的光强不断增加,能荧光的光斑越来越小,最终分辨率不再受光的衍射所限制,从而打破衍射极限,最后形成的超分辨荧光成像信号21被微球透镜14收集到中央双包层纤芯1203中,并通过一个1×2宽带光纤耦合器10收集到STED成像显示仪4中,实现“单点”超分辨显微成像。
由于可以通过光功率控制模块6独立控制每根单芯光纤1201传输捕获光22的光功率,当每根单芯光纤的光功率相同时,形成的干涉光场分布能够精准捕获处于空间中心的微球透镜,此时在STED成像显示仪4上显示的是荧光样品中“单点”的成像信息;当利用光功率控制模块对光功率进行有预期的改变时,从而对多个自由传输光束23的干涉光场分布实施调控,实现对微球透镜14的捕获点的空间位置的调节,最终实现微球透镜14在平面内的二维扫描移动24。通过微球透镜14的这种二维扫描移动24就可实现对强聚焦激发光17和强聚焦中空环形损耗光19的传输方向Z的改变,最终在荧光样品整个探测区域上实现面扫描,获得“平面”超分辨荧光成像信号。
基于多光纤光镊的STED超分辨显微成像装置制备过程可分为以下五个步骤(见图2-图5):
步骤1、单芯光纤的固定。各个单芯光纤的通过光纤夹具以及多维机械手进行通光方向的控制。根据实施方式所述,多根光纤在处于同一平面时,通光方向指向中心同一点,且为了更好的进行受力分析,光纤在平面内呈正多边形分布;
步骤2、双包层光纤预制棒制备。采用MCVD制棒方法制备中央双包层纤芯预制棒插件,根据需要在纯石英预制棒对应位置加工微孔,并插入中央双包层纤芯预制棒插件,形成中央双包层光纤预制棒;
步骤3、拉制光纤(见图2)。将制备好的双包层光纤预制棒201放置在光纤拉丝塔上,并进行固定,光纤预制棒201经过加热炉202加热熔融并在牵引力共同作用下进行拉丝。在光纤拉丝过程中,进行各个纤芯直径的激光测径,直径符合要求后进行固化,最终拉制成含有中央双包层纤芯、内包层的双包层光纤208,如图7所示;
步骤4、纤端微加工(此步骤可采用两种方式制备):光纤拉锥(见图3)。光纤去除涂覆层之后固定在光纤夹具上,控制系统驱动承载光纤的左手电控位移平台302以及右手电控位移平台304,将光纤送至CMOS相机301视野范围内,在视野区通过自动调焦系统将光纤对焦获得清晰图像309,图像可以通过计算机操控系统310进行显示。计算光纤几何参数与位姿信息并作为反馈量,通过调节左右手五个维度的微动执行装置,实现光纤波导与加热装置的对准。驱动电加热装置308将熔融区送至波导对准位置进行加热,用左、右手电控位移平台对光纤进行一定速度下的拉伸,拉锥完成后,在中心点用光纤切割刀进行切割,最终形成弧形锥面的圆锥台纤端结构器件。光纤纤端研磨(见图4)。用光纤夹具401固定好双包层光纤402,然后把纤端放置于研磨盘403上,光纤夹具与光纤研磨盘各连接有一个直流电机驱动使其绕各自的中轴自转;保持双包层光纤与研磨盘盘面法线呈固定夹角θ,通过光纤夹具和研磨盘的自转即可研磨出张开角为θ的圆锥台纤端;
步骤5、光栅刻写(见图5)。将制备好的双包层光纤放置于二氧化碳激光器刻写系统下,在电脑上控制系统的操控下,进行激光扫描并对光纤进行旋转和平移操作,按照指定参数在双包层光纤的内包层上刻写出介质手性螺旋光栅,如图5(a)所示。可选的,二氧化碳激光器在内包层上刻得的螺旋光栅螺距可以是均匀的也可以是非均匀的,如图5(b)所示,飞秒激光器刻写作为备选方案。也可为采用二氧化碳激光、电弧、氢氧焰等加热方式热熔扭转光纤形成的结构手性螺旋光栅,如图5(c)-(d)所示。
可选的,中央双包层纤芯为多模纤芯,折射率分布是单层阶跃、双层阶跃、多层阶跃、单层渐变、双层渐变以及多层渐变的一种,如图6(a)-(f)所示。
此外,可以通过适当地增加平面内的单芯光纤数量以及纤芯、内包层形状多样的双包层光纤,制备出相应的粒子光操纵器件,在我们的可操控范围内对微纳颗粒的操控更加精确。例如,操控微球透镜的平面内两根、六根、N根的单芯光纤如图7(a)-(c)所示,内包层形状为圆形、三角形、六边形结构的双包层光纤,如图7(d)-(f)所示。纤芯形状为三角形、正方形、环形结构的双包层光纤,如图7(g)-(i)所示。
下面结合具体的实施例来进一步阐述本发明。
步骤1、光纤固定:按照实施方式的光纤固定方法固定多根单芯光纤。单芯光纤的尺寸在125um;
步骤2、光纤制备:按照实施方式的光纤制备方法制作出双包层光纤(见图2),光纤尺寸在125um大小;
步骤3、纤端微加工(此步骤可采用两种方式制备):光纤拉锥:按照实施方式的光纤拉锥方法制作近圆锥台纤端结构(见图3),光纤纤端研磨:按照实施方式的光纤纤端研磨方法制作圆锥台纤端结构(见图4);
步骤4、螺旋光栅刻写:按照实施方式的光纤刻写方法制作在内包层上刻得螺旋光栅结构(见图5);
步骤5、荧光样品“单点”超分辨成像信息(见图1):用于捕获微球透镜的激光器输出的捕获光通过光功率控制模块输入到多根单芯光纤的纤芯中,然后在多根单芯光纤纤端输出多个自由传输光束,并稳定地三维捕获住微球透镜。一方面,激光器101输出的激发光通过光功率控制模块和两个1×2宽带光纤耦合器后被注入到中央双包层纤芯中,由于激发光不会被螺旋光栅调制,因此直接从双包层光纤的纤端出射后被微球透镜聚焦生成强聚焦激发光,最后作用到荧光样品表面使其发出荧光;另一方面,激光器102输出的损耗光经过延时单元、光功率控制模块和两个1×2宽带光纤耦合器后被注入到中央双包层纤芯中,由于损耗光会被螺旋光栅调制生成涡旋模式,因此损耗光从双包层光纤的光纤端出射并被微球透镜聚焦后形成强聚焦中空环形损耗光,然后到达荧光样品表面。由于荧光和强聚焦中空环形损耗光的光斑中心完全重合,使得大部分处于荧光光斑外围部分的荧光物质通过光学非线性作用被强行回到基态抑制其发荧光,随着中空环形损耗光的光强不断增加,能荧光的光斑越来越小,最终分辨率不再受光的衍射所限制,从而打破衍射极限,最后形成的超分辨荧光成像信号被微球透镜收集到中央双包层纤芯中,并通过一个1×2宽带光纤耦合器收集到STED成像显示仪中,实现“单点”超分辨显微成像;
步骤6、“平面”超分辨显微成像(见图1):由于可以通过光功率控制模块独立控制每根单芯光纤传输捕获光的光功率,当每根单芯光纤的光功率相同时,形成的干涉光场分布能够精准捕获处于空间中心的微球透镜,此时在STED成像显示仪上显示的是荧光样品中“单点”的成像信息;当利用光功率控制模块对光功率进行有预期的改变时,利用反馈控制模块对其进行监测和控制,对计算机收到的反馈信息进行及时处理,作用在光功率控制模块上,不断的改变输入到每根单芯光纤的光功率大小,从而对多个自由传输光束的干涉光场分布实施调控,实现对微球透镜的捕获点的空间位置的调节,最终实现微球透镜在平面内的二维扫描移动。通过微球透镜的这种二维扫描移动就可实现对强聚焦激发光和强聚焦中空环形损耗光的传输方向Z的改变,最终在荧光样品整个探测区域上实现面扫描,获得“平面”超分辨荧光成像信号。

Claims (9)

1.基于多光纤光镊的STED超分辨显微成像装置,其特征是:它由用于STED成像的激光器( 101) 和激光器( 102) 、延时单元( 2) 、光束生成器( 3) 、STED成像显示仪( 4) 、用于操控微球透镜的激光器( 5) 、光功率控制模块( 6) 、反馈控制模块( 7) 、对光功率进行调节的计算机( 8) 、一个1×6光纤耦合器( 9) 、两个1×2宽带光纤耦合器( 10) 以及多根单模光纤组成,所述的光束生成器( 3) 由处于同一平面Y的多根单芯光纤( 1201) 、垂直于平面Y的双包层光纤( 1202) 、双包层光纤圆锥台纤端( 13) 和可在纤端上自由滑动的微球透镜( 14) 构成,该双包层光纤( 1202) 由中央双包层纤芯( 1203) 、螺旋光栅( 1204) 、外包层( 1205) 组成,该单芯光纤( 1201) 有纤芯( 1206) 和包层( 1207) 组成,激光器( 5) 输出的捕获光( 22) 通过光功率控制模块( 6) 输入到多根单芯光纤(1201) 的纤芯( 1206) 中,然后在多根单芯光纤( 1201) 纤端输出多个自由传输光束(23) ,并稳定地三维捕获住微球透镜( 14) ,一方面,激光器( 101) 输出的激发光( 15)通过光功率控制模块( 6) 和两个1×2宽带光纤耦合器( 10) 后被注入到中央双包层纤芯( 1203) 中,由于激发光( 15) 不会被螺旋光栅( 1204) 调制,因此直接从双包层光纤(1202) 的纤端出射后被微球透镜( 14) 聚焦生成强聚焦激发光( 17) ,最后作用到荧光样品( 20) 表面使其发出荧光( 18) ;另一方面,激光器( 102) 输出的损耗光( 16) 经过延时单元( 2) 、光功率控制模块( 6) 和两个1×2宽带光纤耦合器( 10) 后被注入到中央双包层纤芯( 1202) 中,由于损耗光会被螺旋光栅( 1204) 调制生成涡旋模式,因此损耗光( 16) 从双包层光纤( 1202) 的光纤端出射并被微球透镜( 14) 聚焦后形成强聚焦中空环形损耗光( 19) ,然后到达荧光样品( 20) 表面,由于荧光( 18) 和强聚焦中空环形损耗光( 19) 的光斑中心完全重合,使得大部分处于荧光( 18) 光斑外围部分的荧光物质通过光学非线性作用被强行回到基态抑制其发荧光,随着中空环形损耗光( 19) 的光强不断增加,能荧光的光斑越来越小,最终分辨率不再受光的衍射所限制,从而打破衍射极限,最后形成的超分辨荧光成像信号( 21) 被微球透镜( 14) 收集到中央双包层纤芯( 1203)中,并通过一个1×2宽带光纤耦合器( 10) 收集到STED成像显示仪( 4) 中,实现“单点”超分辨显微成像,由于可以通过光功率控制模块( 6) 独立控制每根单芯光纤( 1201) 传输捕获光( 22) 的光功率,从而对多个自由传输光束( 23) 的干涉光场分布实施调控,实现对微球透镜( 14) 的捕获点的空间位置的调节,最终实现微球透镜( 14) 在平面内的二维扫描移动( 24) ,通过微球透镜( 14) 的这种二维扫描移动( 24) 就可实现对强聚焦激发光( 17) 和强聚焦中空环形损耗光( 19) 的传输方向Z的改变,最终在荧光样品整个探测区域上实现面扫描,获得“平面”超分辨荧光成像信号。
2.根据权利要求1所述的基于多光纤光镊的STED超分辨显微成像装置,圆锥台纤端的目的是更好的靠近捕获的微粒并进行捕获,其双包层光纤及圆锥台纤端的制备方法如下:(1)预制棒制备:采用MCVD制棒方法制备中央双包层纤芯预制棒插件;(2)微孔加工:根据需要在纯石英预制棒对应位置加工微孔,并插入中央双包层纤芯预制棒插件,形成中央双包层光纤预制棒;(3)光纤拉制:将制备好的光纤预制棒放置于拉丝塔上进行热熔拉丝,拉制形成中央双包层光纤;(4)圆锥台纤端微加工:第一种方法:用光纤夹具固定住制备好的双包层光纤,然后把纤端放置于研磨盘上,光纤夹具与光纤研磨盘都能绕各自的中轴自转,通过控制光纤与研磨盘盘面法线的夹角来制备具有不同张开角的圆锥台纤端;第二种方法:把光纤放置于光纤拉锥机上,拉制成合适的锥长并在拉锥区域合适位置切割,形成具有弧形锥面的圆锥台纤端。
3.根据权利要求1所述的基于多光纤光镊的STED超分辨显微成像装置,其特征是:所述的多根单芯光纤和双包层光纤的中心轴在空间中交汇于一点。
4.根据权利要求1所述的基于多光纤光镊的STED超分辨显微成像装置,其特征是:所述的多根单芯光纤的数量大于等于2。
5.根据权利要求1所述的基于多光纤光镊的STED超分辨显微成像装置,其特征是:所述的双包层光纤的内包层形状是圆形、三角形、四边形或者其他多边形中的一种。
6.根据权利要求1所述的基于多光纤光镊的STED超分辨显微成像装置,其特征是:所述的多根单芯光纤和双包层光纤的纤芯形状可以是圆形、环形、三角形、正方形或者其他多边形中的一种。
7.根据权利要求1所述的基于多光纤光镊的STED超分辨显微成像装置,其特征是:所述的中央双包层纤芯为双层阶跃或双层渐变折射率分布的纤芯,或者是单层阶跃分布、多层阶跃分布、单层渐变分布和多层渐变分布纤芯中的一种。
8.根据权利要求1所述的基于多光纤光镊的STED超分辨显微成像装置,其特征是:所述的螺旋光栅是采用二氧化碳激光、飞秒激光在中央双包层纤芯上均匀或非均匀刻写形成的介质手性螺旋光栅,或者是采用二氧化碳激光、电弧、氢氧焰等加热方式热熔扭转光纤形成的结构手性螺旋光栅。
9.根据权利要求1所述的基于多光纤光镊的STED超分辨显微成像装置,其特征是:所述的微球透镜是介质材料、生物材料以及其他透明材料中的一种。
CN202010503092.0A 2020-06-05 2020-06-05 基于多光纤光镊的sted超分辨显微成像装置 Active CN111653378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010503092.0A CN111653378B (zh) 2020-06-05 2020-06-05 基于多光纤光镊的sted超分辨显微成像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010503092.0A CN111653378B (zh) 2020-06-05 2020-06-05 基于多光纤光镊的sted超分辨显微成像装置

Publications (2)

Publication Number Publication Date
CN111653378A CN111653378A (zh) 2020-09-11
CN111653378B true CN111653378B (zh) 2022-06-07

Family

ID=72348794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010503092.0A Active CN111653378B (zh) 2020-06-05 2020-06-05 基于多光纤光镊的sted超分辨显微成像装置

Country Status (1)

Country Link
CN (1) CN111653378B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112834410B (zh) * 2021-01-04 2022-09-13 桂林电子科技大学 基于双芯光纤光操控的片状光显微成像方法及装置
CN112835190B (zh) * 2021-01-04 2022-08-09 桂林电子科技大学 基于双芯光纤光操控和动态散斑照明显微成像系统
CN113701666B (zh) * 2021-08-30 2022-08-19 桂林电子科技大学 基于光子芯片的超分辨显微成像系统
CN114415362B (zh) * 2021-10-12 2023-10-03 桂林电子科技大学 一种基于涡旋光的全光纤sted显微镜
CN113866973B (zh) * 2021-10-12 2023-10-03 桂林电子科技大学 一种基于多阶光纤模式复用的光纤sted显微镜
CN113866971B (zh) * 2021-10-12 2024-04-16 桂林电子科技大学 一种基于多芯少模光纤的细胞形态分析仪

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927879A (zh) * 2019-11-04 2020-03-27 桂林电子科技大学 一种基于光纤光镊的纳米光学射流扫描探针

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007530A (ja) * 2003-06-19 2005-01-13 Fuji Photo Film Co Ltd 光ピンセット装置
WO2013153294A1 (fr) * 2012-04-13 2013-10-17 Bioaxial Sas Procédé et dispositif de mesure optique
US10352860B2 (en) * 2014-04-24 2019-07-16 Bruker Nano, Inc. Super resolution microscopy
CN105467610B (zh) * 2015-12-07 2017-10-03 西北大学 用于受激发射损耗显微镜的全保偏光纤激光点阵产生装置
WO2017210679A1 (en) * 2016-06-03 2017-12-07 Trustees Of Boston University Optical imaging system employing vortex fiber for multiple-mode illumination
KR101893433B1 (ko) * 2016-11-30 2018-10-04 단국대학교 산학협력단 누화 현상이 방지되는 3차원 영상 획득장치
CA2978123A1 (en) * 2017-09-05 2019-03-05 Peter Vokhmin Real time multichannel sted microscopy system
CN108680548B (zh) * 2018-05-16 2019-12-06 华中科技大学 一种全光纤型超分辨成像方法与装置
CN109752830B (zh) * 2018-12-12 2021-06-08 桂林电子科技大学 一种全光纤sted超分辨显微照明装置
CN111103273A (zh) * 2019-11-04 2020-05-05 桂林电子科技大学 光纤端超分辨纳米荧光显微照明探针
CN111123435A (zh) * 2019-11-04 2020-05-08 桂林电子科技大学 一种基于光纤光镊的自组装型超分辨光学探针

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927879A (zh) * 2019-11-04 2020-03-27 桂林电子科技大学 一种基于光纤光镊的纳米光学射流扫描探针

Also Published As

Publication number Publication date
CN111653378A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN111653378B (zh) 基于多光纤光镊的sted超分辨显微成像装置
CN111653380B (zh) 基于单光纤光镊的sted超分辨显微成像装置
CN108873171B (zh) 一种多芯光纤类贝塞尔光束阵列光镊
CN111302616B (zh) 一种硫系玻璃光纤的激光直写制备方法
CN109752830B (zh) 一种全光纤sted超分辨显微照明装置
CN112071462B (zh) 一种可调单光纤微粒输送器
CN109270695B (zh) 一种牵引光束产生装置及产生方法
CN109799571B (zh) 基于环形芯同轴螺旋波导光纤的粒子光操纵器件
KR101278285B1 (ko) 렌즈 일체형 광섬유쌍 프로브를 이용한 이미징 시스템
CN107357044A (zh) 一种基于斜光线环形光场的阶跃多模光纤光镊
Deng et al. Fiber-integrated optical tweezers for ballistic transport and trapping yeast cells
CN109254346B (zh) 一种基于波分复用技术的单光纤光镊
CN113296188B (zh) 光子集成芯片上的轨道角动量滤波器实现方法
CN104185805B (zh) 优选使用微结构光纤转换光束强度的横向空间轮廓的装置
CN109752798B (zh) 基于同轴双波导光纤的光学纳米天线探测器及其制备方法
CN111653379B (zh) 基于多光纤光镊的纳米粒子输送器
CN207067546U (zh) 一种基于斜光线环形光场的阶跃多模光纤光镊
CN109752797B (zh) 光纤端蜂窝与正方格子结构光学天线及其制备方法
CN113707356B (zh) 一种灵活的光学微手系统及粒子操控方法
Popenda et al. Multiphoton fluorescence excitation and detection with a single negative curvature hollow core fibre
CN110623635A (zh) 三维线扫描微型光学探头
AU2020102261A4 (en) A self-assembled super-resolution optical probe based on fiber optical tweezers
Gao et al. An optical fiber probe based on multi-optical well particle capture
CN209826672U (zh) 三维扫描微型光学探头
CN112068249A (zh) 一种基于特种光纤的光纤光镊及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200911

Assignee: Guilin Donghe Information Technology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2023980044748

Denomination of invention: STED super-resolution microscopic imaging device based on multi fiber optical tweezers

Granted publication date: 20220607

License type: Common License

Record date: 20231101

EE01 Entry into force of recordation of patent licensing contract