CN111638501B - 一种自适应匹配随机共振的谱线增强方法 - Google Patents

一种自适应匹配随机共振的谱线增强方法 Download PDF

Info

Publication number
CN111638501B
CN111638501B CN202010416151.0A CN202010416151A CN111638501B CN 111638501 B CN111638501 B CN 111638501B CN 202010416151 A CN202010416151 A CN 202010416151A CN 111638501 B CN111638501 B CN 111638501B
Authority
CN
China
Prior art keywords
signal
factor
noise ratio
stochastic resonance
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010416151.0A
Other languages
English (en)
Other versions
CN111638501A (zh
Inventor
申晓红
董海涛
王海燕
锁健
张红伟
刘浣琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202010416151.0A priority Critical patent/CN111638501B/zh
Publication of CN111638501A publication Critical patent/CN111638501A/zh
Application granted granted Critical
Publication of CN111638501B publication Critical patent/CN111638501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

本发明提供了一种自适应匹配随机共振的谱线增强方法,在一种势阱约束的广义二阶非线性模型下,建立了自适应匹配随机共振的优化方法,提升了低采样下对谱线的增强性能。本发明通过自适应匹配随机共振的谱线增强方法,能够有效提升对信号的滤波性能,进一步突破了常规自适应谱线增强器方法的增强性能,可以有效应用于实时远程探测系统中。

Description

一种自适应匹配随机共振的谱线增强方法
技术领域
本发明涉及信号处理领域,尤其是一种自适应滤波方法。
背景技术
21世纪以来,世界各国在政治、经济、军事方面围绕海洋领域的竞争愈演愈烈,世界各国均提出了相应的海洋发展战略,对海洋资源的保护、开发、利用已成为世界共同关注的焦点。当前,我国的国家核心利益主要体现在经济发展和安全权益两个方面,经济建设是改革开放以来的中心任务,而维护海洋权益是新时期实现海洋强国的根本保证。因此,研究先进的微弱信号处理方法对远距离水中目标探测和识别具有巨大的研究价值和现实意义。
自适应谱线增强器是处理噪声的一种通用信号处理手段,被广泛应用于各个领域,然而其滤波性能有限,对于强背景噪声的处理能力仍显不足。近年来,随机共振的弱信号处理方法因其对弱信号的增强特性而被国内外研究机构所关注。随机共振并非像传统的弱信号处理方法(高阶谱分析、小波分析和经验模态分解分析等)那样通过滤除噪声的方式降噪,而是设法利用噪声,通过将强背景噪声信号输入特殊的非线性系统(共振系统),从而将噪声的部分能量转化为噪声的能量,使得削弱小噪声能量的同时增强了信号的输出,可以有效地用于微弱小信号增强,但是对于实时系统处理多频等问题存在局限性,难以达到理想的应用效果。
发明内容
为了克服现有技术的不足,本发明提供一种自适应匹配随机共振的谱线增强方法。在一种势阱约束的广义二阶非线性模型下,建立了自适应匹配随机共振的优化方法,提升了低采样下对谱线的增强性能,本发明提供自适应匹配随机共振的谱线增强方法。
本发明解决其技术问题所采用的技术方案的具体步骤如下:
第一步:利用声呐采集海洋中的声信号,记为r(t),即为输入信号;输入信号同时含有单频线谱信号与噪声信号的混合,即:
r(t)=s(t)+n(t) (1)
其中s(t)=Acos(2πf0t),A为输入信号幅值,f0为输入信号频率,n(t)为海洋背景噪声信号;
第二步:噪声强度估计,采用最大似然估计的方法,分别对各重构信号进行噪声方差估计,计算公式如下:
Figure BDA0002495154180000021
其中,
Figure BDA0002495154180000022
为噪声强度D的估计值,N为信号g(t)的长度,T(x)为检验统计量;
第三步:构造二阶杜芬非线性系统:
Figure BDA0002495154180000023
其中,式中x为系统输出,
Figure BDA0002495154180000024
为x的二阶导数,/>
Figure BDA0002495154180000025
为x的一阶导数,γ为阻尼因子,a、b为非线性势参数,g(t)为输入信号;
第四步:构造自适应匹配随机共振优化模型:
Figure BDA0002495154180000026
其中,式中K为势阱约束因子,h=1/fs为时间尺度因子,fs为采样频率,π为圆周率,e为自然常数,
Figure BDA0002495154180000027
分别表示最优的阻尼因子、时间尺度因子与势阱约束因子,Kmax为势阱约束因子的上限值,SNRI为输出信噪比增益;
第五步:阻尼因子、时间尺度因子、势阱约束因子初始化设定,设定参数搜索范围;
第六步:使用四阶龙格库塔方法对公式(3)进行数值求解,初值定为(0,0),步长h=1/fs,fs为采样频率,得到输出序列x,计算信噪比增益值,通过遗传算法优化三个参数,直至信噪比增益不变或迭代次数最大时得到最优值
Figure BDA0002495154180000028
与/>
Figure BDA0002495154180000029
第七步:根据最优的阻尼因子、时间尺度因子与势阱约束因子
Figure BDA00024951541800000210
与/>
Figure BDA00024951541800000211
使用四阶龙格库塔方法计算最优非线性滤波输出xopt
所述势阱约束因子的上限值Kmax取值为200。
所述输出信噪比增益计算步骤如下:
信噪比SNR计算:对时间序列进行N点离散傅里叶变换DFT,获得各频率对应的功率Si,i表示1到N之间的任意值,则信噪比的计算公式如下:
Figure BDA0002495154180000031
其中Ps为信号的功率值,Ps为除信号以外所有噪声的平均功率;
根据公式(5)分别计算得到输入序列与输出序列的信噪比SNRin和SNRout,则信噪比增益由公式SNRI=SNRout-SNRin计算得到。
第五步中,所述阻尼因子的搜索区间为(0,1],时间尺度因子的搜索区间为(0,0.8],势阱约束因子的区间为[0.01,200]。
本发明的有益效果通过自适应匹配随机共振的谱线增强方法,能够有效提升对信号的滤波性能,进一步突破了常规自适应谱线增强器方法的增强性能,可以有效应用于实时远程探测系统中。
附图说明
图1是本发明对实测数据的谱线增强性能分析对比图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
为了克服现有技术的不足,在一种势阱约束的广义二阶非线性模型下,建立了自适应匹配随机共振的优化方法,提升了低采样下对谱线的增强性能,本发明提供自适应匹配随机共振的谱线增强方法。
本发明解决其技术问题所采用的技术方案的具体实施过程如下:
第一步:利用声呐采集海洋中的声信号,记为r(t),即为输入信号;输入信号同时含有单频线谱信号与噪声信号的混合,即
r(t)=s(t)+n(t) (1)
其中s(t)=Acos(2πf0t),A为输入信号幅值,f0为输入信号频率,n(t)为海洋背景噪声信号。
第二步:噪声强度估计,采用最大似然估计的方法,分别对各重构信号进行噪声方差估计,计算公式如下:
Figure BDA0002495154180000032
其中,
Figure BDA0002495154180000033
为噪声强度D的估计值,N为信号s(t)长度,T(x)为检验统计量;
第三步:构造二阶杜芬非线性系统:
Figure BDA0002495154180000041
其中,式中x为系统输出,
Figure BDA0002495154180000042
为x的二阶导数,/>
Figure BDA0002495154180000043
为x的一阶导数,γ为阻尼因子,a、b为非线性势参数,g(t)为输入信号。
第四步:构造自适应匹配随机共振优化模型:
Figure BDA0002495154180000044
其中,式中K为势阱约束因子,h=1/fs为时间尺度因子,fs为采样频率,π为圆周率,e为自然常数,其值约为2.71828,
Figure BDA0002495154180000045
分别表示最优的阻尼因子、时间尺度因子与势阱约束因子,Kmax为势阱约束因子的上限值,本发明取200。SNRI为输出信噪比增益,输出信噪比增益计算方法如下:
信噪比SNR计算:对时间序列进行N点DFT(离散傅里叶变换),获得各频率对应的功率Si,i表示1到N之间的任意值,则信噪比的计算公式如下:
Figure BDA0002495154180000046
其中Ps为信号的功率值,Ps为除信号以外所有噪声的平均功率。
根据公式(5)分别计算得到输入序列与输出序列的信噪比SNRin和SNRout,则信噪比增益可以由如下公式SNRI=SNRout-SNRin计算得到。
第五步:阻尼因子、时间尺度因子、势阱约束因子初始化设定,设定参数搜索范围。本发明中,阻尼因子的搜索区间为(0,1],时间尺度因子的搜索区间为(0,0.8],势阱约束因子的经验区间为[0.01,200]。
第六步:四阶龙格库塔方法对公式(3)进行数值求解,初值定为(0,0),步长h=1/fs,fs为采样频率,得到输出序列x,计算信噪比增益值,通过遗传算法优化三个参数,至信噪比增益不变或迭代次数最大时得到最优值
Figure BDA0002495154180000047
与/>
Figure BDA0002495154180000048
对于遗传算法寻优的主要参数设置如下:种群:3、种群个体100、迭代最大次数10,交叉概率0.95,变异概率0.01。
第七步:根据最优的阻尼因子、时间尺度因子与势阱约束因子
Figure BDA0002495154180000051
与/>
Figure BDA0002495154180000052
使用四阶龙格库塔方法计算最优非线性滤波输出,用xopt表示。
通过本发明给出的自适应匹配随机共振的谱线增强方法,能够有效提升对信号的滤波性能,对实测数据的谱线增强性能分析对比如图1所示,相比常规自适应谱线增强器方法,功率谱密度可以提升10dB。该方法进一步突破了谱线增强的性能,可以应用于实时远程探测系统中。

Claims (4)

1.一种自适应匹配随机共振的谱线增强方法,其特征在于包括下述步骤:
第一步:利用声呐采集海洋中的声信号,记为r(t),即为输入信号;输入信号同时含有单频线谱信号与噪声信号的混合,即:
r(t)=s(t)+n(t) (1)
其中s(t)=Acos(2πf0t),A为输入信号幅值,f0为输入信号频率,n(t)为海洋背景噪声信号;
第二步:噪声强度估计,采用最大似然估计的方法,分别对各重构信号进行噪声方差估计,计算公式如下:
Figure FDA0002495154170000011
其中,
Figure FDA0002495154170000012
为噪声强度D的估计值,N为信号g(t)的长度,T(x)为检验统计量;
第三步:构造二阶杜芬非线性系统:
Figure FDA0002495154170000013
其中,式中x为系统输出,
Figure FDA0002495154170000014
为x的二阶导数,/>
Figure FDA0002495154170000015
为x的一阶导数,γ为阻尼因子,a、b为非线性势参数,g(t)为输入信号;
第四步:构造自适应匹配随机共振优化模型:
Figure FDA0002495154170000016
其中,式中K为势阱约束因子,h=1/fs为时间尺度因子,fs为采样频率,π为圆周率,e为自然常数,
Figure FDA0002495154170000017
分别表示最优的阻尼因子、时间尺度因子与势阱约束因子,Kmax为势阱约束因子的上限值,SNRI为输出信噪比增益;
第五步:阻尼因子、时间尺度因子、势阱约束因子初始化设定,设定参数搜索范围;
第六步:使用四阶龙格库塔方法对公式(3)进行数值求解,初值定为(0,0),步长h=1/fs,fs为采样频率,得到输出序列x,计算信噪比增益值,通过遗传算法优化三个参数,直至信噪比增益不变或迭代次数最大时得到最优值
Figure FDA0002495154170000018
与/>
Figure FDA0002495154170000019
第七步:根据最优的阻尼因子、时间尺度因子与势阱约束因子
Figure FDA0002495154170000021
与/>
Figure FDA0002495154170000022
使用四阶龙格库塔方法计算最优非线性滤波输出xopt
2.根据权利要求1所述的一种自适应匹配随机共振的谱线增强方法,其特征在于:所述势阱约束因子的上限值Kmax取值为200。
3.根据权利要求1所述的一种自适应匹配随机共振的谱线增强方法,其特征在于:所述输出信噪比增益计算步骤如下:
信噪比SNR计算:对时间序列进行N点离散傅里叶变换DFT,获得各频率对应的功率Si,i表示1到N之间的任意值,则信噪比的计算公式如下:
Figure FDA0002495154170000023
其中Ps为信号的功率值,Ps为除信号以外所有噪声的平均功率;
根据公式(5)分别计算得到输入序列与输出序列的信噪比SNRin和SNRout,则信噪比增益由公式SNRI=SNRout-SNRin计算得到。
4.根据权利要求1所述的一种自适应匹配随机共振的谱线增强方法,其特征在于:
第五步中,所述阻尼因子的搜索区间为(0,1],时间尺度因子的搜索区间为(0,0.8],势阱约束因子的区间为[0.01,200]。
CN202010416151.0A 2020-05-17 2020-05-17 一种自适应匹配随机共振的谱线增强方法 Active CN111638501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010416151.0A CN111638501B (zh) 2020-05-17 2020-05-17 一种自适应匹配随机共振的谱线增强方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010416151.0A CN111638501B (zh) 2020-05-17 2020-05-17 一种自适应匹配随机共振的谱线增强方法

Publications (2)

Publication Number Publication Date
CN111638501A CN111638501A (zh) 2020-09-08
CN111638501B true CN111638501B (zh) 2023-06-16

Family

ID=72328922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010416151.0A Active CN111638501B (zh) 2020-05-17 2020-05-17 一种自适应匹配随机共振的谱线增强方法

Country Status (1)

Country Link
CN (1) CN111638501B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113221714A (zh) * 2021-04-29 2021-08-06 西北工业大学 一种自适应线谱增强器和随机共振联合的线谱检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008642A (en) * 1997-08-25 1999-12-28 The United States Of America As Represented By The Secretary Of The Navy Stochastic resonance detector for weak signals
CN103475431A (zh) * 2013-09-09 2013-12-25 南京邮电大学 一种低信噪比条件下的基于最佳随机共振的频谱感知方法
CN105825197A (zh) * 2016-03-29 2016-08-03 西安交通大学 一种线性化势阱壁的路径扩展随机共振微弱特征提取方法
CN110376575A (zh) * 2019-08-19 2019-10-25 西北工业大学 一种基于阻尼参数匹配随机共振的低频线谱检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7428490B2 (en) * 2003-09-30 2008-09-23 Intel Corporation Method for spectral subtraction in speech enhancement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008642A (en) * 1997-08-25 1999-12-28 The United States Of America As Represented By The Secretary Of The Navy Stochastic resonance detector for weak signals
CN103475431A (zh) * 2013-09-09 2013-12-25 南京邮电大学 一种低信噪比条件下的基于最佳随机共振的频谱感知方法
CN105825197A (zh) * 2016-03-29 2016-08-03 西安交通大学 一种线性化势阱壁的路径扩展随机共振微弱特征提取方法
CN110376575A (zh) * 2019-08-19 2019-10-25 西北工业大学 一种基于阻尼参数匹配随机共振的低频线谱检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
α噪声下自适应非线性耦合双稳随机共振弱信号检测;张刚等;《电子测量与仪器学报》;20180515(第05期);全文 *
基于归一化随机共振的水下微弱目标检测方法;王雪;《电声技术》;20200405(第04期);全文 *
基于随机共振的强噪背景下船舶辐射噪声检测;杨文忠等;《指挥控制与仿真》;20180615(第03期);全文 *

Also Published As

Publication number Publication date
CN111638501A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
CN110376575B (zh) 一种基于阻尼参数匹配随机共振的低频线谱检测方法
CN108921014B (zh) 一种基于改进噪声包络信号识别的螺旋桨轴频搜索方法
CN108875685B (zh) 一种自适应匹配随机共振的水下auv检测方法
CN103995950A (zh) 基于空域相关修正阈值的变小波系数局部放电信号消噪方法
CN110726875B (zh) 一种新能源柔性直流并网暂态谐波检测方法及系统
CN110135291B (zh) 一种低信噪比信号的参数估计方法
CN111638501B (zh) 一种自适应匹配随机共振的谱线增强方法
CN112183225B (zh) 一种基于概率潜在语义分析的水下目标信号特征提取方法
CN115359771B (zh) 一种水声信号降噪方法、系统、设备及存储介质
CN116403590A (zh) 基于小波变换与生成对抗网络的仿生信号处理方法
CN111628750B (zh) 一种阱内匹配随机共振的非线性滤波方法
CN113782044B (zh) 一种语音增强方法及装置
CN102901855A (zh) 一种特高压直流电晕电流信号去噪方法
CN108090270A (zh) 一种基于形态学滤波和盲源分离的暂态振荡参数识别方法
CN104867493A (zh) 基于小波变换的多重分形维数端点检测方法
CN102637438B (zh) 一种语音滤波方法
CN116863959A (zh) 一种基于生成对抗网络的海豚叫声生成方法
Sun et al. Wavelet denoising method based on improved threshold function
CN113325401B (zh) 一种基于线谱相位差解模糊的畸变拖曳线列阵信号重构方法
CN102509268B (zh) 基于免疫克隆选择的非下采样轮廓波域图像去噪方法
Lu et al. Speech endpoint detection in strong noisy environment based on the Hilbert-Huang transform
CN112926504A (zh) 一种基于降噪自编码器的声发射信号去噪方法
Cao et al. A High-Efficiency Optimized Detection Algorithm for Non-Stationary Marine Acoustic Signals in the Time-Frequency Domain
CN113409817B (zh) 一种基于声纹技术的音频信号实时追踪比对方法
CN109448750B (zh) 一种提高生物雷达语音质量的语音增强方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant