CN111634943B - 一种二氧化钛纳米材料的晶相调控方法 - Google Patents

一种二氧化钛纳米材料的晶相调控方法 Download PDF

Info

Publication number
CN111634943B
CN111634943B CN202010544177.3A CN202010544177A CN111634943B CN 111634943 B CN111634943 B CN 111634943B CN 202010544177 A CN202010544177 A CN 202010544177A CN 111634943 B CN111634943 B CN 111634943B
Authority
CN
China
Prior art keywords
titanium dioxide
phase
nano material
dioxide nano
anatase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010544177.3A
Other languages
English (en)
Other versions
CN111634943A (zh
Inventor
孙明轩
林小靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202010544177.3A priority Critical patent/CN111634943B/zh
Publication of CN111634943A publication Critical patent/CN111634943A/zh
Application granted granted Critical
Publication of CN111634943B publication Critical patent/CN111634943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二氧化钛纳米材料的晶相调控方法,是将氨水溶液和三氯化钛溶液加入水热反应釜中,在170~190℃下进行水热反应,反应结束后分离,对收集的固体进行洗涤、干燥,即得所述二氧化钛纳米材料。本发明采用水热法,通过氨水溶液来调控二氧化钛纳米材料中不同晶相的含量,可获得具有金红石/锐钛矿相、板钛矿/锐钛矿相、金红石/锐钛矿/板钛矿相等多种不同相组分的二氧化钛,且所制备的多相二氧化钛具有较高的结晶度,整个调控方法具有方法简单、成本低廉、绿色环保、易于操作和实现规模化等优点,有效促进了二氧化钛纳米材料在光电化学和光催化等多领域的应用,具有广阔的工业应用前景。

Description

一种二氧化钛纳米材料的晶相调控方法
技术领域
本发明涉及一种二氧化钛纳米材料的晶相调控方法,属于二氧化钛纳米材料技术领域。
背景技术
二氧化钛(TiO2)晶体是一种物理化学性质稳定的n型宽禁带半导体材料,具有无毒、无害,制备简单及价格低廉等优点,被认为是一种理想的半导体光催化材料,在光解水制氢、太阳能电池、光催化降解有机污染物以及传感器等方面得到了广泛的研究。
自然界中,TiO2主要以锐钛矿(Anatase)、金红石(Rutile)和板钛矿(Brookite)相三种形态存在。其中,金红石型和锐钛矿型都属于四方晶系空间群分别为I41/amd和P42/mnm,二者均为不规则的八面体结构。锐钛矿相TiO2的晶胞参数为
Figure BDA0002539972570000011
而金红石相TiO2的晶胞参数为
Figure BDA0002539972570000012
在金红石和锐钛矿TiO2晶胞中,Ti4+位于O原子构成的八面体中心。其中金红石型具有最好的晶化态,但比表面积较小,晶格缺陷较少,对电子的俘获能力差,导致电子和空穴对容易复合,因此降低了其光电转化率和光催化性能,而锐铁矿型的晶格缺陷较多,对电子的俘获能力较强,电子-空穴对的复合速率相对较低,更有利于光电转换光催化。板钛矿为正交晶系,空间群为Pcab,其晶胞参数为
Figure BDA0002539972570000013
由TiO6八面体共边构成。由此可见,不同晶相的二氧化钛纳米材料的性能差别很大,二氧化钛纳米材料的晶相调控对研究二氧化钛纳米材料的催化性能具有重要意义和实用价值。
目前已有的制备多相TiO2的技术多是采用甲苯等有机溶剂进行相含量的调控,或者通过调控温度达到相转变的目的而获得多相TiO2纳米颗粒。这些方法制备过程繁琐,且毒性较大,不利于工业化生产和实际应用。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种二氧化钛纳米材料的晶相(金红石/锐钛矿/板钛矿相)调控方法。
为实现上述发明目的,本发明采用的技术方案如下:
一种二氧化钛纳米材料的晶相调控方法,是将氨水溶液和三氯化钛溶液加入水热反应釜中,在170~190℃下进行水热反应,反应结束后分离,对收集的固体进行洗涤、干燥,即得所述二氧化钛纳米材料。
一种实施方案,所述方法具体包括如下步骤:
a)先将浓度为0.1~3.0wt%的氨水溶液加入水热反应釜中,然后加入浓度为15~20wt%的三氯化钛溶液,在170~190℃下进行水热反应;
b)反应结束后分离,对收集的固体分别用水和乙醇洗涤后于70~90℃干燥,即得所述二氧化钛纳米材料。
一种优选方案,步骤a)中,氨水溶液与三氯化钛溶液的体积比为1:10~2:1。
一种优选方案,步骤a)中,氨水溶液与三氯化钛溶液的体积比为1:10~2:1,且氨水溶液的浓度为0.3~1.6wt%,在此条件下可调控制得具有金红石/锐钛矿/板钛矿相的二氧化钛纳米材料。
一种优选方案,步骤a)中,三氯化钛溶液在1~5秒内一次性加入含有氨水溶液的水热反应釜中。
一种优选方案,所述水热反应釜为聚四氟乙烯水热反应釜。
与现有技术相比,本发明具有如下显著性有益效果:
本发明采用水热法,通过氨水溶液来调控二氧化钛纳米材料中不同晶相的含量,可获得具有金红石/锐钛矿相、板钛矿/锐钛矿相、金红石/锐钛矿/板钛矿相等多种不同相组分的二氧化钛,且所制备的多相二氧化钛具有较高的结晶度,整个调控方法具有方法简单、成本低廉、绿色环保、易于操作和实现规模化等优点,有效促进了二氧化钛纳米材料在光电化学和光催化等多领域的应用,具有广阔的工业应用前景。
附图说明
图1为实施例1、2和3分别制备的具有金红石/锐钛矿相的二氧化钛纳米材料(a)、具有金红石/锐钛矿/板钛矿相的二氧化钛纳米材料(b)和具有金红石/锐钛矿相的二氧化钛纳米材料(c)的XRD对比图;
图2为实施例1、2和3分别制备的具有金红石/锐钛矿相的二氧化钛纳米材料(a)、具有金红石/锐钛矿/板钛矿相的二氧化钛纳米材料(b)和具有金红石/锐钛矿相的二氧化钛纳米材料(c)对左氧氟沙星的降解实验图。
具体实施方式
下面结合具体的实施例对本发明技术方案做进一步详细、完整地说明。
实施例1
a)先将63mL、浓度为0.19~0.22wt%的氨水溶液(由0.5mL、浓度为20~25wt%的氨水+62.5mL去离子水组成)加入水热反应釜中(可以先将0.5mL、浓度为20~25wt%的氨水用62.5mL去离子水稀释,配成浓度为0.19~0.22wt%的氨水溶液,然后将配制的氨水溶液加入水热反应釜中;也可以直接将0.5mL、浓度为20~25wt%的氨水加入装有62.5mL去离子水的水热反应釜中),然后快速(加入时间在1~5秒内)、一次性加入5mL、浓度为15wt%的三氯化钛溶液,在170℃下水热反应12小时;
b)结束反应,反应结束后离心分离,对收集的固体分别用水和乙醇洗涤后于70℃干燥,即得所述二氧化钛纳米材料。
本实施例所得的二氧化钛纳米材料的XRD衍射图谱如图1a所示,图谱中出现了在2θ角为25.27°、38.51°、47.98°、68.59分别对应的为锐钛矿相二氧化钛的(101)、(112)、(200)、(116)晶面的衍射峰,2θ角为27.38°、36.01°、41.25°分别对应金红石相二氧化钛的(110)、(101)、(111)晶面的衍射峰,说明采用本发明所述方法,能够合成含金红石/锐钛矿的混合相的二氧化钛,其中,金红石相和锐钛矿相的含量分别为19%和81%。
实施例2
a)先将63mL、浓度为0.99~1.11wt%的氨水溶液(由2.5mL、浓度为20~25wt%的氨水+60.5mL去离子水组成)加入水热反应釜中,然后快速(加入时间在1~5秒内)、一次性加入5mL、浓度为18wt%的三氯化钛溶液,在180℃下水热反应24小时;
b)结束反应,反应结束后离心分离,对收集的固体分别用水和乙醇洗涤后于80℃干燥,即得所述二氧化钛纳米材料。
本实施例所得的二氧化钛纳米材料的XRD衍射图谱如图1b所示,由图1b可见:图谱中出现了在2θ角为25.27°、38.51°、47.98°分别对应的为锐钛矿相二氧化钛的(101)、(112)、(200)、晶面的衍射峰,2θ角为27.38°、36.01°、41.25°分别对应金红石相二氧化钛的(110)、(101)、(111)晶面的衍射峰,而2θ角为30.81°板钛矿相二氧化钛的(211)晶面的衍射峰,说明采用本发明所述方法,能够合成含金红石/锐钛矿/板钛矿的混合相的二氧化钛,其含量分别为金红石相(25%),锐钛矿相(28%)和板钛矿相(47%)。
此外,本实施例中,所用的浓度为20~25wt%的氨水的体积可以为1~4mL内的任意数值,其余条件保持不变。
实施例3
a)先将63mL、浓度为2.0~2.22wt%的氨水溶液(由5mL、浓度为20~25wt%的氨水+58mL去离子水组成)加入水热反应釜中,然后快速(加入时间在1~5秒内)、一次性加入5mL、浓度为20wt%的三氯化钛溶液,在190℃下水热反应36小时;
b)结束反应,反应结束后离心分离,对收集的固体分别用水和乙醇洗涤后于90℃干燥,即得所述二氧化钛纳米材料。
本实施例所得的二氧化钛纳米材料的XRD衍射图谱如图1c所示,由图1c可见:图谱中出现了在2θ角为25.27°、38.51°、47.98°分别对应的为锐钛矿相二氧化钛的(101)、(112)、(200)晶面的衍射峰,而2θ角为30.81°板钛矿相二氧化钛的(211)晶面的衍射峰,说明采用本发明所述方法能够合成含金红石/板钛矿的混合相的二氧化钛,其含量分别为金红石相(77%)和板钛矿相(23%)。
结合实施例1至实施例3可见,本发明采用水热法,通过对氨水溶液和三氯化钛溶液的调控,可以调控二氧化钛纳米材料中晶相(金红石相、锐钛矿相和板钛矿相)的组成及含量。
应用例
分别取4mg实施例1、2和3所制备的二氧化钛纳米材料加入到20mg/L的左氧氟沙星溶液中,在光照条件下(λ>400nm),考察二氧化钛纳米材料对左氧氟沙星溶液的降解效率,以检测器光催化性能,具体结果如图2所示。
图2为实施例1、2和3分别制备的具有金红石/锐钛矿相的二氧化钛纳米材料(a)、具有金红石/锐钛矿/板钛矿相的二氧化钛纳米材料(b)和具有金红石/锐钛矿相的二氧化钛纳米材料(c)对左氧氟沙星的降解实验图,从图2可见,实施例1、2和3所制备的二氧化钛纳米材料对左氧氟沙星均具有降解效率,并且,实施例2和3制备的含有板钛矿相的二氧化钛对左氧氟沙星溶液的降解效率明显高于实施例1制备的不含板钛矿相的二氧化钛对左氧氟沙星溶液的降解效率。
从上可见,不同晶相组成的二氧化钛纳米材料的光性能差别很大,而采用本发明所述方法则可以实现二氧化钛纳米材料的晶相调控,这对研究二氧化钛纳米材料的光催化性能具有重要意义和实用价值。
最后需要在此指出的是:以上仅是本发明的部分优选实施例,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (2)

1.一种二氧化钛纳米材料的晶相调控方法,其特征在于:包括如下步骤:
a)先将浓度为0.1~3.0wt%的氨水溶液加入水热反应釜中,然后在1~5秒内一次性加入浓度为15~20wt%的三氯化钛溶液,氨水溶液与三氯化钛溶液的体积比为1:10~2:1,在170~190℃下进行水热反应;
b)反应结束后分离,对收集的固体分别用水和乙醇洗涤后于70~90℃干燥,即得所述二氧化钛纳米材料。
2.根据权利要求1所述的方法,其特征在于:所述水热反应釜为聚四氟乙烯水热反应釜。
CN202010544177.3A 2020-06-15 2020-06-15 一种二氧化钛纳米材料的晶相调控方法 Active CN111634943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010544177.3A CN111634943B (zh) 2020-06-15 2020-06-15 一种二氧化钛纳米材料的晶相调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010544177.3A CN111634943B (zh) 2020-06-15 2020-06-15 一种二氧化钛纳米材料的晶相调控方法

Publications (2)

Publication Number Publication Date
CN111634943A CN111634943A (zh) 2020-09-08
CN111634943B true CN111634943B (zh) 2022-08-23

Family

ID=72325730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010544177.3A Active CN111634943B (zh) 2020-06-15 2020-06-15 一种二氧化钛纳米材料的晶相调控方法

Country Status (1)

Country Link
CN (1) CN111634943B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1506154A (zh) * 2002-12-06 2004-06-23 中国科学院化学研究所 氮掺杂二氧化钛粉体的制备方法
WO2008088312A2 (en) * 2006-12-28 2008-07-24 E. I. Du Pont De Nemours And Company Processes for the hydrothermal production of titanium dioxide
CN103274460A (zh) * 2013-06-17 2013-09-04 东华大学 一种选择性解胶制备金红石相二氧化钛亚微米球的方法
CN104229878A (zh) * 2014-09-02 2014-12-24 陈立晓 一种金红石晶型二氧化钛纳米棒的制备方法
CN105271400A (zh) * 2015-12-04 2016-01-27 华东理工大学 一种混晶纳米二氧化钛的制备方法
US9822017B1 (en) * 2016-05-11 2017-11-21 The United States Of America As Represented By The Secretary Of The Army Process for the preparation of titanium dioxide nanorods
CN107456966A (zh) * 2016-12-12 2017-12-12 伦慧东 一种金属离子原位改性二氧化钛的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521039B2 (en) * 2002-11-08 2009-04-21 Millennium Inorganic Chemicals, Inc. Photocatalytic rutile titanium dioxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1506154A (zh) * 2002-12-06 2004-06-23 中国科学院化学研究所 氮掺杂二氧化钛粉体的制备方法
WO2008088312A2 (en) * 2006-12-28 2008-07-24 E. I. Du Pont De Nemours And Company Processes for the hydrothermal production of titanium dioxide
CN103274460A (zh) * 2013-06-17 2013-09-04 东华大学 一种选择性解胶制备金红石相二氧化钛亚微米球的方法
CN104229878A (zh) * 2014-09-02 2014-12-24 陈立晓 一种金红石晶型二氧化钛纳米棒的制备方法
CN105271400A (zh) * 2015-12-04 2016-01-27 华东理工大学 一种混晶纳米二氧化钛的制备方法
US9822017B1 (en) * 2016-05-11 2017-11-21 The United States Of America As Represented By The Secretary Of The Army Process for the preparation of titanium dioxide nanorods
CN107456966A (zh) * 2016-12-12 2017-12-12 伦慧东 一种金属离子原位改性二氧化钛的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
In-situ and phase controllable synthesis of nanocrystalline TiO2 on flexible cellulose fabrics via a simple hydrothermal method;Peimei Dong et al.;《Materials Research Bulletin》;20170819;第97卷;第89-95页 *
The influence of various concentrations of N-doped TiO2 as photoanode to increase the efficiency of dye-sensitized solar cell;Bodi Gunawan et al.;《AIP Conference Proceedings》;20170103;030128-1~030128-6 *
二氧化钛纳米材料的晶型与形貌调控及光催化活性研究;沈晓军;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》;20120615(第06期);B020-63 *

Also Published As

Publication number Publication date
CN111634943A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
Chen et al. Photocatalytic removal of antibiotics by MOF-derived Ti3+-and oxygen vacancy-doped anatase/rutile TiO2 distributed in a carbon matrix
Liu et al. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst
Ha et al. Morphology-controlled synthesis of SrTiO 3/TiO 2 heterostructures and their photocatalytic performance for water splitting
Wei et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting
CN112456551B (zh) 一种基于二维MXene上原位生长TiO2异相结的复合材料及其制备方法与应用
Castro et al. Charge transfer mechanism of WO3/TiO2 heterostructure for photoelectrochemical water splitting
Shi et al. In situ topotactic formation of 2D/2D direct Z-scheme Cu 2 S/Zn 0.67 Cd 0.33 S in-plane intergrowth nanosheet heterojunctions for enhanced photocatalytic hydrogen production
CN104209136A (zh) TiO2/多孔g-C3N4复合材料的制备方法
CN111468131B (zh) 一种具有高催化氧化活性LaCoO3催化剂的合成方法
Abdellatif et al. A highly efficient dual-phase GaN (O)/Nb2O5 (N) photocatalyst prepared through nitridation and reoxidation process for NO removal
Zhao et al. Visible-light-driven photocatalytic H2 evolution from water splitting with band structure tunable solid solution (AgNbO3) 1− x (SrTiO3) x
CN101514032B (zh) 一维板钛矿型纳米二氧化钛的制备方法
Hu et al. Synthesis of Ag-loaded SrTiO 3/TiO 2 heterostructure nanotube arrays for enhanced photocatalytic performances
CN109433185A (zh) 一步水热法制备钒酸铟/同质异相结钒酸铋复合光催化剂
Zhou et al. Enhanced photocatalytic hydrogen generation of nano-sized mesoporous InNbO4 crystals synthesized via a polyacrylamide gel route
Cihlar et al. Influence of LA/Ti molar ratio on the complex synthesis of anatase/brookite nanoparticles and their hydrogen production
Yu et al. BixY1− xVO4 solid solution with porous surface synthesized by molten salt method for photocatalytic water splitting
Wu et al. Solvothermal synthesis of Bi2O3/BiVO4 heterojunction with enhanced visible-light photocatalytic performances
WO2024198511A1 (zh) 一种磷掺杂二氧化钛及其制备方法和应用
CN102730755B (zh) 一种棒状N、Ag 共掺杂TiO2及其制备方法
CN111634943B (zh) 一种二氧化钛纳米材料的晶相调控方法
CN102167396B (zh) 一种钛酸锶介孔球的制备方法
CN103950972B (zh) 一种钙钛矿相钛酸铅单晶纳米片与锐钛矿相二氧化钛的异质结的制备方法
Truong et al. Hydrothermal synthesis of hierarchical TiO2 microspheres using a novel titanium complex coordinated by picolinic acid
CN111908503B (zh) 一种双晶相二氧化钛及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant