CN111632133A - R-spondin1蛋白在制备防治放射性骨损伤药物中的应用 - Google Patents

R-spondin1蛋白在制备防治放射性骨损伤药物中的应用 Download PDF

Info

Publication number
CN111632133A
CN111632133A CN202010690304.0A CN202010690304A CN111632133A CN 111632133 A CN111632133 A CN 111632133A CN 202010690304 A CN202010690304 A CN 202010690304A CN 111632133 A CN111632133 A CN 111632133A
Authority
CN
China
Prior art keywords
spondin1
bmsc
bone injury
preventing
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010690304.0A
Other languages
English (en)
Inventor
程斌
夏娟
张炜真
陈晓丹
谭家莉
张莉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORAL SUBSIDIARY SUN YAT-SEN UNIVERSITY HOSPITAL
Original Assignee
ORAL SUBSIDIARY SUN YAT-SEN UNIVERSITY HOSPITAL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORAL SUBSIDIARY SUN YAT-SEN UNIVERSITY HOSPITAL filed Critical ORAL SUBSIDIARY SUN YAT-SEN UNIVERSITY HOSPITAL
Priority to CN202010690304.0A priority Critical patent/CN111632133A/zh
Publication of CN111632133A publication Critical patent/CN111632133A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了R‑spondin1蛋白在制备防治放射性骨损伤药物中的应用,本发明要求保护R‑spondin1蛋白或R‑spondin1蛋白激活剂在制备防治放射性骨损伤药物中的应用;本发明通过研究发现,R‑spondn1是辐射微环境下BMSC自我保护的重要机制,R‑spondin1可以增强辐射微环境下BMSC的放射抵抗,维持其自我更新能力其成骨分化潜能,从而维持其再生能力,外源性R‑spondin1可以抑制放射引起的小鼠骨量丢失;因此,R‑spondin1可能是防治放射性骨损伤的新的有效靶点,对于防治放射性骨损伤具有重要的意义。

Description

R-spondin1蛋白在制备防治放射性骨损伤药物中的应用
技术领域
本发明属于生物医药领域,涉及R-spondin1蛋白在制备防治放射性骨损伤药物中的应用。
背景技术
放射治疗除了可以抑制肿瘤生长,不可避免地也会引起周围正常组织的损伤。放射性骨损伤是多种肿瘤放射治疗后的常见并发症,临床上表现为骨质疏松、骨髓炎,甚至骨坏死和病理性骨折。据报道,鼻咽癌放疗后放射性骨坏死的发生率达4%-30%,严重影响患者咀嚼、吞咽、语言功能,造成患者颜面部畸形,显著降低患者生活质量,甚至危及生命。罹患宫颈癌、直肠癌等癌症的女性接受盆腔放射治疗后,髋部骨折的发生风险比未接受放射治疗的女性高3倍,且发生髋部骨折的老年患者,一年内的死亡率高达14-58%,甚至超过了原发肿瘤的死亡率。
然而迄今为止,放射性骨组织损伤的机制尚未完全阐明,针对放射性骨损伤目前常用的治疗方法,如高压氧治疗、药物治疗、手术治疗等,但这些方法效果均不尽人意。其中,高压氧治疗的效果有限,药物治疗中双膦酸盐在抑制破骨细胞活性的同时也减少新骨形成,从而降低骨转化率,维生素D由于激活破骨细胞将导致过渡活跃的骨转换,而激素治疗则存在一定的副作用,特别是长期大剂量使用时。了解放射性骨损伤发生发展的机制、建立干预放射性骨损伤的新的有效策略成为相关学科亟待解决的重点、难点问题。
发明内容
针对上述问题,本发明的目的是提供一种可有效防治放射性骨损伤药物。
为实现上述目的,本发明采取的技术方案为:R-spondin1蛋白或R-spondin1蛋白表达激活剂在制备防治放射性骨损伤药物中的应用。
R-spondin1(或R-spondin-1)是一种内源性分泌蛋白,Wnt通路激活剂,本发明通过研究发现,R-spondin1蛋白在防治放射性骨损伤的过程中具有重要的作用。
作为本发明的优选实施方式,所述放射性骨损伤为X射线造成的骨损伤。
本发明还要求保护一种防治放射性骨损伤药物,所述药物中包括R-spondin1蛋白或R-spondin1蛋白表达激活剂。
需要接受放射性治疗的患者或放射性高危风险者,通过摄入外源R-spondin1蛋白,或通过使用R-spondin1蛋白表达激活剂增加内源R-spondin1蛋白可降低因放射导致的骨损伤;放射性骨损伤患者可通过摄入外源R-spondin1蛋白,或通过使用R-spondin1蛋白表达激活剂增加内源R-spondin1蛋白得到有效的治疗。
作为本发明的优选实施方式,还包括溶剂和药学上可接受的辅料。
作为本发明的优选实施方式,所述溶剂为PBS。
作为本发明的优选实施方式,所述药物为注射剂。
本发明通过研究发现,R-spondn1是辐射微环境下BMSC自我保护的重要机制,R-spondin1可以增强辐射微环境下BMSC的放射抵抗,维持其自我更新能力其成骨分化潜能,从而维持其再生能力,外源性R-spondin1可以抑制放射引起的小鼠骨量丢失;因此,R-spondin1可能是防治放射性骨损伤的新的有效靶点,对于防治放射性骨损伤具有重要的意义。
附图说明
图1为本发明关于R-spondin1在防治放射性骨损伤的研究的流程图。
图2为本发明R-spondin1对小鼠骨组织的放射保护作用实验流程图。
图3为本发明骨髓腔注射过程的示意图;A小鼠麻醉;B留置针头垂直于膝关节关节面进入胫骨骨髓腔;C微量注射器注射药物;D骨髓腔注射预实验,a为骨髓腔注射台盼蓝的胫骨,髓腔内透出蓝色,周围肌肉及骨组织表面无台盼蓝染液,可见所注射药物到达且可留置于骨髓腔中;b为骨髓腔注射PBS的胫骨。
图4为本发明R-spondin1对骨组织具有放射保护作用的实验结果;A为显微CT系统扫描成像图;B为各组骨骼量化参数统计结果。
图5为外源R-spondin1对辐射后BMSC影响的研究结果;A为BMSC中干性相关因子转录水平的qRT-PCR检测结果;B为平板克隆形成实验结果;C为BMSC中成骨相关因子转录水平的qRT-PCR检测结果;D为茜素红染色检测BMSC矿化结果。
图6为沉默R-spondin1对辐射后BMSC影响的研究结果;A为BMSC中干性相关因子转录水平的qRT-PCR检测结果;B为平板克隆形成实验结果;C为BMSC中成骨相关因子转录水平的qRT-PCR检测结果;D为茜素红染色检测BMSC矿化结果。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
本发明关于R-spondin1在防治放射性骨损伤的研究主要分为两部分:R-spondin1蛋白用于预防放射性骨损伤的效果和R-spondin1用于治疗放射性骨损伤的效果,流程如图1。本发明中提到的Rspo1为R-spondin1缩写。
实施例1R-spondin1对小鼠骨组织的放射保护作用
(1)、实验方法:
小鼠按体重分为两大组,分别为辐射组和非辐射组,每组6只。对于辐射及非辐射组小鼠,均于辐射前1天以及辐射第2、第4天,左侧胫骨骨髓腔注射重组R-spondin1蛋白(10μg/10μL PBS),右侧胫骨骨髓腔注射10μL PBS;首次辐射1个月后,小鼠CO2吸入处死,分离双侧胫骨,福尔马林固定24h,PBS洗涤3次,显微CT摄像收集骨组织相关信息(流程如图2所示)。其中:
①骨髓腔注射方法为:小鼠麻醉(ketamine/xylazine cocktail),涂抹眼药膏,
术区备皮,局部消毒。左手拇指食指使胫骨近端前移,将膝关节屈曲为90°,右手持已润湿的留置针头,通过髌腱垂直进针,旋转针向外和向下,与胫骨长轴平行慢慢插入胫骨髓腔,直到出现落空感,确认针头进入骨髓腔后,微量注射器推进10μLR-spondin1蛋白溶液或PBS(如图3示意图所示)。
②放疗过程为:小鼠麻醉后,仰面固定于辐射仪载物台上,胫骨以上部位,
包括股骨、躯干、上肢及头部等用铅板覆盖,以2Gy(1.6Gy/分照射1.25分钟,320kVPrecision X-ray machine)剂量辐射双侧胫骨。2Gy的剂量选择基于文献记载,与临床使用剂量对应。对照组小鼠除却辐射外(对照组小鼠不进行辐照),其它操作与辐射组完全相同。
标本放置于直径19毫米的标本固定器内,使用显微CT系统扫描整根胫骨(CT100Scanco Medical,Bassersdorf,瑞士)。在生长板下方,分析一0.36mm的小梁骨区域和0.36mm的皮质切片,以及胫腓关节的近端3mm。骨骼量化参数包括骨体积分数(BV/TV)、连续骨密度(Conn.D)、小梁数(Tb.N)、小梁厚度(Tb.Th)、小梁分离(tb.s)、结构模型指数(SMI)、体积骨密度(vBMD)。
(2)、实验结果:
CT结果显示(如图4),2Gy辐射后1个月,小鼠胫骨SMI升高,BV/TV降低;相对于注射PBS,注射R-spondin1能降低辐射后骨质疏松指数,*P<0.05。
实施例2外源R-spondin1蛋白对辐射微环境下BMSC自我更新能力及分化潜能的影响
C57BL6/J小鼠骨髓间充质干细胞及完全培养基购自Cyagen公司。细胞常规复苏,放置于37℃、5%CO2培养箱内完全湿度条件下培养,第二天换液。当细胞接近80%汇合时,采用胰酶消化法进行细胞传代,每2~3天换液。取第8-10代BMSC进行实验;分为3组:
对照组:培养液为不加入R-spondin1蛋白的普通培养液;也不进行辐照;
辐照组:培养液为不加入R-spondin1蛋白的普通培养液,但给予4Gy剂量辐射;
辐照+药物处理组(外源性R-spondin1蛋白):细胞常规接种于六孔板,当细胞融合度达50-60%时,更换含浓度为100ng/mL R-spondin1的培养液培养24h后,分别给予4Gy剂量辐射;辐射后即换新鲜培养液。
1)qRT-PCR检测辐射微环境下R-spondin1蛋白对BMSC干性相关因子mRNA水平的影响
辐射后1天,收集各组细胞,提取RNA检测干性标记物(oct4,sox2,slug,nanog)的mRNA水平。
2)平板克隆形成实验检测辐射微环境下R-spondin1蛋白对BMSC自我更新能力的影响
辐射后即将各组细胞用0.25%胰蛋白酶消化,并吹达成单个细胞,按500cell/孔的密度接种于六孔板,每孔2mL培养基(药物处理组继续加入100ng/mLR-spondin1),轻晃培养板,使细胞分布均匀,置37℃、5%CO2培养箱内完全湿度条件下培养1周。弃去上清,PBS轻轻润洗2次,吸去PBS,加1mL 4%多聚甲醛固定细胞30min,吸去固定液,PBS漂洗3次,每次5min。加入1mL结晶紫染液染色15min,吸去染液,PBS洗涤3次,每次5min。显微镜(低倍镜)计数大于50个细胞的克隆数。
3)qRT-PCR检测辐射微环境下R-spondin1蛋白对BMSC成骨相关因子mRNA水平的影响
辐射后即将细胞用0.25%胰蛋白酶消化,按密度2×105个/孔接种于六孔板,常规培养基培养,待细胞融合度达70-80%时,更换成骨诱导液,每3天换液,7d后收集RNA检测成骨相关因子(runx2,alp,ocn,ostriex)mRNA水平。成骨诱导过程中,培养液始终维持浓度为100ng/mLR-spondin1蛋白。
4)矿化结节染色检测辐射微环境下R-spondin1蛋白对BMSC矿化能力的影响
辐射后即将细胞用0.25%胰蛋白酶消化,按密度2×105个/孔接种于六孔板,常规培养基培养,将BMSC按2×105个/孔接种至6孔板,常规培养基培养,待细胞密度达到70%-80%时更换为矿化诱导液第一周每3d更换新鲜矿化诱导液,第二周每2d换液。矿化诱导过程中,药物处理组加入100ng/mLR-spondin1蛋白。细胞矿化诱导14天后,去除原培养基,PBS洗3次。加入4%多聚甲醛将孔板置于冰上固定15min,随后PBS洗3遍。加入茜素红染液染色15-20min,去除染液,ddH2O洗3次后观察拍照。
实验结果:
各实验的实验结果以均数±标准差表示,采用SPSS 20.0统计软件对结果进行分析。两组定量数据采用两样本t检验分析。多组数据比较采用单因素方差分析(one wayanalysis of variance,ANOVA)。首先对数据进行正态性和方差齐性检验,若样本呈正态分布且方差齐,差异有显著性,采用Bonferroni行进一步两两比较,以p<0.05为差异有统计学意义。不符合上述条件者,采用秩和检验进行多组间比较,组间两两比较采用Tamhane检验,以p<0.05为差异有统计学意义。
结果显示(如图5):4Gy辐射能显著降低BMSC中干性相关因子oct4、sox2、slug和nanog的转录水平,大大削弱BMSC克隆形成能力,成骨相关因子runx2、alp、ocn和ostriex的转录水平亦显著降低,BMSC矿化结节形成减少;但辐射后加入R-spondin1重组蛋白可有效恢复中干性相关因子的转录水平,维持4Gy辐射后BMSC的克隆形成能力,并上调成骨相关因子的表达,能够有效促进矿化结节形成。上述实验数据表明,外源的R-spondin1蛋白的加入,能有效恢复由于辐射造成的相关因子表达失衡,促进成骨恢复,从而治疗由于辐射造成的骨损伤。
实施例3干扰R-spondin1蛋白对辐射微环境下BMSC自我更新能力及分化潜能的影响
与实施例2相同,取第8~10代的BMSC进行实验;分为3组:
siRNA-R1-1组(R-spondin1蛋白干扰):转染前一天,将2×105骨髓间充质干细胞接种于6孔板上,加入1.8mL不含抗生素的细胞培养基培养;当细胞融合度达到60%左右时,进行针对R-spondin1的siRNA-R1-1转染,转染24h后,更换新鲜培养基;4Gy辐射后按实施例2进行后续相关指标检测;siRNA-R1-1的序列如表1所示。
siRNA-R1-2组:与siRNA-R1-1组基本相同,但转染的siRNA为siRNA-R1-2;siRNA-R1-2的序列如表1所示。
siRNA-NC组:与siRNA-R1-1组基本相同,但转染的siRNA为siRNA-NC(siRNA-NC是转染无靶标的siRNA)。
表1 siRNA-R1-1和siRNA-R1-2的序列的序列
Figure BDA0002588437330000071
根据实施例2的方法对BMSC干性相关因子mRNA水平、BMSC自我更新能力、BMSC成骨相关因子mRNA水平和BMSC矿化能力进行检测;其中,更换的培养为不含药物(即R-spondin1)的普通培养基。
实验结果:
各实验的实验结果以均数±标准差表示,采用SPSS 20.0统计软件对结果进行分析。两组定量数据采用两样本t检验分析。多组数据比较采用单因素方差分析(one wayanalysis of variance,ANOVA)。首先对数据进行正态性和方差齐性检验,若样本呈正态分布且方差齐,差异有显著性,采用Bonferroni行进一步两两比较,以p<0.05为差异有统计学意义。不符合上述条件者,采用秩和检验进行多组间比较,组间两两比较采用Tamhane检验,以p<0.05为差异有统计学意义。
结果显示(如图6):沉默BMSC中的R-spondin1的表达,能够进一步降低辐射后BMSC中干性相关因子(oct4、sox2、slug、nanog)以及成骨相关因子(runx2、alp、ocn和ostriex),并进一步削弱BMSC克隆形成能力,减少BMSC矿化结节形成。上述实验数据表明,R-spondin1能够减低辐射对BMSC中干性相关因子、成骨相关因子的表达的影响,并能够降低辐射对BMSC克隆形成以及矿化能力造成的损害。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (6)

1.R-spondin1蛋白或R-spondin1蛋白激活剂在制备防治放射性骨损伤药物中的应用。
2.如权利要求1所述的应用,其特征在于,所述放射性骨损伤为X射线造成的骨损伤。
3.一种防治放射性骨损伤药物,其特征在于,所述药物中包括R-spondin1蛋白或R-spondin1蛋白表达激活剂。
4.如权利要求3所述的药物,其特征在于,还包括溶剂和药学上可接受的辅料。
5.如权利要求4所述的药物,其特征在于,所述溶剂为PBS。
6.如权利要求3所述的药物,其特征在于,所述药物为注射剂。
CN202010690304.0A 2020-07-16 2020-07-16 R-spondin1蛋白在制备防治放射性骨损伤药物中的应用 Pending CN111632133A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010690304.0A CN111632133A (zh) 2020-07-16 2020-07-16 R-spondin1蛋白在制备防治放射性骨损伤药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010690304.0A CN111632133A (zh) 2020-07-16 2020-07-16 R-spondin1蛋白在制备防治放射性骨损伤药物中的应用

Publications (1)

Publication Number Publication Date
CN111632133A true CN111632133A (zh) 2020-09-08

Family

ID=72323757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010690304.0A Pending CN111632133A (zh) 2020-07-16 2020-07-16 R-spondin1蛋白在制备防治放射性骨损伤药物中的应用

Country Status (1)

Country Link
CN (1) CN111632133A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150209407A1 (en) * 2012-10-11 2015-07-30 The Trustees Of The University Of Pennsylvania Methods for the treatment and prevention of osteoporosis and bone-related diseases
US20160074400A1 (en) * 2012-08-06 2016-03-17 University Of Southern California Wnt modulators for the protection, mitigation and treatment of radiation injury
CN105497006A (zh) * 2015-12-15 2016-04-20 武汉华纳联合药业有限公司 黄酮醇、黄烷醇类化合物的用途
CN109554351A (zh) * 2018-12-12 2019-04-02 山西医科大学 Rspo1诱导骨髓间充质干细胞向心肌样细胞分化的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160074400A1 (en) * 2012-08-06 2016-03-17 University Of Southern California Wnt modulators for the protection, mitigation and treatment of radiation injury
US20150209407A1 (en) * 2012-10-11 2015-07-30 The Trustees Of The University Of Pennsylvania Methods for the treatment and prevention of osteoporosis and bone-related diseases
CN105497006A (zh) * 2015-12-15 2016-04-20 武汉华纳联合药业有限公司 黄酮醇、黄烷醇类化合物的用途
CN109554351A (zh) * 2018-12-12 2019-04-02 山西医科大学 Rspo1诱导骨髓间充质干细胞向心肌样细胞分化的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙博等: "R-spondin1在促进人骨髓间充质干细胞成骨分化中的作用", 《贵阳医学院学报》 *
陈晓丹等: "R-spondin1对骨组织及骨髓间充质干细胞的S-放射保护作用及其机制研究", 《2018全国口腔生物医学学术年会论文汇编》 *

Similar Documents

Publication Publication Date Title
Jacobsson et al. Dose-response for bone regeneration after single doses of 60Co irradiation
CN114984047A (zh) 血浆外泌体在制备治疗骨质疏松症药物中的应用
Foote et al. Radiation therapy for glottic cancer using 6‐MV photons
CN111632133A (zh) R-spondin1蛋白在制备防治放射性骨损伤药物中的应用
Heisel et al. Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells
Zhang et al. Treatment of Radiation Bone Injury with Transplanted hUCB‐MSCs via Wnt/β‐Catenin
Croizat et al. Long term radiation effects on the bone marrow stem cells of C3H mice
Horowitz et al. Conditioned medium from plateau-phase cells: effect on growth of proliferative cells and on repair of potentially lethal radiation damage
CN112933106A (zh) 硫酸软骨素在制备预防和治疗椎间盘退变的药物中的应用
CN115287263B (zh) Sp7基因修饰的骨髓间充质干细胞及其制备方法和应用
CN116370485B (zh) 2-羟基苯基α-D-吡喃葡萄糖苷在制备治疗骨质疏松症药物中的应用
Wang et al. Alveolar soft part sarcoma following radiotherapy for a spinal hemangioma a case report
Zhai et al. Effect of Wubeizi ointment aqueous solution on the expression of type I and III procollagen genes in keloid fibroblasts
Zhen et al. Anthracycline Chemotherapy in Treating Advanced Breast Cancer and its Effect on Estradiol and Tumor Size.
CN113908148B (zh) 川陈皮素在制备抗胆管癌药物中的应用
Liu et al. Erythropoietin plays a protective role in submandibular gland hypofunction induced by irradiation
CN117085051B (zh) 一种中药槐耳乙醇溶液萃取物联合顺铂的药物组合物及其应用
Miller et al. Comparison of radiosensitivities of human autologous normal and neoplastic thyroid epithelial cells
CN116650453B (zh) 大黄素在制备治疗食管癌及食管癌放疗增敏药物中的应用
CN109939095B (zh) 一种硬脂酸甲酯的应用
CN110354257B (zh) 鸟苷三磷酸环化水解酶1的应用及药物
Berg et al. Localization of radioactivity in the urinary bladder and the regional lymph nodes
Yusuf et al. A Case of Malignant Myxofibrosarcoma With Hypoglycemia Attacks
Yin et al. Ginsenoside Rg3 regulates sensitization effect of superoxide dismutase on thyroid cancer photodynamic therapy via antioxidant response element signaling pathway
RU2278707C2 (ru) Способ лучевого лечения больных злокачественными лимфомами

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200908

RJ01 Rejection of invention patent application after publication