CN111621772B - 一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法 - Google Patents

一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法 Download PDF

Info

Publication number
CN111621772B
CN111621772B CN202010172519.3A CN202010172519A CN111621772B CN 111621772 B CN111621772 B CN 111621772B CN 202010172519 A CN202010172519 A CN 202010172519A CN 111621772 B CN111621772 B CN 111621772B
Authority
CN
China
Prior art keywords
coating solution
pattern
placing
coking
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010172519.3A
Other languages
English (en)
Other versions
CN111621772A (zh
Inventor
王志远
丁旭东
霍官平
王蒙
吴进
邢志宏
周苏渟
陶银霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010172519.3A priority Critical patent/CN111621772B/zh
Publication of CN111621772A publication Critical patent/CN111621772A/zh
Application granted granted Critical
Publication of CN111621772B publication Critical patent/CN111621772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

发明提出一种Si‑Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法,从而有效地抑制裂解炉管内壁的结焦现象。本发明的涂层可以有效地隔离金属表面的催化活性位与结焦母体的接触,抗积碳性能优异,并且厚度适均,不影响热量传递,同时具有耐高温、与金属基底结合强度高、不易剥落以及制作成本低、方法简便的特点,适用于蒸汽热裂解法生产工艺的苛刻工况条件。

Description

一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法
技术领域
本发明涉及防结焦涂层技术领域,尤其涉及一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法。
背景技术
乙烯的产量是衡量一个国家化工水平的重要指标。在石化工业中,乙烯主要通过蒸汽热裂解法生产。在裂解生产过程中,由于烃类热裂解的二次反应,会在裂解炉管管壁表面形成大量积碳。烃类热裂解结焦通过渗碳过程腐蚀金属炉管,而且积碳层随着裂解过程的进行不断增厚,使炉管内径减小,这不仅增加了炉管内部压力,导致烯烃选择性降低,而且使炉管内表面热阻增加,进而降低了裂解炉热效率。当积碳层达到一定厚度时,为了保证炉管出口产物产率,裂解炉必须停炉清焦,这将降低单元的运行时间,并增加额外的能量消耗。因此,抑制烃类热裂解过程中积碳的产生,是提高乙烯产率的重要方法。
目前,国内外主要的抑制结焦方法包括:在裂解原料中加入抑制剂、设计并开发具有优异抗积碳性能的炉管和在炉管内壁制备涂层等。其中,抑制剂方法需要随原料连续注入,成本较高;新型裂解炉管的制造需要复杂的冶炼工艺和制造装备,且只适合新裂解炉的建造安装或在役裂解炉的改造。通过化学处理法在裂解炉管内壁制备抗结焦涂层,不仅工艺简单,成本低廉,可利用裂解炉区已有公用工程设备,而且可对在役炉管进行反复涂覆,不影响产物分布和产率。
发明内容
本发明的目的在于提出一种可以有效抑制铁铬镍合金裂解炉管结焦,并且制作成本低的Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法。
为达到上述目的,本发明提出一种Si-Ce涂层,所述涂层通过将式样依次置于硅涂层溶液和铈涂层溶液后制备而成;其中,所述硅涂层溶液为正硅酸四乙酯、甲基三乙氧基硅烷与去离子水混合后,通过盐酸滴定完成;所述铈涂层为六水硝酸铈与乙醇的混合溶液混合至乙醇、盐酸和乙二醇的混合溶液中配置完成。
优选的,所述硅涂层溶液的制备工艺为:
步骤1:将正硅酸四乙酯、甲基三乙氧基硅烷与去离子水在35℃配成溶液,并静置20min;
步骤2:采用滴定管将上述混合溶液进行盐酸滴定;
步骤3:滴定完成后,将溶液静置12h,配置完成。
优选的,所述铈涂层溶液的制备工艺为:
步骤1:配置六水硝酸铈与乙醇的混合溶液;
步骤2:配置乙醇、盐酸和乙二醇的混合溶液;
步骤3:将上述两种混合溶液混合后搅拌1h后配置完成。
优选的,在所述硅涂层溶液中,正硅酸四乙酯与甲基三乙氧基硅烷的摩尔质量比为1:4-1:10;
在所述铈涂层溶液中,六水硝酸铈与乙醇的摩尔质量比为1:40;乙醇、盐酸与乙二醇的摩尔质量比为40:1:1。
本发明还提出一种抑制铁铬镍合金裂解炉管结焦的方法,步骤如下:
步骤1:取式样,并对式样进行预处理;
步骤2:制备硅涂层溶液,并将所述式样置于所述硅涂层溶液中进行反应,之后依次进行干燥、退火以及清洗处理;
步骤3:制备铈涂层溶液,并将所述式样置于铈涂层溶液中进行反应,之后依次进行干燥、退火以及清洗处理,完成制备。
优选的,在步骤1中,具体包括以下步骤:
步骤1.1:将试样用砂纸打磨180-200目并用去离子水清洗;
步骤1.2:将清洗后的所述式样置于配置好的碳酸钠溶液中,在40℃-45℃的温度下浸渍30min;
步骤1.3:再次用去离子水清洗所述式样后,将所述式样置入硫酸溶液中,在40℃-45℃的温度下浸渍30min;
步骤1.4:将浸渍后的式样再次用去离子水清洗后,置于室温下干燥。
优选的,在步骤2中,具体包括以下步骤:
步骤2.1:将步骤1预处理后的所述式样置于硅涂层溶液中,用控温磁力搅拌器进行搅拌,转速为30-40r/min;
步骤2.2:将搅拌后的所述式样置于干燥箱中,在50℃的环境下,干燥10h,接着在120℃的环境下干燥20h;
步骤2.3:将干燥后的式样再置于硅涂层溶液中,重复上述步骤2.1和步骤 2.2;
步骤2.4:重复步骤完成后,将所述式样置于马弗炉高温焙烧退火,分别采用400℃退火以及850℃退火;
步骤2.5:退火完成后,取出所述式样,用去离子水对所述式样进行清洗。
优选的,在步骤3中,具体包括以下步骤:
步骤3.1:将完成步骤2工艺的所述式样置于铈涂层溶液中,控温磁力搅拌器进行搅拌,转速为30-40r/min;
步骤3.2:将所述式样置于干燥箱中,在50℃的环境下干燥10h,在120℃的环境下干燥20h;
步骤3.3:将干燥后的所述式样再置于铈涂层溶液中,重复上述步骤3.1和步骤3.2;
步骤3.4:重复步骤完成后,将所述式样置于马弗炉高温焙烧退火,分别采用400℃退火以及850℃退火;
步骤3.5:退火完成后,取出所述式样,用去离子水对所述式样进行清洗;完成制备。
与现有技术相比,本发明的优势之处在于:本发明采用的浸渍法制作涂层,不仅工艺简单,采用设备较少,耗时较短,而且式样与浸渍液体完全接触,反应快,配成的溶液可以反复利用,制得的涂层分布均匀,制作成本较低。
硅化合物的熔点较高,密度较低,在高温条件下具有良好的热稳定性,适用范围和条件较宽,是常用的涂层源物质。铈是稀土元素,铈元素的加入可以促进氧化气氛与焦炭的反应,从而减少焦炭的沉积。利用硅/铈氧化物制备的涂层具有优异的抗结焦性能,涂层与基底结合强度高,不易剥落。
本发明的Si-Ce涂层具体有如下优点:
1、有效隔离金属表面的催化活性位点与结焦母体的接触抗结焦性能优异;
2、厚度适均,不影响热量传递,适用于蒸汽热裂解法烯烃生产工艺的工况;
3、耐高温,与基底结合能力强,不易剥落;
4、成本较低,制备工艺简便,可对在役炉管进行重复涂覆。
附图说明
图1为本发明实施例中涂覆有Si-Ce涂层显微镜下的结构示意图;
图2为本发明实施例中Si-Ce涂层的能谱分析图;
图3为本发明实施例中空白试样以及具有涂层的试样进行热裂解结焦评价实验后,其表面焦炭的微观结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案作进一步地说明。
本发明提出一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法,在本实施例中,操作人员通过取样30*10*3mm的试样进行表面涂层处理,包括以下步骤:
首选配置硅涂层溶液以及铈涂层溶液,具体如下:
硅涂层溶液的制备工艺为:
步骤1:将正硅酸四乙酯、甲基三乙氧基硅烷与去离子水在35℃配成溶液,并静置20min;
步骤2:采用滴定管将上述混合溶液进行盐酸滴定;
步骤3:滴定完成后,将溶液静置12h,配置完成。
铈涂层溶液的制备工艺为:
步骤1:配置六水硝酸铈与乙醇的混合溶液;
步骤2:配置乙醇、盐酸和乙二醇的混合溶液;
步骤3:将上述两种混合溶液混合后搅拌1h后配置完成。
在本实施例中,在硅涂层溶液中,正硅酸四乙酯与甲基三乙氧基硅烷的摩尔质量比为1:4-1:10;
在铈涂层溶液中,六水硝酸铈与乙醇的摩尔质量比为1:40;乙醇、盐酸与乙二醇的摩尔质量比为40:1:1。
接着,对试样表面进行涂层处理,具体步骤如下:
步骤1:取式样,并对式样进行预处理;
步骤1.1:将试样用砂纸打磨180-200目并用去离子水清洗;
步骤1.2:将清洗后的式样置于配置好的碳酸钠溶液中,在40℃-45℃的温度下浸渍30min;
步骤1.3:再次用去离子水清洗式样后,将式样置入硫酸溶液中,在40℃ -45℃的温度下浸渍30min;
步骤1.4:将浸渍后的式样再次用去离子水清洗后,置于室温下干燥。
步骤2:制备硅涂层溶液,并将式样置于硅涂层溶液中进行反应,之后依次进行干燥、退火以及清洗处理;
步骤2.1:将步骤1预处理后的式样置于硅涂层溶液中,用控温磁力搅拌器进行搅拌,转速为30-40r/min;
步骤2.2:将搅拌后的式样置于干燥箱中,在50℃的环境下,干燥10h,接着在120℃的环境下干燥20h;
步骤2.3:将干燥后的式样再置于硅涂层溶液中,重复上述步骤2.1和步骤 2.2;
步骤2.4:重复步骤完成后,将式样置于马弗炉高温焙烧退火,分别采用 400℃退火以及850℃退火;
步骤2.5:退火完成后,取出式样,用去离子水对式样进行清洗。
步骤3:制备铈涂层溶液,并将式样置于铈涂层溶液中进行反应,之后依次进行干燥、退火以及清洗处理,完成制备。
步骤3.1:将完成步骤2工艺的式样置于铈涂层溶液中,控温磁力搅拌器进行搅拌,转速为30-40r/min;
步骤3.2:将式样置于干燥箱中,在50℃的环境下干燥10h,在120℃的环境下干燥20h;
步骤3.3:将干燥后的式样再置于铈涂层溶液中,重复上述步骤3.1和步骤 3.2;
步骤3.4:重复步骤完成后,将式样置于马弗炉高温焙烧退火,分别采用 400℃退火以及850℃退火;
步骤3.5:退火完成后,取出式样,用去离子水对式样进行清洗;完成制备。
将制得的Si-Ce氧化物的复合涂层,经过扫描电子显微镜和能谱分析;其显微镜下的观测图如图1所示,其能谱分析图如图2所示。
进一步将空白式样和涂层式样进行热裂解结焦评价实验,该实验以石脑油为裂解原料,裂解温度850℃,时间为一小时,分别把式样放在裂解炉管中,实验结束后对式样进行表征,发现空白式样中产生很多丝状的碳焦,而具有Si-Ce 涂层的式样中并没有发现大量的丝状焦,这进而说明了Si-Ce涂层明显抑制了催化结焦的生成,而且涂层表面的焦炭粒子空隙较大,说明与基底结合不牢固,易于清除,如图3所示。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (7)

1.一种抑制铁铬镍合金裂解炉管结焦的Si-Ce涂层,其特征在于,所述涂层通过将式样依次置于硅涂层溶液和铈涂层溶液后制备而成;其中,所述硅涂层溶液为正硅酸四乙酯、甲基三乙氧基硅烷与去离子水混合后,通过盐酸滴定完成;所述铈涂层溶液为六水硝酸铈与乙醇的混合溶液混合至乙醇、盐酸和乙二醇的混合溶液中配置完成;
在所述硅涂层溶液中,正硅酸四乙酯与甲基三乙氧基硅烷的摩尔质量比为1:4-1:10;
在所述铈涂层溶液中,六水硝酸铈与乙醇的摩尔质量比为1:40;乙醇、盐酸与乙二醇的摩尔质量比为40:1:1。
2.根据权利要求1所述的抑制铁铬镍合金裂解炉管结焦的Si-Ce涂层,其特征在于,所述硅涂层溶液的制备工艺为:
步骤1:将正硅酸四乙酯、甲基三乙氧基硅烷与去离子水在35℃配成溶液,并静置20min;
步骤2:采用滴定管将上述混合溶液进行盐酸滴定;
步骤3:滴定完成后,将溶液静置12h,配置完成。
3.根据权利要求1所述的抑制铁铬镍合金裂解炉管结焦的Si-Ce涂层,其特征在于,所述铈涂层溶液的制备工艺为:
步骤1:配置六水硝酸铈与乙醇的混合溶液;
步骤2:配置乙醇、盐酸和乙二醇的混合溶液;
步骤3:将上述两种混合溶液混合后搅拌1h后配置完成。
4.一种抑制铁铬镍合金裂解炉管结焦的方法,其特征在于,使用如权利要求1-3中任意一项所述的Si-Ce涂层对裂解炉管表面进行涂覆,步骤如下:
步骤1:取式样,并对式样进行预处理;
步骤2:制备硅涂层溶液,并将所述式样置于所述硅涂层溶液中进行反应,之后依次进行干燥、退火以及清洗处理;
步骤3:制备铈涂层溶液,并将所述式样置于铈涂层溶液中进行反应,之后依次进行干燥、退火以及清洗处理,完成制备。
5.根据权利要求4所述的抑制铁铬镍合金裂解炉管结焦的方法,其特征在于,在步骤1中,具体包括以下步骤:
步骤1.1:将试样用砂纸打磨180-200目并用去离子水清洗;
步骤1.2:将清洗后的所述式样置于配置好的碳酸钠溶液中,在40℃-45℃的温度下浸渍30min;
步骤1.3:再次用去离子水清洗所述式样后,将所述式样置入硫酸溶液中,在40℃-45℃的温度下浸渍30min;
步骤1.4:将浸渍后的式样再次用去离子水清洗后,置于室温下干燥。
6.根据权利要求4所述的抑制铁铬镍合金裂解炉管结焦的方法,其特征在于,在步骤2中,具体包括以下步骤:
步骤2.1:将步骤1预处理后的所述式样置于硅涂层溶液中,用控温磁力搅拌器进行搅拌,转速为30-40r/min;
步骤2.2:将搅拌后的所述式样置于干燥箱中,在50℃的环境下,干燥10h,接着在120℃的环境下干燥20h;
步骤2.3:将干燥后的式样再置于硅涂层溶液中,重复上述步骤2.1和步骤2.2;
步骤2.4:重复步骤完成后,将所述式样置于马弗炉高温焙烧退火,分别采用400℃退火以及850℃退火;
步骤2.5:退火完成后,取出所述式样,用去离子水对所述式样进行清洗。
7.根据权利要求4所述的抑制铁铬镍合金裂解炉管结焦的方法,其特征在于,在步骤3中,具体包括以下步骤:
步骤3.1:将完成步骤2工艺的所述式样置于铈涂层溶液中,控温磁力搅拌器进行搅拌,转速为30-40r/min;
步骤3.2:将所述式样置于干燥箱中,在50℃的环境下干燥10h,在120℃的环境下干燥20h;
步骤3.3:将干燥后的所述式样再置于铈涂层溶液中,重复上述步骤3.1和步骤3.2;
步骤3.4:重复步骤完成后,将所述式样置于马弗炉高温焙烧退火,分别采用400℃退火以及850℃退火;
步骤3.5:退火完成后,取出所述式样,用去离子水对所述式样进行清洗;完成制备。
CN202010172519.3A 2020-03-12 2020-03-12 一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法 Active CN111621772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010172519.3A CN111621772B (zh) 2020-03-12 2020-03-12 一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010172519.3A CN111621772B (zh) 2020-03-12 2020-03-12 一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法

Publications (2)

Publication Number Publication Date
CN111621772A CN111621772A (zh) 2020-09-04
CN111621772B true CN111621772B (zh) 2021-06-29

Family

ID=72269681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010172519.3A Active CN111621772B (zh) 2020-03-12 2020-03-12 一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法

Country Status (1)

Country Link
CN (1) CN111621772B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004724A (zh) * 2021-03-08 2021-06-22 华东理工大学 一种抑制炉管结焦的涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263252A (ja) * 2003-03-03 2004-09-24 Jfe Steel Kk 耐白錆性に優れたクロムフリー化成処理鋼板
CN1830859A (zh) * 2006-03-23 2006-09-13 上海交通大学 单晶硅片表面氨基硅烷-稀土纳米薄膜的制备方法
CN102899067A (zh) * 2011-07-29 2013-01-30 中国石油化工股份有限公司 一种裂解炉管及其制备方法和应用
CN108219825A (zh) * 2017-12-30 2018-06-29 闫博文 一种燃料裂解炉碳钢内壁抗结焦涂层的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436866A (zh) * 2013-08-13 2013-12-11 北京科技大学 一种金属防腐蚀疏水性膜层的制备方法
US20230203663A1 (en) * 2017-04-14 2023-06-29 Shilpa Medicare Ltd Corrosion resistant multilayer coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263252A (ja) * 2003-03-03 2004-09-24 Jfe Steel Kk 耐白錆性に優れたクロムフリー化成処理鋼板
CN1830859A (zh) * 2006-03-23 2006-09-13 上海交通大学 单晶硅片表面氨基硅烷-稀土纳米薄膜的制备方法
CN102899067A (zh) * 2011-07-29 2013-01-30 中国石油化工股份有限公司 一种裂解炉管及其制备方法和应用
CN108219825A (zh) * 2017-12-30 2018-06-29 闫博文 一种燃料裂解炉碳钢内壁抗结焦涂层的制备方法

Also Published As

Publication number Publication date
CN111621772A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN102807887B (zh) 一种抑制烃类裂解炉管催化结焦的裂解炉管及其制造方法
CN111621772B (zh) 一种Si-Ce涂层及抑制铁铬镍合金裂解炉管结焦的方法
CN106590725A (zh) 一种处理裂解炉管内表面的方法
CN101724827B (zh) 减少乙烯裂解炉炉管结焦并提高乙烯选择性的方法
CN102586770B (zh) 铝合金表面钛锆/多羟基酯化物复合转化膜的制备方法
CN102586873B (zh) 一种Al2O3反蛋白石结构的一步法制备方法
JP7096422B2 (ja) 金属表面にグラフェンコーティング層を製造する方法
KR20150095831A (ko) 알루미나 배리어층을 갖는 내코크스화 촉매 코팅
CN105195469B (zh) 一种超声波清洗石墨舟及工艺卡点的方法
CN101475827A (zh) 一种用于石油烃裂解的裂解炉管
CN103469185B (zh) 锆合金基体表面碳化硅涂层材料的制备方法
CN104888496A (zh) 一种对水下疏油网膜表面进行纳米材料涂覆的方法
US10053780B2 (en) Method for depositing an anti-corrosion coating
CN111003759A (zh) 含亚氧化钛中间层的涂层电极及其制备方法与应用以及电化学水处理设备
CN1843629A (zh) 载体表面涂敷微米级沸石分子筛的催化剂制备方法
CN113461354B (zh) 一种具有改善沥青混凝土路面微波吸收性能的Si3N4/Fe复合粉末的制备方法及应用
CN102226260A (zh) 提高乙烯裂解装置抑焦硅/硫复合涂层热物理性能的方法
Liu et al. Preparation and anti-coking application of sol–gel SiO 2 coating in a delayed coking furnace
CN101787526B (zh) 在紫铜基底上制备微纳米二氧化硅薄膜的方法
CN105621432A (zh) 一种改性β分子筛及其制备方法
CN102978597A (zh) 冷轧板工件喷涂涂装用喷淋型综合皮膜化成处理剂及制备方法
CN105369223A (zh) 一种抗腐蚀TiO2-ZrO2涂层的液相沉积制备方法及含有该涂层的防腐蚀金属
CN113120995A (zh) 一种二氧化钛涂层电极及其制备方法
CN112281166A (zh) 一种高温环保碱砂铝型材表面处理工艺
CN116159554B (zh) 乙烯裂解炉管涂层材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant