CN111620318B - 一种纳米零价铁粒子负载泡沫炭复合材料的制备方法 - Google Patents

一种纳米零价铁粒子负载泡沫炭复合材料的制备方法 Download PDF

Info

Publication number
CN111620318B
CN111620318B CN202010515921.7A CN202010515921A CN111620318B CN 111620318 B CN111620318 B CN 111620318B CN 202010515921 A CN202010515921 A CN 202010515921A CN 111620318 B CN111620318 B CN 111620318B
Authority
CN
China
Prior art keywords
foam carbon
composite material
valent iron
nano zero
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010515921.7A
Other languages
English (en)
Other versions
CN111620318A (zh
Inventor
杨帆
程魁
李帅帅
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Agricultural University
Original Assignee
Northeast Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Agricultural University filed Critical Northeast Agricultural University
Priority to CN202010515921.7A priority Critical patent/CN111620318B/zh
Publication of CN111620318A publication Critical patent/CN111620318A/zh
Application granted granted Critical
Publication of CN111620318B publication Critical patent/CN111620318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,它涉及一种泡沫炭复合材料的制备方法。本发明是要解决现有纳米零价铁复合材料的制备方法成本较高、纳米粒子易聚集、不易回收以及Fe0纳米粒子与基体结合不稳定。方法:一、制备具有三维网络空间结构的泡沫炭基体;二、制备亲水性泡沫炭;三、制备泡沫炭‑Fe2O3复合物;四、NaBH4还原,得到纳米零价铁粒子负载泡沫炭复合材料。本发明制备的纳米零价铁粒子负载泡沫炭复合材料由于泡沫炭具有自支撑三维网络空间结构,增加了纳米材料在水中的流动性并且易于回收,降低了实际污水处理的成本。本发明用于污水中重金属离子的移除。

Description

一种纳米零价铁粒子负载泡沫炭复合材料的制备方法
技术领域
本发明涉及一种泡沫炭复合材料的制备方法。
背景技术
纳米零价铁(nZVI)粒子由于其较小的粒径、较高的反应活性和对环境友好等优点而在污水中重金属的去除方面表现出了巨大的潜力。然而,nZVI的稳定性不足,很容易在水中迅速团聚,形成微型、毫米级甚至更大的团聚体。此外,正是由于nZVI粒子的高活性,使得它在制备、储存及应用过程中非常容易出现氧化和不易回收再利用的问题。因此,nZVI的实际应用受到了限制。
将纳米零价铁进行负载改性可以显著改善纳米零价铁易团聚的缺点,在现有的技术中,生物炭、活性炭、碳纳米管和浮石等已被用作nZVI的支撑材料,但是现有的技术往往存在一些缺点。例如:传统的负载方案往往是碳热还原法或液相还原法。前者是在高温下(例如800℃)利用碳的还原性将高价态的铁还原为零价铁,此方最大的缺点是在零价铁的合成过程中需要消耗大量的能量。而液相还原法则是将载体材料与铁盐溶液混合,在加入还原剂的条件下将高价态的铁离子还原为零价铁并沉积到载体上,该方法的缺点是;大部分零价铁是通过沉积作用负载到载体上,得到的复合材料缺乏稳定性,在实际应用过程中可能发生纳米粒子的脱落现象。此外,传统的纳米零价铁复合材料往往是粉末状的,在实际应用中的流动性较差,而且在吸附结束后不易于回收或产生二次污染,增加了水处理的成本。
发明内容
本发明是要解决现有纳米零价铁复合材料的制备方法成本较高、纳米粒子易聚集、不易回收以及Fe0纳米粒子与基体结合不稳定的问题,提供一种纳米零价铁粒子负载泡沫炭复合材料的制备方法。
一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,是按以下步骤完成的:
一、首先对三聚氰胺海绵进行洗涤,然后干燥,再将干燥的三聚氰胺海绵放入管式炉中,向管式炉中通入惰性气体,再控制管式炉升温程序,三聚氰胺海绵在惰性气氛和高温条件下热解,得到具有三维网络空间结构的泡沫炭基体;
二、首先将具有三维网络空间结构的泡沫炭基体进行剪裁,然后完全浸入到硝酸溶液中,最后转移到反应釜中进行水热反应,得到亲水性泡沫炭;
三、首先将亲水性泡沫炭完全浸入到金属盐溶液中,然后取出后放入烘箱中烘干,最后放入管式炉中,在惰性气体保护下,低温退火,得到泡沫炭-Fe2O3复合物;
四、首先将泡沫炭-Fe2O3复合物完全浸入到无水乙醇与水的混合溶液中,然后将NaBH4溶液在反应过程中分次加入,反应结束后取出清洗,再真空干燥,得到纳米零价铁粒子负载泡沫炭复合材料。
进一步的,步骤一中所述的惰性气体为氮气或氩气。
进一步的,步骤三中所述的惰性气体为氮气或氩气。
进一步的,步骤一中所述的升温程序为:首先以1℃/min~5℃/min的升温速率从室温升温至280℃~300℃,在280℃~300℃下保持5min~20min,然后以0.5℃/min~1℃/min的升温速率从280℃~300℃升温至400℃~450℃,在400℃~450℃下保持5min~20min,最后以1℃/min~3℃/min的升温速率从400℃~450℃升温至700℃~800℃,在700℃~800℃下保持1h~2h,之后自然降温至室温或以1℃/min的升温速率从室温升温至700℃~800℃,在700℃~800℃下保持1h~2h。
进一步的,步骤一中首先使用蒸馏水对三聚氰胺海绵洗涤3~5次,然后使用无水乙醇对三聚氰胺海绵洗涤3~5次,最后在温度为60℃~80℃的烘箱中烘干。
进一步的,步骤二中将具有三维网络空间结构的泡沫炭基体剪裁成厚度为0.5cm~1cm的薄片。
进一步的,步骤二中所述的硝酸溶液的浓度为1.5mol/L~3mol/L;所述的水热反应的温度为100℃~120℃,水热反应的时间为1h~2h。
进一步的,步骤三中所述的金属盐溶液为FeCl3·6H2O溶液、Fe2(SO4)3溶液或Fe(NO3)3·9H2O溶液;所述的金属盐溶液的浓度为0.1mol/L~0.75mol/L。
进一步的,步骤三中所述的低温退火工艺为:以3℃/min~5℃/min的升温速率将管式炉从室温升温至200℃~500℃,再在200℃~500℃下保温2h~6h。
进一步的,步骤四中所述的无水乙醇与水的混合溶液中无水乙醇与水的体积比为3:7;步骤四中所述的泡沫炭-Fe2O3复合物的质量与无水乙醇与水的混合溶液的体积比为(0.2g~0.3g):100mL;步骤四中所述的无水乙醇与水的混合溶液与NaBH4溶液的体积比为2:1;步骤四中所述的NaBH4溶液的浓度为2mol/L~2.5mol/L。
进一步的,步骤四中首先将泡沫炭-Fe2O3复合物完全浸入到无水乙醇与水的混合溶液中,然后将NaBH4溶液在反应过程中分3次~6次加入,每次加入NaBH4溶液的间隔时间相同;反应后取出使用无水乙醇清洗5次~8次,再在温度为35℃~40℃下真空干燥,得到纳米零价铁粒子负载泡沫炭复合材料;所述的反应时间为3h~6h。
本发明的有益效果:
1、本发明制备的纳米零价铁粒子负载泡沫炭复合材料具有发达的大孔网络空间结构,可以促进吸附过程中的高效传质。本发明制备的纳米零价铁粒子负载泡沫炭复合材料具有较大的比表面积,可达33.2m2/g。此外,零价铁纳米粒子均匀的分布在炭骨架表面,显著提升了纳米粒子的分散度,有效避免了纳米零价铁团聚的团聚现象;
2、本发明将具有三维网络空间结构的泡沫炭基体用硝酸溶液进行水热处理,在很大程度上增加了炭骨架表面的官能团数量,不仅提升了泡沫炭的亲水性,而且为反应提供大量的活性位点;
3、本发明以低温退火和NaBH4还原相结合的方案来合成纳米零价铁负载泡沫炭复合材料,不仅可以降低能耗,同时Fe-C-O和Fe-O-H强化学键增加了零价铁纳米颗粒与炭骨架之间的结合力,防止在使用的过程中发生活性纳米粒子的脱落;
4、本发明制备的纳米零价铁粒子负载泡沫炭复合材料结合了纳米零价铁与三维泡沫炭二者的优点,增加了在环境中应用的效果,本发明制备的纳米零价铁粒子负载泡沫炭复合材料对污水中重金属Pb2+的最高吸附量为519.6mg/g,远高于现有技术使用液相还原法制备的nZVI-咖啡渣复合材料对污水中重金属Pb2+的吸附量(164.1mg/g)及沸石负载的nZVI复合材料对污水中重金属Pb2+的吸附量(85.37mg/g);
5、三聚氰胺海绵作为一种工程废弃物,取材广泛、廉价易得,降低了纳米零价铁粒子负载泡沫炭复合材料的制作成本;且操作简单,使用之后易于分离,利于在实际生产中广泛应用;
6、本发明制备的纳米零价铁粒子负载泡沫炭复合材料由于泡沫炭具有自支撑三维网络空间结构,增加了纳米材料在水中的流动性并且易于回收,降低了实际污水处理的成本。
本发明用于污水中重金属离子的移除。
附图说明
图1为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的扫描电镜照片;
图2为实施例2制备的纳米零价铁粒子负载泡沫炭复合材料的扫描电镜照片;
图3为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的透射电镜照片;
图4为XRD图,图4中1为实施例1步骤三得到的泡沫炭-Fe2O3复合物的XRD曲线,2为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的XRD曲线;
图5为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的XPS全谱图;
图6为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的C1s光谱图;
图7为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的O1s光谱图;
图8为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的Fe 2p光谱图;
图9为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的氮气吸附-脱附谱图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式是一种纳米零价铁粒子负载泡沫炭复合材料的制备方法是按以下步骤完成的:
一、首先对三聚氰胺海绵进行洗涤,然后干燥,再将干燥的三聚氰胺海绵放入管式炉中,向管式炉中通入惰性气体,再控制管式炉升温程序,三聚氰胺海绵在惰性气氛和高温条件下热解,得到具有三维网络空间结构的泡沫炭基体;
二、首先将具有三维网络空间结构的泡沫炭基体进行剪裁,然后完全浸入到硝酸溶液中,最后转移到反应釜中进行水热反应,得到亲水性泡沫炭;
三、首先将亲水性泡沫炭完全浸入到金属盐溶液中,然后取出后放入烘箱中烘干,最后放入管式炉中,在惰性气体保护下,低温退火,得到泡沫炭-Fe2O3复合物;
四、首先将泡沫炭-Fe2O3复合物完全浸入到无水乙醇与水的混合溶液中,然后将NaBH4溶液在反应过程中分次加入,反应结束后取出清洗,再真空干燥,得到纳米零价铁粒子负载泡沫炭复合材料。
本实施方式步骤一中将三聚氰胺海绵热解的目的是为了获得一种导电性能优异、多次压缩后可恢复原状且重量很轻的三维多孔网络泡沫炭。
本实施方式步骤二中硝酸水热处理的目的是增强泡沫炭的亲水性,使得金属盐溶液能充分的浸润到炭骨架表面。此外,硝酸水热处理可以增加炭骨架表面的含氧官能团数目,有利于吸附溶液中的重金属。
本实施方式步骤三中低温退火的目的是降低碳热法制备纳米零价铁的耗能,因为传统的碳热法制备纳米零价铁往往需要700℃~800℃的高温,而通过低温退火将炭骨架表面浸渍的铁盐转化为氧化铁,再经过还原作用将氧化铁还原为零价铁不仅可以降低能耗,同时增加氧化铁纳米颗粒与炭骨架之间的结合力,防止在使用的过程中发生活性纳米粒子的脱落。
本实施方式步骤四中NaBH4还原的作用是将炭骨架表面负载的部分纳米氧化铁颗粒还原为纳米零价铁,增加污水中重金属的去除效果。
本实施方式的有益效果:
1、本实施方式制备的纳米零价铁粒子负载泡沫炭复合材料具有发达的大孔网络空间结构,可以促进吸附过程中的高效传质;本实施方式制备的纳米零价铁粒子负载泡沫炭复合材料具有较大的比表面积,可达33.2m2/g。此外,零价铁纳米粒子均匀的分布在炭骨架表面,显著提升了纳米粒子的分散度,有效避免了纳米零价铁团聚的团聚现象;
2、本实施方式将具有三维网络空间结构的泡沫炭基体用硝酸溶液进行水热处理,在很大程度上增加了炭骨架表面的官能团数量,不仅提升了泡沫炭的亲水性,而且为反应提供大量的活性位点;
3、本实施方式以低温退火和NaBH4还原相结合的方案来合成纳米零价铁负载泡沫炭复合材料,不仅可以降低能耗,同时Fe-C-O和Fe-O-H强化学键增加了零价铁纳米颗粒与炭骨架之间的结合力,防止在使用的过程中发生活性纳米粒子的脱落;
4、本实施方式制备的纳米零价铁粒子负载泡沫炭复合材料结合了纳米零价铁与三维泡沫炭二者的优点,增加了在环境中应用的效果,本实施方式制备的纳米零价铁粒子负载泡沫炭复合材料对污水中重金属Pb2+的最高吸附量为519.6mg/g,远高于现有技术使用液相还原法制备的nZVI-咖啡渣复合材料对污水中重金属Pb2+的吸附量(164.1mg/g)及沸石负载的nZVI复合材料对污水中重金属Pb2+的吸附量(85.37mg/g);
5、三聚氰胺海绵作为一种工程废弃物,取材广泛、廉价易得,降低了纳米零价铁粒子负载泡沫炭复合材料的制作成本;且操作简单,使用之后易于分离,利于在实际生产中广泛应用;
6、本实施方式制备的纳米零价铁粒子负载泡沫炭复合材料由于泡沫炭具有自支撑三维网络空间结构,增加了纳米材料在水中的流动性并且易于回收,降低了实际污水处理的成本。
本实施方式用于污水中重金属离子的移除。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中和步骤三中所述的惰性气体为氮气或氩气。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的升温程序为:首先以1℃/min~5℃/min的升温速率从室温升温至280℃~300℃,在280℃~300℃下保持5min~20min,然后以0.5℃/min~1℃/min的升温速率从280℃~300℃升温至400℃~450℃,在400℃~450℃下保持5min~20min,最后以1℃/min~3℃/min的升温速率从400℃~450℃升温至700℃~800℃,在700℃~800℃下保持1h~2h,之后自然降温至室温或以1℃/min的升温速率从室温升温至700℃~800℃,在700℃~800℃下保持1h~2h。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中首先使用蒸馏水对三聚氰胺海绵洗涤3~5次,然后使用无水乙醇对三聚氰胺海绵洗涤3~5次,最后在温度为60℃~80℃的烘箱中烘干。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中将具有三维网络空间结构的泡沫炭基体剪裁成厚度为0.5cm~1cm的薄片。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤二中所述的硝酸溶液的浓度为1.5mol/L~3mol/L;所述的水热反应的温度为100℃~120℃,水热反应的时间为1h~2h。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤三中所述的金属盐溶液为FeCl3·6H2O溶液、Fe2(SO4)3溶液或Fe(NO3)3·9H2O溶液;所述的金属盐溶液的浓度为0.1mol/L~0.75mol/L。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤三中所述的低温退火工艺为:以3℃/min~5℃/min的升温速率将管式炉从室温升温至200℃~500℃,再在200℃~500℃下保温2h~6h。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤四中所述的无水乙醇与水的混合溶液中无水乙醇与水的体积比为3:7;步骤四中所述的泡沫炭-Fe2O3复合物的质量与无水乙醇与水的混合溶液的体积比为(0.2g~0.3g):100mL;步骤四中所述的无水乙醇与水的混合溶液与NaBH4溶液的体积比为2:1;步骤四中所述的NaBH4溶液的浓度为2mol/L~2.5mol/L。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤四中首先将泡沫炭-Fe2O3复合物完全浸入到无水乙醇与水的混合溶液中,然后将NaBH4溶液在反应过程中分3次~6次加入,相邻两次加入NaBH4溶液的间隔时间相同;反应后取出使用无水乙醇清洗5次~8次,再在温度为35℃~40℃下真空干燥,得到纳米零价铁粒子负载泡沫炭复合材料;所述的反应时间为3h~6h。其它步骤与具体实施方式一至九相同。
具体实施方式十一:本实施方式与具体实施方式一至十之一不同点是:步骤三中所述的烘箱的温度为60℃~80℃。其它步骤与具体实施方式一至十相同。
具体实施方式十二:本实施方式与具体实施方式一至十一之一不同点是:步骤四中所述的NaBH4溶液的浓度为2.1mol/L。其它步骤与具体实施方式一至十一相同。
具体实施方式十三:本实施方式与具体实施方式一至十二之一不同点是:步骤一中所述的升温程序为:首先以5℃/min的升温速率从室温升温至300℃,在300℃下保持5min,然后以1℃/min的升温速率从300℃升温至400℃,在400℃下保持5min,最后以3℃/min的升温速率从400℃升温至800℃,在800℃下保持2h,之后自然降温至室温。其它步骤与具体实施方式一至十二相同。
具体实施方式十四:本实施方式与具体实施方式一至十三之一不同点是:所述的金属盐溶液的浓度为0.25mol/L~0.5mol/L。其它步骤与具体实施方式一至十三相同。
具体实施方式十五:本实施方式与具体实施方式一至十四之一不同点是:步骤三中所述的低温退火工艺为:以3℃/min~4℃/min的升温速率将管式炉从室温升温至300℃~400℃,再在300℃~400℃下保温2h~4h。其它步骤与具体实施方式一至十四相同。
采用以下实施例验证本发明的有益效果:
实施例1:一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,是按以下步骤完成的:
一、首先使用蒸馏水对三聚氰胺海绵洗涤5次,然后使用无水乙醇对三聚氰胺海绵洗涤5次,最后在温度为60℃的烘箱中烘干,再将干燥的三聚氰胺海绵放入管式炉中,向管式炉中通入氩气,再控制管式炉升温程序,以1℃/min的升温速率从室温升温至800℃,在800℃下保持2h,三聚氰胺海绵在氩气气氛和高温条件下热解,得到具有三维网络空间结构的泡沫炭基体;
二、将具有三维网络空间结构的泡沫炭基体剪裁成4cm×3cm×0.5cm(长×宽×高)的薄片浸入到浓度为3mol/L硝酸溶液中,然后转移到反应釜中,在具有三维网络空间结构的泡沫炭基体上覆盖镍网,使具有三维网络空间结构的泡沫炭基体完全浸入到硝酸溶液中,再在120℃下水热反应2h,自然冷却至室温,使用蒸馏水冲洗10次后在60℃的烘箱中烘干,得到亲水性泡沫炭;
三、首先将亲水性泡沫炭浸入到FeCl3·6H2O溶液中,再在亲水性泡沫炭上覆盖镍网,使亲水性泡沫炭完全浸入到FeCl3·6H2O溶液中,然后取出后放入60℃的烘箱中烘干,最后放入管式炉中,在氩气气体保护下,以5℃/min的升温速率将管式炉从室温升温至300℃,再在300℃下保温4h,得到泡沫炭-Fe2O3复合物;
步骤三中所述的FeCl3·6H2O溶液的浓度为0.25mol/L;
四、首先将泡沫炭-Fe2O3复合物浸入到无水乙醇与水的混合溶液中,再在泡沫炭-Fe2O3复合物上覆盖镍网,使泡沫炭-Fe2O3复合物完全浸入到无水乙醇与水的混合溶液中,然后将NaBH4溶液在反应过程中分3次加入,反应时间为3h,即在反应开始时加入1次NaBH4溶液,反应开始后1h加入1次NaBH4溶液,反应开始后2h加入1次NaBH4溶液,反应结束后取出,使用无水乙醇清洗5次,再在温度为35℃下真空干燥,得到纳米零价铁粒子负载泡沫炭复合材料;
步骤四中所述的无水乙醇与水的混合溶液中无水乙醇与水的体积比为3:7;步骤四中
所述的泡沫炭-Fe2O3复合物的质量与无水乙醇与水的混合溶液的体积比为0.25g:100mL;
步骤四中所述的无水乙醇与水的混合溶液与NaBH4溶液的体积比为2:1;步骤四中所述的NaBH4溶液的浓度为2.1mol/L。
实施例1制备的纳米零价铁粒子负载泡沫炭复合材料在25℃,吸附剂添加量为10mg,溶液体积为40mL,溶液中Pb2+浓度为50mg/L的条件下,移除重金属Pb2+的最大吸附容量高达189.3mg/g。
实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的扫描电镜照片如图1所示。
图1为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的扫描电镜照片;
图3为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的透射电镜照片;
从低放大倍数扫描电镜图可以看出三维网络大孔隙结构和较大的比表面积为纳米零价铁粒子提供了一个很好的基体,有效避免了纳米颗粒的团聚,合成的纳米零价铁粒子与炭骨架基体结合紧密,且均匀分布在三维网络炭骨架的表面。
图4为XRD图,图4中1为实施例1步骤三得到的泡沫炭-Fe2O3复合物的XRD曲线,2为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的XRD曲线;
从图4可以看出泡沫炭-Fe2O3分别在2θ=24.1°、33.2°、35.6°、39.3°、40.8°、49.5°和56.1°处出现几个宽峰,对应于Fe2O3的(012)(104)(110)(006)(113)(024)和(211)平面(JCPDS No.33-0664),表明浸渍在炭泡沫表面的Fe3+在300℃退火后已转变为Fe2O3。热处理的这一步骤至关重要。退火过程可以在铁与炭骨架之间形成Fe-C强共价键,使氧化铁颗粒稳定在炭骨架上,并避免随后合成的Fe0纳米粒子与炭骨架分离。实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的XRD表征在44.6°处出现一个宽的衍射峰,与Fe(JCPDSNo.06-0696)的特征峰匹配,表明成功合成了零价铁。
图5为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的XPS全谱图;
实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的XPS全面调查全谱分析(如图5所示)表明了复合材料表面上的主要成分。在400eV处出现了N1s的特征峰,表明该复合材料富含N元素,在吸附过程中可以促进Pb2+发生共沉淀,从而促进溶液中Pb2+的去除。
图6为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的C1s光谱图;
图6显示了C1s光谱的特征轨道,该光谱可分为四种不同类型的含碳官能团的特征峰(284.7eV,285.1eV,286.4eV和288.5eV),分别对应于C=C-C(35.02%),C-O(37.96%),C=O(13.18%)和O-C=O(11.78%),说明炭骨架表面有丰富的含氧官能团,不仅提升了泡沫炭的亲水性,而且为反应提供大量的活性位点。
图7为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的O1s光谱图;
图7显示在530.0eV,530.7eV,531.8eV和532.8eV处代表O1s的多个峰,分别对应于Fe-O(15.92%),Fe-O-H(20.07%),Fe-C-O(25.12%)和O-C=O或C=O(羧酸根或羰基,38.89%)。Fe-C的强化学键可增强纳米零价铁粒子和泡沫炭之间的相互作用,使纳米零价铁粒子具有良好的分散性,并确保在吸附剂的施加过程中纳米零价铁粒子颗粒不会脱落。Fe-O的峰可能归因于制备过程中的氧化反应,或与Fe和官能团(例如-COOH和-C=O)之间的相互作用相关联以形成-COOFe/-OFe。Fe-O-H基团还可以增强零价铁与泡沫炭基体之间的键合稳定性。
图8为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的Fe 2p光谱图;
Fe 2p光谱的详细信息如图8所示,曲线中显示了两个能带(Fe 2p3/2和Fe 2p1/2)。值得注意的是,706.9eV和719.9eV附近的特征峰对应于Fe0的结合能,结合XRD表征表明Fe0的存在。
图9为实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的氮气吸附-脱附谱图。
根据IUPAC分类,吸脱附等温线为典型的IV型曲线,在p/p0约为0.05的低压区吸附量发生略微的升高,这对应于少量微孔的填充,而在p/p0约为0.5-0.9的中压区则出现明显的滞回线,表明其存在着介孔,在高压区吸附量的快速增加代表着大孔的存在。微孔的存在可以为Pb2+提供吸附位点,介孔及大孔可以在吸附的过程中为离子扩散提供通道。高p/p0滞后环为H3型,说明材料中的孔隙结构多为狭缝型孔隙。实施例1制备的纳米零价铁粒子负载泡沫炭复合材料的比表面积为33.2m2/g,是纯纳米零价铁粒子的几十倍。
实施例2:本实施例与实施例1的不同点是:步骤三中所述的FeCl3·6H2O溶液的浓度为0.75mol/L。其它步骤及参数与实施例1均相同。
实施例2制备的纳米零价铁粒子负载泡沫炭复合材料在25℃,吸附剂添加量为10mg,溶液体积为40mL,溶液中Pb2+浓度为50mg/L的条件下,移除重金属Pb2+的最大吸附容量高达179.7mg/g。
实施例2制备的纳米零价铁粒子负载泡沫炭复合材料的扫描电镜照片如图2所示。
图2为实施例2制备的纳米零价铁粒子负载泡沫炭复合材料的扫描电镜照片;
从图2可以看出,随着铁含量的增加,纳米零价铁粒子在炭骨架表面聚集。这种现象可能会阻碍粒子表面的活性中心与溶液充分接触,造成纳米粒子的脱落,其结果是纳米零价铁粒子反应活性以及纳米零价铁粒子利用率的降低。

Claims (8)

1.一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,其特征在于一种纳米零价铁粒子负载泡沫炭复合材料的制备方法是按以下步骤完成的:
一、首先对三聚氰胺海绵进行洗涤,然后干燥,再将干燥的三聚氰胺海绵放入管式炉中,向管式炉中通入惰性气体,再控制管式炉升温程序,三聚氰胺海绵在惰性气氛和高温条件下热解,得到具有三维网络空间结构的泡沫炭基体;
步骤一中所述的升温程序为:首先以1℃/min~5℃/min的升温速率从室温升温至280℃~300℃,在280℃~300℃下保持5min~20min,然后以0.5℃/min~1℃/min的升温速率从280℃~300℃升温至400℃~450℃,在400℃~450℃下保持5min~20min,最后以1℃/min~3℃/min的升温速率从400℃~450℃升温至700℃~800℃,在700℃~800℃下保持1h~2h,之后自然降温至室温或以1℃/min的升温速率从室温升温至700℃~800℃,在700℃~800℃下保持1h~2h;
二、首先将具有三维网络空间结构的泡沫炭基体进行剪裁,然后完全浸入到硝酸溶液中,最后转移到反应釜中进行水热反应,得到亲水性泡沫炭;
步骤二中所述的硝酸溶液的浓度为1.5mol/L~3mol/L;所述的水热反应的温度为100℃~120℃,水热反应的时间为1h~2h;
三、首先将亲水性泡沫炭完全浸入到金属盐溶液中,然后取出后放入烘箱中烘干,最后放入管式炉中,在惰性气体保护下,低温退火,得到泡沫炭-Fe2O3复合物;
四、首先将泡沫炭-Fe2O3复合物完全浸入到无水乙醇与水的混合溶液中,然后将NaBH4溶液在反应过程中分次加入,反应结束后取出清洗,再真空干燥,得到纳米零价铁粒子负载泡沫炭复合材料。
2.根据权利要求1所述的一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,其特征在于步骤一中和步骤三中所述的惰性气体为氮气或氩气。
3.根据权利要求1所述的一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,其特征在于步骤一中首先使用蒸馏水对三聚氰胺海绵洗涤3~5次,然后使用无水乙醇对三聚氰胺海绵洗涤3~5次,最后在温度为60℃~80℃的烘箱中烘干。
4.根据权利要求1所述的一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,其特征在于步骤二中将具有三维网络空间结构的泡沫炭基体剪裁成厚度为0.5cm~1cm的薄片。
5.根据权利要求1所述的一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,其特征在于步骤三中所述的金属盐溶液为FeCl3·6H2O溶液、Fe2(SO4)3溶液或Fe(NO3)3·9H2O溶液;所述的金属盐溶液的浓度为0.1mol/L~0.75mol/L。
6.根据权利要求1所述的一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,其特征在于步骤三中所述的低温退火工艺为:以3℃/min~5℃/min的升温速率将管式炉从室温升温至200℃~500℃,再在200℃~500℃下保温2h~6h。
7.根据权利要求1所述的一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,其特征在于步骤四中所述的无水乙醇与水的混合溶液中无水乙醇与水的体积比为3:7;步骤四中所述的泡沫炭-Fe2O3复合物的质量与无水乙醇与水的混合溶液的体积比为(0.2g~0.3g):100mL;步骤四中所述的无水乙醇与水的混合溶液与NaBH4溶液的体积比为2:1;步骤四中所述的NaBH4溶液的浓度为2mol/L~2.5mol/L。
8.根据权利要求1所述的一种纳米零价铁粒子负载泡沫炭复合材料的制备方法,其特征在于步骤四中首先将泡沫炭-Fe2O3复合物完全浸入到无水乙醇与水的混合溶液中,然后将NaBH4溶液在反应过程中分3次~6次加入,相邻两次加入NaBH4溶液的间隔时间相同;反应后取出使用无水乙醇清洗5次~8次,再在温度为35℃~40℃下真空干燥,得到纳米零价铁粒子负载泡沫炭复合材料;所述的反应时间为3h~6h。
CN202010515921.7A 2020-06-08 2020-06-08 一种纳米零价铁粒子负载泡沫炭复合材料的制备方法 Active CN111620318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010515921.7A CN111620318B (zh) 2020-06-08 2020-06-08 一种纳米零价铁粒子负载泡沫炭复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010515921.7A CN111620318B (zh) 2020-06-08 2020-06-08 一种纳米零价铁粒子负载泡沫炭复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111620318A CN111620318A (zh) 2020-09-04
CN111620318B true CN111620318B (zh) 2023-04-25

Family

ID=72268180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010515921.7A Active CN111620318B (zh) 2020-06-08 2020-06-08 一种纳米零价铁粒子负载泡沫炭复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111620318B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113000022B (zh) * 2021-03-02 2022-03-22 中国地质大学(武汉) 一种锰掺杂纳米纤铁矿/碳泡沫复合材料、制备方法及应用
CN114229822B (zh) * 2021-11-25 2023-07-21 中国科学院金属研究所 一种负载纳米金属磁性泡沫炭微波吸收剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995374A1 (en) * 2014-09-10 2016-03-16 Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc Composite material comprising organic-fibers and zerovalent iron nanoparticles and its use as catalyst
CN106745645A (zh) * 2016-12-20 2017-05-31 山西省环境科学研究院 纳米零价铁复合材料的制备方法及其应用
CN108722356A (zh) * 2018-06-11 2018-11-02 东北农业大学 一种纳米零价铁负载亲水性多孔生物炭复合材料的制备方法
CN109569690A (zh) * 2018-12-17 2019-04-05 武汉轻工大学 氮化碳/纳米零价铁复合材料的制备方法、除臭剂及其制备方法
CN110237801A (zh) * 2019-06-25 2019-09-17 中国工程物理研究院材料研究所 二维纳米材料碳化钛负载纳米零价铁复合材料及制法应用
CN110668557A (zh) * 2019-10-22 2020-01-10 广州大学 一种碳基零价铁材料的制备方法及其应用
CN110841639A (zh) * 2019-11-21 2020-02-28 南开大学 一种三维石墨烯基纳米零价铁材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995374A1 (en) * 2014-09-10 2016-03-16 Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc Composite material comprising organic-fibers and zerovalent iron nanoparticles and its use as catalyst
CN106745645A (zh) * 2016-12-20 2017-05-31 山西省环境科学研究院 纳米零价铁复合材料的制备方法及其应用
CN108722356A (zh) * 2018-06-11 2018-11-02 东北农业大学 一种纳米零价铁负载亲水性多孔生物炭复合材料的制备方法
CN109569690A (zh) * 2018-12-17 2019-04-05 武汉轻工大学 氮化碳/纳米零价铁复合材料的制备方法、除臭剂及其制备方法
CN110237801A (zh) * 2019-06-25 2019-09-17 中国工程物理研究院材料研究所 二维纳米材料碳化钛负载纳米零价铁复合材料及制法应用
CN110668557A (zh) * 2019-10-22 2020-01-10 广州大学 一种碳基零价铁材料的制备方法及其应用
CN110841639A (zh) * 2019-11-21 2020-02-28 南开大学 一种三维石墨烯基纳米零价铁材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies;Soroosh Mortazavian;《Chemical Engineering Journal》;20180727;第781-795页 *

Also Published As

Publication number Publication date
CN111620318A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
Li et al. Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction
CN109305876B (zh) 一种环烷烃类化合物的合成方法
Xia et al. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion
CN102115069B (zh) 具有多孔结构的石墨烯及其制备方法
CN111620318B (zh) 一种纳米零价铁粒子负载泡沫炭复合材料的制备方法
CN111054416A (zh) 一种氮掺杂碳材料负载合金催化剂及其制备方法和应用
KR20130015719A (ko) 메조동공구조 실리콘 산화물/그래핀 복합체 및 그 제조 방법
CN112705235B (zh) 碳包覆碳化镍的纳米复合材料及其制备方法和应用
CN111821976B (zh) 一种限阈型铁基费托合成催化剂及其制备方法
CN108273488A (zh) 一种纳米片状二氧化铈/多孔炭复合材料的制备方法
CN112320757B (zh) 一种纳米硼氢化锂、其原位制备方法和应用
CN112397736B (zh) 一种基于MOF制备的FePt@C复合纳米材料及其应用
Uppara et al. The catalytic activity of Ce-Hf, Ce-Hf-Mg mixed oxides and RuO2/HfO2 deposited on CeO2: Role of superoxide/peroxide in soot oxidation reaction
KR102357700B1 (ko) 황 및 질소 이중 도핑 고흑연성 다공성 탄소체, 이를 포함하는 촉매 및 이의 제조방법
CN114849712B (zh) 一种多孔碳包覆双金属氧化物催化剂的制备方法及应用
CN115228487B (zh) 一种FeSe2@C类芬顿催化剂及其制备方法与应用
CN113809341B (zh) 一种Cu-N-C氧还原催化剂及其制备方法
CN116328774A (zh) 一种甲烷催化裂解制氢用催化剂及其制备方法
CN112705234B (zh) 氧掺杂碳基碳化镍纳米复合材料及其制备方法和应用
CN114588917A (zh) 一种硫掺杂碳骨架包裹八硫化七铁纳米颗粒双反应中心类芬顿催化剂的制备方法及应用
CN111905815A (zh) 一种可应用于实际废水降解的UiO-66掺杂石墨氮碳化物的制备方法
CN115646528B (zh) 一种以松木为控制剂高产率制备富缺陷石墨氮化碳光催化剂的方法
CN116196952B (zh) 原位生长于固定床上的氨裂解制氢催化剂及其制备方法
CN117867560A (zh) 一种由富含羟基比例的还原氧化石墨烯负载氧化铋的复合催化剂用于二氧化碳电还原制备甲酸的方法
CN115475641B (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant