CN111607740A - 高强度低密度钢的制备方法及高强度低密度钢 - Google Patents

高强度低密度钢的制备方法及高强度低密度钢 Download PDF

Info

Publication number
CN111607740A
CN111607740A CN202010587676.0A CN202010587676A CN111607740A CN 111607740 A CN111607740 A CN 111607740A CN 202010587676 A CN202010587676 A CN 202010587676A CN 111607740 A CN111607740 A CN 111607740A
Authority
CN
China
Prior art keywords
powder
graphite
density steel
pressure head
strength low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010587676.0A
Other languages
English (en)
Inventor
黄华钦
黄贞益
唐木生
光剑锋
吴金泉
张宁飞
侯清宇
吴朝阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202010587676.0A priority Critical patent/CN111607740A/zh
Publication of CN111607740A publication Critical patent/CN111607740A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种高强度低密度钢的制备方法及高强度低密度钢。该方法包括设计材料组成、混料、研磨、填粉、压烧五个步骤。通过向钢中添加一定量的Ni元素、SI元素、Ti元素、Mo元素和B元素,在合金成分与粉末冶金工艺的基础上,得到了具有高强度的低密度钢,在减轻钢材的重量的同时,也具有良好的强度和韧性。采用本发明的方法,可以控制低密度钢中的元素成分,避免其他杂质元素的干扰;粉末烧结法制备的原料利用率高,生产流程短;且钼、钛元素有效钉扎在晶界处,从而增加位错滑移难度,同时析出TiC等固溶体,提高了钢的强度。

Description

高强度低密度钢的制备方法及高强度低密度钢
技术领域
本发明涉及低密度合金钢领域,尤其涉及一种高强度低密度钢的制备方法及高强度低密度钢。
背景技术
当前社会,随着绿色发展,节能减排的提倡,人们在追求安全性的前提下对汽车的轻量化展开了研究,目前最有效的途径则是应用新材料、新工艺以及结构优化这三种途径。其中,低密度钢由于广泛应用于车身的制造,被人们越来越重视。Fe-Mn-Al-C系低密度钢在具备良好强塑性优点的同时,密度又较低,更加轻便。但钢中添加的Al元素含量较高时,会导致钢材的韧性急剧下降,难以满足汽车领域对钢材韧性的要求;钢中添加的C含量较高时,会使钢的脆性上升,难以满足汽车领域对于钢材强度的要求。
发明内容
针对上述问题,本发明的目的在于提供一种低密度高强度钢及其制备方法,通过向钢中添加一定量的Ni元素、SI元素、Ti元素、Mo元素和B元素,在合金成分与粉末冶金工艺的基础上,得到了具有高强度的低密度钢,在减轻钢材的重量的同时,也具有良好的强度和韧性。
为了实现上述目的,本发明提供的技术方案如下:
高强度低密度钢的制备方法,包括以下步骤:
(1)设计材料组成:按照质量分数百分比计,所用材料包括Mn:18%~20%、Al:5%~7%、C:0.03%~0.04%、Ni:7%~8%、Si:1.0%~1.2%、Mo:1.0~1.5%、Ti:1.0%~1.2%,B:0.01%~0.1%,余量为Fe。
(2)混料:按照步骤(1)的材料组成,将各组分进行混合得到混合粉末;所述混合粉末的微观结构为近球形,纯度均在99.5%以上,其中铁粉的粒度在75-100μm,锰粉的粒度在60-80μm,铝粉的粒度在75-100μm,镍粉的粒度在60-80μm,硅粉的粒度在20-40μm,钛粉的粒度在20-30μm,钼粉的粒度在60-80μm,碳粉的粒度在20-30μm,硼粉的粒度在50-60μm。
(3)研磨:将步骤(2)中得到的混合粉末进行研磨,研磨时长为10-15小时,同时填充保护气氛;
(4)填粉:通过一套石墨模具来固定粉末成形,该模具的成分为石墨,无其他杂质,其包括上压头、下压头和具有测温孔的中空阴模,上压头和下压头的结构相同,均为柱状结构,石墨阴模为套筒状中空结构,石墨阴模的侧壁上开设有测温孔;将下压头先塞入阴模内孔中,放入石墨片,然后将步骤(3)中得到的混合粉末填充到阴模内部中的下压头上,同样放入石墨片,再将上压头从阴模上方塞入内孔中,通过上压头和下压头将混合金属粉末压紧;
(5)压烧:将步骤(4)中得到的待烧结模具置入放电等离子烧结系统的炉膛中,抽取炉内空气至真空状态;接着,调整压力系统,使压头对模具保持恒定压力;随后通入电流对金属粉末进行烧结,得到高强度低密度钢合金。
更进一步的,所述上压头和下压头均为直径60mm、高35mm的圆柱状结构,石墨阴模为外径90mm、内径60mm、高50mm的套筒状中空结构,石墨阴模在中间高度位置开设有直径4mm、深度5mm的测温孔,所述石墨片为直径60mm的石墨圆片。
更进一步的,研磨时球料比为10:1,球磨速度为200-300r/min,正反交互球磨。
更进一步的,在研磨过程中加入无水乙醇。
更进一步的,所述石墨模具与石墨圆片的成分相同,均不含有其他杂质。
更进一步的,烧结前将烧结炉内部封闭并抽真空至真空度小于1.0×10-1Pa,设定的机械压力为50MPa,烧结温度为1000℃~1100℃,优选温度为1050℃,升温降温速率为90-130℃/min。
更进一步的,烧结温度为1050℃。
一种高强度低密度钢,根据上述的制备方法制备而成,其化学成分按质量百分比为:Mn:18%~20%、Al:5%~7%、C:0.03%~0.04%、Ni:7%~8%、Si:1.0%~1.2%、Mo:1.0~1.5%、Ti:1.0%~1.2%,B:0.01%~0.1%,余量为Fe,没有其他杂质元素。
更进一步的,所述高强度低密度钢的密度低于7.03g/cm3,减重率大于8.5%。
更进一步的,所述高强度低密度高韧度钢的屈服强度大于600MPa,抗拉强度大于900MPa,洛氏硬度大于65.3。
与现有技术相比,本发明具有如下有益效果:
采用本发明的方法,可以控制低密度钢中的元素成分,避免其他杂质元素的干扰;粉末烧结法制备的原料利用率高,生产流程短;且钼、钛元素有效钉扎在晶界处,从而增加位错滑移难度,同时析出TiC等固溶体,提高了钢的强度。
附图说明
图1是发明的烧结工艺流程图;
图2是发明的烧结工艺曲线图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明的高强度低密度钢的制备方法如图1所示,具体制备步骤如下:
(1)设计材料组成:按照质量分数百分比计,所用材料包括Mn:18%~20%、Al:5%~7%、C:0.03%~0.04%、Ni:7%~8%、Si:1.0%~1.2%、Mo:1.0~1.5%、Ti:1.0%~1.2%,B:0.01%~0.1%,余量为Fe;
(2)混料:按照步骤(1)的材料组成,将各组分进行混合得到混合粉末;所述混合粉末的微观结构为近球形,纯度均在99.5%以上,其中铁粉的粒度在75-100μm,锰粉的粒度在60-80μm,铝粉的粒度在75-100μm,镍粉的粒度在60-80μm,硅粉的粒度在20-40μm,钛粉的粒度在20-30μm,钼粉的粒度在60-80μm,碳粉的粒度在20-30μm,硼粉的粒度在50-60μm;
(3)研磨:在机械研磨装置中将步骤(2)中得到的混合粉末进行机械研磨,研磨时长为10-15小时,同时为了防止空气中的杂质,填充氩气作为研磨时的保护气氛,在研磨过程中加入少许无水乙醇防止粉末粘壁;机械研磨工艺可以使两种粉末分散均匀,有利于后续烧结,同时使用氩气保护,避免球磨时粉末混入其他杂质;研磨时球料比为10:1,球磨速度为200-300r/min,正反交互球磨;
(4)填粉:在本发明中,通过一套石墨模具来固定粉末成形,该模具包括上压头、下压头和具有测温孔的中空阴模,上压头和下压头的结构相同,均为直径60mm,高35mm的圆柱状结构,石墨阴模为外径90mm,内径60mm,高50mm的套筒状中空结构,石墨阴模在中间高度位置有一直径4mm,深度5mm的测温孔。将下压头先塞入阴模内孔中一部分,放入1到2片直径30mm的石墨圆片来防止烧结过程压头被破坏,然后将步骤(3)中得到的混合粉末填充到阴模内部中的下压头上,同样放入1-2片直径60mm的石墨圆片,再将上压头从阴模上方塞入内孔中,通过上压头和下压头将混合金属粉末压紧;石墨模具为本发明针对SPS烧结特别制作的,其主体成分为石墨,并无其他杂质;石墨圆片成分为石墨并无其他杂质,添加石墨圆片,主要是促进烧结,以及防止烧结合金与压头发生粘接现象;
(5)压烧:将步骤(4)中得到的待烧结模具置入放电等离子烧结系统的炉膛中,抽取炉内空气至真空状态,从而一方面防止烧结时钼粉在烧结过程中被氧化,另一方面能够促进烧结过程产生的气体的排除,促进烧结致密化过程的进行。接着,调整压力系统,使压头对模具保持恒定压力,促进粉末成形,随后通入电流对金属粉末进行烧结,烧结工艺曲线如图2所示,得到高强度低密度钢合金。烧结前将烧结炉内部封闭并抽真空至真空度小于1.0×10-1Pa,设定的机械压力为50MPa,烧结温度为1000℃~1100℃,优选温度为1050℃,升温降温速率为90-130℃/min。上述的烧结工艺中,较小的真空度可以避免空气中元素,特别是氧元素对烧结的影响,且较大的烧结压力与较低的烧结的温度可以保证较高的烧结性能。
实施例1
本实施例的高强度低密度钢,其化学成分及其质量百分比为:Mn:18%、Al:5%、C:0.03%、Ni:7%、Si:1.0%、Mo:1.0%、Ti:1.0%,B:0.01%,Fe:66.96%;
一、预处理将各种成分的粉末按照质量分数比例配料。在行星球磨机中按球料比10∶1混合,研磨12h,研磨时加入少许无水乙醇防止粉末粘壁;
二、制模取石墨模具,填充1-2片直径60mm石墨圆片,将处理好的合金粉末自下而上放入石墨阴模中,填充1-2片直径60mm石墨圆片,然后用上压头和下压头压紧,防止粉末泄漏;
三、压烧将待烧结的石墨模具置于放电等离子烧结系统的炉膛中,抽真空至不高于10-1Pa,然后通入直流脉冲电流,对合金粉末进行烧结粘接,烧结工艺为:上压头和下压头对铁基以及金属粉末的轴向压力为50MPa;升温速率为:从室温区至700℃为120℃/min,700℃至烧结温度为100℃/min;保温时间为3min;降温速率为:从烧结温度降至400℃的区间的降温速率为100℃/min,从400℃降至室温区间随炉冷却;待冷却后均成功制得高强度低密度钢,低密度钢的硬度较佳。
实施例2
本实施例的高强度低密度钢,其化学成分及其质量百分比为:Mn:19%、Al:6%、C:0.035%、Ni:7.5%、Si:1.1%、Mo:1.25%、Ti:1.1%,B:0.05%,Fe:64.01%;
一、预处理将各种成分的粉末按照质量分数比例配料。在行星球磨机中按球料比10∶1混合,研磨12h,研磨时加入少许无水乙醇防止粉末粘壁;
二、制模取石墨模具,填充1-2片直径60mm石墨圆片,将处理好的合金粉末自下而上放入石墨阴模中,填充1-2片直径60mm石墨圆片,然后用上压头和下压头压紧,防止粉末泄漏;
三、压烧将待烧结的石墨模具置于放电等离子烧结系统的炉膛中,抽真空至不高于10-1Pa,然后通入直流脉冲电流,对合金粉末进行烧结粘接,烧结工艺为:上压头和下压头对铁基以及金属粉末的轴向压力为50MPa;升温速率为:从室温区至700℃为120℃/min,700℃至烧结温度为100℃/min;保温时间为3min;降温速率为:从烧结温度降至400℃的区间的降温速率为100℃/min,从400℃降至室温区间随炉冷却;待冷却后均成功制得高强度低密度钢,低密度钢的硬度较佳。
实施例3
本实施例的高强度低密度钢,其化学成分及其质量百分比为:Mn:20%、Al:7%、C:0.04%、Ni:8%、Si:1.2%、Mo:1.5%、Ti:1.2%,B:0.1%,Fe:60.96%;
一、预处理将各种成分的粉末按照质量分数比例配料。在行星球磨机中按球料比10∶1混合,研磨12h,研磨时加入少许无水乙醇防止粉末粘壁;
二、制模取石墨模具,填充1-2片直径60mm石墨圆片,将处理好的合金粉末自下而上放入石墨阴模中,填充1-2片直径60mm石墨圆片,然后用上压头和下压头压紧,防止粉末泄漏;
三、压烧将待烧结的石墨模具置于放电等离子烧结系统的炉膛中,抽真空至不高于10-1Pa,然后通入直流脉冲电流,对合金粉末进行烧结粘接,烧结工艺为:上压头和下压头对铁基以及金属粉末的轴向压力为50MPa;升温速率为:从室温区至700℃为120℃/min,700℃至烧结温度为100℃/min;保温时间为3min;降温速率为:从烧结温度降至400℃的区间的降温速率为100℃/min,从400℃降至室温区间随炉冷却;待冷却后均成功制得高强度低密度钢,低密度钢的硬度较佳。
实例1、实例2、实例3的相关参数如下表所示。
屈服强度/MPa 抗拉强度/MPa 硬度/HRC 室温摩擦系数
实例1 606 921 65.3 0.456
实例2 621 915 65.5 0.475
实例3 623 932 65.8 0.463
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.高强度低密度钢的制备方法,包括以下步骤:
(1)设计材料组成:按照质量分数百分比计,所用材料包括其化学成分按质量百分比为:Mn:18%~20%、Al:5%~7%、C:0.03%~0.04%、Ni:7%~8%、Si:1.0%~1.2%、Mo:1.0~1.5%、Ti:1.0%~1.2%,B:0.01%~0.1%,余量为Fe,没有其他杂质元素;
(2)混料:按照步骤(1)的材料组成,将各组分进行混合得到混合粉末;所述混合粉末的微观结构为近球形,纯度均在99.5%以上,其中铁粉的粒度在75-100μm,锰粉的粒度在60-80μm,铝粉的粒度在75-100μm,镍粉的粒度在60-80μm,硅粉的粒度在20-40μm,钛粉的粒度在20-30μm,钼粉的粒度在60-80μm,碳粉的粒度在20-30μm,硼粉的粒度在50-60μm;
(3)研磨:将步骤(2)中得到的混合粉末进行研磨,研磨时长为10-15小时,同时填充保护气氛;
(4)填粉:通过一套石墨模具来固定粉末成形,该模具的成分为石墨,无其他杂质,其包括上压头、下压头和具有测温孔的中空阴模,上压头和下压头的结构相同,均为柱状结构,石墨阴模为套筒状中空结构,石墨阴模的侧壁上开设有测温孔;将下压头先塞入阴模内孔中,放入石墨片,然后将步骤(3)中得到的混合粉末填充到阴模内部中的下压头上,同样放入石墨片,再将上压头从阴模上方塞入内孔中,通过上压头和下压头将混合金属粉末压紧;
(5)压烧:将步骤(4)中得到的待烧结模具置入放电等离子烧结系统的炉膛中,抽取炉内空气至真空状态;接着,调整压力系统,使压头对模具保持恒定压力;随后通入电流对金属粉末进行烧结,得到高强度低密度钢。
2.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,所述上压头和下压头均为直径30mm、高35mm的圆柱状结构,石墨阴模为外径60mm、内径30mm、高50mm的套筒状中空结构,石墨阴模在中间高度位置开设有直径4mm、深度5mm的测温孔,所述石墨片为直径30mm的石墨圆片。
3.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,研磨时球料比为10:1,球磨速度为200-300r/min,正反交互球磨。
4.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,在研磨过程中加入无水乙醇。
5.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,所述石墨模具与石墨圆片的成分相同,均不含有其他杂质。
6.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,烧结前将烧结炉内部封闭并抽真空至真空度小于1.0×10-1Pa,设定的机械压力为50MPa,烧结温度为1000℃~1100℃,优选温度为1050℃,升温降温速率为90-130℃/min。
7.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,烧结温度为1050℃。
8.一种高强度低密度钢,其特征在于,根据权利要求1-7中任意一项所述的制备方法制备而成。
9.根据权利要求8所述的高强度低密度钢,其特征在于,密度低于7.03g/cm3,减重率大于8.5%。
10.根据权利要求8所述的高强度低密度钢,其特征在于,屈服强度大于600MPa,抗拉强度大于900MPa,洛氏硬度大于65.3。
CN202010587676.0A 2020-06-24 2020-06-24 高强度低密度钢的制备方法及高强度低密度钢 Pending CN111607740A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010587676.0A CN111607740A (zh) 2020-06-24 2020-06-24 高强度低密度钢的制备方法及高强度低密度钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010587676.0A CN111607740A (zh) 2020-06-24 2020-06-24 高强度低密度钢的制备方法及高强度低密度钢

Publications (1)

Publication Number Publication Date
CN111607740A true CN111607740A (zh) 2020-09-01

Family

ID=72203807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010587676.0A Pending CN111607740A (zh) 2020-06-24 2020-06-24 高强度低密度钢的制备方法及高强度低密度钢

Country Status (1)

Country Link
CN (1) CN111607740A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876723A (en) * 1959-01-12 1961-09-06 Rolls Royce Aluminium-manganese-iron alloy
DE19900199A1 (de) * 1999-01-06 2000-07-13 Ralf Uebachs Leichtbaustahllegierung
CN106521318A (zh) * 2016-11-22 2017-03-22 河北工业大学 一种高强度Fe‑Mn‑Al‑C系低密度铸钢及其制备方法
US20180216207A1 (en) * 2015-07-22 2018-08-02 Salzgitter Flachstahl Gmbh Formable lightweight steel having improved mechanical properties and method for producing semi-finished products from said steel
CN110592487A (zh) * 2019-10-22 2019-12-20 成都先进金属材料产业技术研究院有限公司 700MPa级奥氏体铁素体双相低密度铸钢及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876723A (en) * 1959-01-12 1961-09-06 Rolls Royce Aluminium-manganese-iron alloy
DE19900199A1 (de) * 1999-01-06 2000-07-13 Ralf Uebachs Leichtbaustahllegierung
US20180216207A1 (en) * 2015-07-22 2018-08-02 Salzgitter Flachstahl Gmbh Formable lightweight steel having improved mechanical properties and method for producing semi-finished products from said steel
CN106521318A (zh) * 2016-11-22 2017-03-22 河北工业大学 一种高强度Fe‑Mn‑Al‑C系低密度铸钢及其制备方法
CN110592487A (zh) * 2019-10-22 2019-12-20 成都先进金属材料产业技术研究院有限公司 700MPa级奥氏体铁素体双相低密度铸钢及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张朝晖: "《放电等离子体烧结技术及其在钛基复合材料制备中的应用》", 31 March 2018, 国防工业出版社 *
王发仓: "烧结温度对Fe-9Mn-4Al-0.4C低密度钢组织结构和性能的影响", 《江苏科技信息》 *

Similar Documents

Publication Publication Date Title
CN109182882B (zh) 一种高强度氧化物弥散强化Fe基合金的制备方法
CN108103381B (zh) 一种高强度FeCoNiCrMn高熵合金及其制备方法
CN100567530C (zh) 一种高性能粉末冶金Mo-Ti-Zr钼合金的制备方法
CN112792308B (zh) 一种连续感应式快淬炉用辊轮及其制造方法
CN101956093B (zh) 氧化物弥散强化铂基合金及其制备方法
CN101611469A (zh) 烧结硅晶圆
CN112662903B (zh) 一种高强度Zr-Ti基合金的制备方法
CN104745880B (zh) 一种高密度动能超高强度钨镍耐热合金及制备方法
CN111705252A (zh) 一种Al2O3纳米颗粒增强CrCoNi中熵合金基复合材料及制备方法
CN112030120A (zh) 一种钽硅合金溅射靶材的制备方法
CN110983152B (zh) 一种Fe-Mn-Si-Cr-Ni基形状记忆合金及其制备方法
CN109706371A (zh) 石墨烯钢复合材料的制备方法
CN115044794A (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN116200622B (zh) 一种超细晶TiAl合金及其复合材料的制备方法
CN111607740A (zh) 高强度低密度钢的制备方法及高强度低密度钢
CN111593263A (zh) 一种高强度低密度钢的制备方法及高强度低密度钢
CN111593221A (zh) 一种高性能钼钪合金的制备方法及高性能钼钪合金
CN113025859B (zh) 一种高强度高塑性钨合金材料及其制备方法
CN101265530A (zh) 一种纳米团簇弥散强化铁基合金的制备方法
CN113770355A (zh) 一种用于稀土合金烧结热处理的烧结容器及其制备方法
CN114293047A (zh) 一种超高强粉末冶金钛合金的制备方法
CN114058971A (zh) 一种超高钒高速钢及其制备方法
CN102747249A (zh) 一种增强钛基复合材料及其粉末冶金制备方法
KR101419443B1 (ko) 산화물 분산 강화형 백금-금 합금의 제조방법
CN113718150B (zh) 一种连续感应式快淬炉用合金辊轮及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination