CN111607740A - 高强度低密度钢的制备方法及高强度低密度钢 - Google Patents
高强度低密度钢的制备方法及高强度低密度钢 Download PDFInfo
- Publication number
- CN111607740A CN111607740A CN202010587676.0A CN202010587676A CN111607740A CN 111607740 A CN111607740 A CN 111607740A CN 202010587676 A CN202010587676 A CN 202010587676A CN 111607740 A CN111607740 A CN 111607740A
- Authority
- CN
- China
- Prior art keywords
- powder
- graphite
- density steel
- pressure head
- strength low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种高强度低密度钢的制备方法及高强度低密度钢。该方法包括设计材料组成、混料、研磨、填粉、压烧五个步骤。通过向钢中添加一定量的Ni元素、SI元素、Ti元素、Mo元素和B元素,在合金成分与粉末冶金工艺的基础上,得到了具有高强度的低密度钢,在减轻钢材的重量的同时,也具有良好的强度和韧性。采用本发明的方法,可以控制低密度钢中的元素成分,避免其他杂质元素的干扰;粉末烧结法制备的原料利用率高,生产流程短;且钼、钛元素有效钉扎在晶界处,从而增加位错滑移难度,同时析出TiC等固溶体,提高了钢的强度。
Description
技术领域
本发明涉及低密度合金钢领域,尤其涉及一种高强度低密度钢的制备方法及高强度低密度钢。
背景技术
当前社会,随着绿色发展,节能减排的提倡,人们在追求安全性的前提下对汽车的轻量化展开了研究,目前最有效的途径则是应用新材料、新工艺以及结构优化这三种途径。其中,低密度钢由于广泛应用于车身的制造,被人们越来越重视。Fe-Mn-Al-C系低密度钢在具备良好强塑性优点的同时,密度又较低,更加轻便。但钢中添加的Al元素含量较高时,会导致钢材的韧性急剧下降,难以满足汽车领域对钢材韧性的要求;钢中添加的C含量较高时,会使钢的脆性上升,难以满足汽车领域对于钢材强度的要求。
发明内容
针对上述问题,本发明的目的在于提供一种低密度高强度钢及其制备方法,通过向钢中添加一定量的Ni元素、SI元素、Ti元素、Mo元素和B元素,在合金成分与粉末冶金工艺的基础上,得到了具有高强度的低密度钢,在减轻钢材的重量的同时,也具有良好的强度和韧性。
为了实现上述目的,本发明提供的技术方案如下:
高强度低密度钢的制备方法,包括以下步骤:
(1)设计材料组成:按照质量分数百分比计,所用材料包括Mn:18%~20%、Al:5%~7%、C:0.03%~0.04%、Ni:7%~8%、Si:1.0%~1.2%、Mo:1.0~1.5%、Ti:1.0%~1.2%,B:0.01%~0.1%,余量为Fe。
(2)混料:按照步骤(1)的材料组成,将各组分进行混合得到混合粉末;所述混合粉末的微观结构为近球形,纯度均在99.5%以上,其中铁粉的粒度在75-100μm,锰粉的粒度在60-80μm,铝粉的粒度在75-100μm,镍粉的粒度在60-80μm,硅粉的粒度在20-40μm,钛粉的粒度在20-30μm,钼粉的粒度在60-80μm,碳粉的粒度在20-30μm,硼粉的粒度在50-60μm。
(3)研磨:将步骤(2)中得到的混合粉末进行研磨,研磨时长为10-15小时,同时填充保护气氛;
(4)填粉:通过一套石墨模具来固定粉末成形,该模具的成分为石墨,无其他杂质,其包括上压头、下压头和具有测温孔的中空阴模,上压头和下压头的结构相同,均为柱状结构,石墨阴模为套筒状中空结构,石墨阴模的侧壁上开设有测温孔;将下压头先塞入阴模内孔中,放入石墨片,然后将步骤(3)中得到的混合粉末填充到阴模内部中的下压头上,同样放入石墨片,再将上压头从阴模上方塞入内孔中,通过上压头和下压头将混合金属粉末压紧;
(5)压烧:将步骤(4)中得到的待烧结模具置入放电等离子烧结系统的炉膛中,抽取炉内空气至真空状态;接着,调整压力系统,使压头对模具保持恒定压力;随后通入电流对金属粉末进行烧结,得到高强度低密度钢合金。
更进一步的,所述上压头和下压头均为直径60mm、高35mm的圆柱状结构,石墨阴模为外径90mm、内径60mm、高50mm的套筒状中空结构,石墨阴模在中间高度位置开设有直径4mm、深度5mm的测温孔,所述石墨片为直径60mm的石墨圆片。
更进一步的,研磨时球料比为10:1,球磨速度为200-300r/min,正反交互球磨。
更进一步的,在研磨过程中加入无水乙醇。
更进一步的,所述石墨模具与石墨圆片的成分相同,均不含有其他杂质。
更进一步的,烧结前将烧结炉内部封闭并抽真空至真空度小于1.0×10-1Pa,设定的机械压力为50MPa,烧结温度为1000℃~1100℃,优选温度为1050℃,升温降温速率为90-130℃/min。
更进一步的,烧结温度为1050℃。
一种高强度低密度钢,根据上述的制备方法制备而成,其化学成分按质量百分比为:Mn:18%~20%、Al:5%~7%、C:0.03%~0.04%、Ni:7%~8%、Si:1.0%~1.2%、Mo:1.0~1.5%、Ti:1.0%~1.2%,B:0.01%~0.1%,余量为Fe,没有其他杂质元素。
更进一步的,所述高强度低密度钢的密度低于7.03g/cm3,减重率大于8.5%。
更进一步的,所述高强度低密度高韧度钢的屈服强度大于600MPa,抗拉强度大于900MPa,洛氏硬度大于65.3。
与现有技术相比,本发明具有如下有益效果:
采用本发明的方法,可以控制低密度钢中的元素成分,避免其他杂质元素的干扰;粉末烧结法制备的原料利用率高,生产流程短;且钼、钛元素有效钉扎在晶界处,从而增加位错滑移难度,同时析出TiC等固溶体,提高了钢的强度。
附图说明
图1是发明的烧结工艺流程图;
图2是发明的烧结工艺曲线图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明的高强度低密度钢的制备方法如图1所示,具体制备步骤如下:
(1)设计材料组成:按照质量分数百分比计,所用材料包括Mn:18%~20%、Al:5%~7%、C:0.03%~0.04%、Ni:7%~8%、Si:1.0%~1.2%、Mo:1.0~1.5%、Ti:1.0%~1.2%,B:0.01%~0.1%,余量为Fe;
(2)混料:按照步骤(1)的材料组成,将各组分进行混合得到混合粉末;所述混合粉末的微观结构为近球形,纯度均在99.5%以上,其中铁粉的粒度在75-100μm,锰粉的粒度在60-80μm,铝粉的粒度在75-100μm,镍粉的粒度在60-80μm,硅粉的粒度在20-40μm,钛粉的粒度在20-30μm,钼粉的粒度在60-80μm,碳粉的粒度在20-30μm,硼粉的粒度在50-60μm;
(3)研磨:在机械研磨装置中将步骤(2)中得到的混合粉末进行机械研磨,研磨时长为10-15小时,同时为了防止空气中的杂质,填充氩气作为研磨时的保护气氛,在研磨过程中加入少许无水乙醇防止粉末粘壁;机械研磨工艺可以使两种粉末分散均匀,有利于后续烧结,同时使用氩气保护,避免球磨时粉末混入其他杂质;研磨时球料比为10:1,球磨速度为200-300r/min,正反交互球磨;
(4)填粉:在本发明中,通过一套石墨模具来固定粉末成形,该模具包括上压头、下压头和具有测温孔的中空阴模,上压头和下压头的结构相同,均为直径60mm,高35mm的圆柱状结构,石墨阴模为外径90mm,内径60mm,高50mm的套筒状中空结构,石墨阴模在中间高度位置有一直径4mm,深度5mm的测温孔。将下压头先塞入阴模内孔中一部分,放入1到2片直径30mm的石墨圆片来防止烧结过程压头被破坏,然后将步骤(3)中得到的混合粉末填充到阴模内部中的下压头上,同样放入1-2片直径60mm的石墨圆片,再将上压头从阴模上方塞入内孔中,通过上压头和下压头将混合金属粉末压紧;石墨模具为本发明针对SPS烧结特别制作的,其主体成分为石墨,并无其他杂质;石墨圆片成分为石墨并无其他杂质,添加石墨圆片,主要是促进烧结,以及防止烧结合金与压头发生粘接现象;
(5)压烧:将步骤(4)中得到的待烧结模具置入放电等离子烧结系统的炉膛中,抽取炉内空气至真空状态,从而一方面防止烧结时钼粉在烧结过程中被氧化,另一方面能够促进烧结过程产生的气体的排除,促进烧结致密化过程的进行。接着,调整压力系统,使压头对模具保持恒定压力,促进粉末成形,随后通入电流对金属粉末进行烧结,烧结工艺曲线如图2所示,得到高强度低密度钢合金。烧结前将烧结炉内部封闭并抽真空至真空度小于1.0×10-1Pa,设定的机械压力为50MPa,烧结温度为1000℃~1100℃,优选温度为1050℃,升温降温速率为90-130℃/min。上述的烧结工艺中,较小的真空度可以避免空气中元素,特别是氧元素对烧结的影响,且较大的烧结压力与较低的烧结的温度可以保证较高的烧结性能。
实施例1
本实施例的高强度低密度钢,其化学成分及其质量百分比为:Mn:18%、Al:5%、C:0.03%、Ni:7%、Si:1.0%、Mo:1.0%、Ti:1.0%,B:0.01%,Fe:66.96%;
一、预处理将各种成分的粉末按照质量分数比例配料。在行星球磨机中按球料比10∶1混合,研磨12h,研磨时加入少许无水乙醇防止粉末粘壁;
二、制模取石墨模具,填充1-2片直径60mm石墨圆片,将处理好的合金粉末自下而上放入石墨阴模中,填充1-2片直径60mm石墨圆片,然后用上压头和下压头压紧,防止粉末泄漏;
三、压烧将待烧结的石墨模具置于放电等离子烧结系统的炉膛中,抽真空至不高于10-1Pa,然后通入直流脉冲电流,对合金粉末进行烧结粘接,烧结工艺为:上压头和下压头对铁基以及金属粉末的轴向压力为50MPa;升温速率为:从室温区至700℃为120℃/min,700℃至烧结温度为100℃/min;保温时间为3min;降温速率为:从烧结温度降至400℃的区间的降温速率为100℃/min,从400℃降至室温区间随炉冷却;待冷却后均成功制得高强度低密度钢,低密度钢的硬度较佳。
实施例2
本实施例的高强度低密度钢,其化学成分及其质量百分比为:Mn:19%、Al:6%、C:0.035%、Ni:7.5%、Si:1.1%、Mo:1.25%、Ti:1.1%,B:0.05%,Fe:64.01%;
一、预处理将各种成分的粉末按照质量分数比例配料。在行星球磨机中按球料比10∶1混合,研磨12h,研磨时加入少许无水乙醇防止粉末粘壁;
二、制模取石墨模具,填充1-2片直径60mm石墨圆片,将处理好的合金粉末自下而上放入石墨阴模中,填充1-2片直径60mm石墨圆片,然后用上压头和下压头压紧,防止粉末泄漏;
三、压烧将待烧结的石墨模具置于放电等离子烧结系统的炉膛中,抽真空至不高于10-1Pa,然后通入直流脉冲电流,对合金粉末进行烧结粘接,烧结工艺为:上压头和下压头对铁基以及金属粉末的轴向压力为50MPa;升温速率为:从室温区至700℃为120℃/min,700℃至烧结温度为100℃/min;保温时间为3min;降温速率为:从烧结温度降至400℃的区间的降温速率为100℃/min,从400℃降至室温区间随炉冷却;待冷却后均成功制得高强度低密度钢,低密度钢的硬度较佳。
实施例3
本实施例的高强度低密度钢,其化学成分及其质量百分比为:Mn:20%、Al:7%、C:0.04%、Ni:8%、Si:1.2%、Mo:1.5%、Ti:1.2%,B:0.1%,Fe:60.96%;
一、预处理将各种成分的粉末按照质量分数比例配料。在行星球磨机中按球料比10∶1混合,研磨12h,研磨时加入少许无水乙醇防止粉末粘壁;
二、制模取石墨模具,填充1-2片直径60mm石墨圆片,将处理好的合金粉末自下而上放入石墨阴模中,填充1-2片直径60mm石墨圆片,然后用上压头和下压头压紧,防止粉末泄漏;
三、压烧将待烧结的石墨模具置于放电等离子烧结系统的炉膛中,抽真空至不高于10-1Pa,然后通入直流脉冲电流,对合金粉末进行烧结粘接,烧结工艺为:上压头和下压头对铁基以及金属粉末的轴向压力为50MPa;升温速率为:从室温区至700℃为120℃/min,700℃至烧结温度为100℃/min;保温时间为3min;降温速率为:从烧结温度降至400℃的区间的降温速率为100℃/min,从400℃降至室温区间随炉冷却;待冷却后均成功制得高强度低密度钢,低密度钢的硬度较佳。
实例1、实例2、实例3的相关参数如下表所示。
屈服强度/MPa | 抗拉强度/MPa | 硬度/HRC | 室温摩擦系数 | |
实例1 | 606 | 921 | 65.3 | 0.456 |
实例2 | 621 | 915 | 65.5 | 0.475 |
实例3 | 623 | 932 | 65.8 | 0.463 |
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.高强度低密度钢的制备方法,包括以下步骤:
(1)设计材料组成:按照质量分数百分比计,所用材料包括其化学成分按质量百分比为:Mn:18%~20%、Al:5%~7%、C:0.03%~0.04%、Ni:7%~8%、Si:1.0%~1.2%、Mo:1.0~1.5%、Ti:1.0%~1.2%,B:0.01%~0.1%,余量为Fe,没有其他杂质元素;
(2)混料:按照步骤(1)的材料组成,将各组分进行混合得到混合粉末;所述混合粉末的微观结构为近球形,纯度均在99.5%以上,其中铁粉的粒度在75-100μm,锰粉的粒度在60-80μm,铝粉的粒度在75-100μm,镍粉的粒度在60-80μm,硅粉的粒度在20-40μm,钛粉的粒度在20-30μm,钼粉的粒度在60-80μm,碳粉的粒度在20-30μm,硼粉的粒度在50-60μm;
(3)研磨:将步骤(2)中得到的混合粉末进行研磨,研磨时长为10-15小时,同时填充保护气氛;
(4)填粉:通过一套石墨模具来固定粉末成形,该模具的成分为石墨,无其他杂质,其包括上压头、下压头和具有测温孔的中空阴模,上压头和下压头的结构相同,均为柱状结构,石墨阴模为套筒状中空结构,石墨阴模的侧壁上开设有测温孔;将下压头先塞入阴模内孔中,放入石墨片,然后将步骤(3)中得到的混合粉末填充到阴模内部中的下压头上,同样放入石墨片,再将上压头从阴模上方塞入内孔中,通过上压头和下压头将混合金属粉末压紧;
(5)压烧:将步骤(4)中得到的待烧结模具置入放电等离子烧结系统的炉膛中,抽取炉内空气至真空状态;接着,调整压力系统,使压头对模具保持恒定压力;随后通入电流对金属粉末进行烧结,得到高强度低密度钢。
2.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,所述上压头和下压头均为直径30mm、高35mm的圆柱状结构,石墨阴模为外径60mm、内径30mm、高50mm的套筒状中空结构,石墨阴模在中间高度位置开设有直径4mm、深度5mm的测温孔,所述石墨片为直径30mm的石墨圆片。
3.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,研磨时球料比为10:1,球磨速度为200-300r/min,正反交互球磨。
4.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,在研磨过程中加入无水乙醇。
5.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,所述石墨模具与石墨圆片的成分相同,均不含有其他杂质。
6.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,烧结前将烧结炉内部封闭并抽真空至真空度小于1.0×10-1Pa,设定的机械压力为50MPa,烧结温度为1000℃~1100℃,优选温度为1050℃,升温降温速率为90-130℃/min。
7.根据权利要求1所述的高强度低密度钢的制备方法,其特征在于,烧结温度为1050℃。
8.一种高强度低密度钢,其特征在于,根据权利要求1-7中任意一项所述的制备方法制备而成。
9.根据权利要求8所述的高强度低密度钢,其特征在于,密度低于7.03g/cm3,减重率大于8.5%。
10.根据权利要求8所述的高强度低密度钢,其特征在于,屈服强度大于600MPa,抗拉强度大于900MPa,洛氏硬度大于65.3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010587676.0A CN111607740A (zh) | 2020-06-24 | 2020-06-24 | 高强度低密度钢的制备方法及高强度低密度钢 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010587676.0A CN111607740A (zh) | 2020-06-24 | 2020-06-24 | 高强度低密度钢的制备方法及高强度低密度钢 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111607740A true CN111607740A (zh) | 2020-09-01 |
Family
ID=72203807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010587676.0A Pending CN111607740A (zh) | 2020-06-24 | 2020-06-24 | 高强度低密度钢的制备方法及高强度低密度钢 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111607740A (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB876723A (en) * | 1959-01-12 | 1961-09-06 | Rolls Royce | Aluminium-manganese-iron alloy |
DE19900199A1 (de) * | 1999-01-06 | 2000-07-13 | Ralf Uebachs | Leichtbaustahllegierung |
CN106521318A (zh) * | 2016-11-22 | 2017-03-22 | 河北工业大学 | 一种高强度Fe‑Mn‑Al‑C系低密度铸钢及其制备方法 |
US20180216207A1 (en) * | 2015-07-22 | 2018-08-02 | Salzgitter Flachstahl Gmbh | Formable lightweight steel having improved mechanical properties and method for producing semi-finished products from said steel |
CN110592487A (zh) * | 2019-10-22 | 2019-12-20 | 成都先进金属材料产业技术研究院有限公司 | 700MPa级奥氏体铁素体双相低密度铸钢及其制备方法 |
-
2020
- 2020-06-24 CN CN202010587676.0A patent/CN111607740A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB876723A (en) * | 1959-01-12 | 1961-09-06 | Rolls Royce | Aluminium-manganese-iron alloy |
DE19900199A1 (de) * | 1999-01-06 | 2000-07-13 | Ralf Uebachs | Leichtbaustahllegierung |
US20180216207A1 (en) * | 2015-07-22 | 2018-08-02 | Salzgitter Flachstahl Gmbh | Formable lightweight steel having improved mechanical properties and method for producing semi-finished products from said steel |
CN106521318A (zh) * | 2016-11-22 | 2017-03-22 | 河北工业大学 | 一种高强度Fe‑Mn‑Al‑C系低密度铸钢及其制备方法 |
CN110592487A (zh) * | 2019-10-22 | 2019-12-20 | 成都先进金属材料产业技术研究院有限公司 | 700MPa级奥氏体铁素体双相低密度铸钢及其制备方法 |
Non-Patent Citations (2)
Title |
---|
张朝晖: "《放电等离子体烧结技术及其在钛基复合材料制备中的应用》", 31 March 2018, 国防工业出版社 * |
王发仓: "烧结温度对Fe-9Mn-4Al-0.4C低密度钢组织结构和性能的影响", 《江苏科技信息》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109182882B (zh) | 一种高强度氧化物弥散强化Fe基合金的制备方法 | |
CN108103381B (zh) | 一种高强度FeCoNiCrMn高熵合金及其制备方法 | |
CN100567530C (zh) | 一种高性能粉末冶金Mo-Ti-Zr钼合金的制备方法 | |
CN112792308B (zh) | 一种连续感应式快淬炉用辊轮及其制造方法 | |
CN101956093B (zh) | 氧化物弥散强化铂基合金及其制备方法 | |
CN101611469A (zh) | 烧结硅晶圆 | |
CN112662903B (zh) | 一种高强度Zr-Ti基合金的制备方法 | |
CN104745880B (zh) | 一种高密度动能超高强度钨镍耐热合金及制备方法 | |
CN111705252A (zh) | 一种Al2O3纳米颗粒增强CrCoNi中熵合金基复合材料及制备方法 | |
CN112030120A (zh) | 一种钽硅合金溅射靶材的制备方法 | |
CN110983152B (zh) | 一种Fe-Mn-Si-Cr-Ni基形状记忆合金及其制备方法 | |
CN109706371A (zh) | 石墨烯钢复合材料的制备方法 | |
CN115044794A (zh) | 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法 | |
CN116200622B (zh) | 一种超细晶TiAl合金及其复合材料的制备方法 | |
CN111607740A (zh) | 高强度低密度钢的制备方法及高强度低密度钢 | |
CN111593263A (zh) | 一种高强度低密度钢的制备方法及高强度低密度钢 | |
CN111593221A (zh) | 一种高性能钼钪合金的制备方法及高性能钼钪合金 | |
CN113025859B (zh) | 一种高强度高塑性钨合金材料及其制备方法 | |
CN101265530A (zh) | 一种纳米团簇弥散强化铁基合金的制备方法 | |
CN113770355A (zh) | 一种用于稀土合金烧结热处理的烧结容器及其制备方法 | |
CN114293047A (zh) | 一种超高强粉末冶金钛合金的制备方法 | |
CN114058971A (zh) | 一种超高钒高速钢及其制备方法 | |
CN102747249A (zh) | 一种增强钛基复合材料及其粉末冶金制备方法 | |
KR101419443B1 (ko) | 산화물 분산 강화형 백금-금 합금의 제조방법 | |
CN113718150B (zh) | 一种连续感应式快淬炉用合金辊轮及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |