CN111602365A - 用于交叠的重复型上行链路资源指派的uci传输 - Google Patents
用于交叠的重复型上行链路资源指派的uci传输 Download PDFInfo
- Publication number
- CN111602365A CN111602365A CN201980008829.7A CN201980008829A CN111602365A CN 111602365 A CN111602365 A CN 111602365A CN 201980008829 A CN201980008829 A CN 201980008829A CN 111602365 A CN111602365 A CN 111602365A
- Authority
- CN
- China
- Prior art keywords
- pusch
- uci
- pucch
- transmission
- slots
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/566—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
- H04W72/569—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0064—Rate requirement of the data, e.g. scalable bandwidth, data priority
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开的某些方面提供了用于交叠的重复型物理上行链路共享信道(PUSCH)和物理上行链路控制信道(PUCCH)资源指派的上行链路控制信息(UCI)传输的技术。提供了一种由用户装备(UE)进行无线通信的方法。该方法一般包括接收用于在与第一重复次数相关联的一个或多个第一时隙中在PUSCH上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在PUCCH上进行传送的调度。被调度的传输在至少一个时隙中交叠。该方法包括针对一个或多个第一和第二时隙中的每个时隙确定要在哪个信道上传送UCI以及要丢弃哪个信道。该方法包括根据该确定来在一个或多个第一和第二时隙中传送或丢弃UCI。
Description
背景
相关申请的交叉引用及优先权要求
本申请要求于2019年1月17日提交的美国申请No.16/250,542的优先权,该美国申请要求于2018年1月19日提交的美国临时专利申请S/N.62/619,709、于2018年2月16日提交的美国临时专利申请S/N.62/710,441以及于2018年2月23日提交的美国临时专利申请S/N.62/634,797的权益和优先权,这些申请通过援引出于所有适用目的如同在下文全面阐述那样被整体纳入于此。
公开领域
本公开的各方面涉及无线通信,尤其涉及用于在某些系统(诸如,新无线电(NR)系统)中交叠的重复型上行链路资源指派(诸如,物理上行链路共享信道(PUSCH)和物理上行链路控制信道(PUCCH))的上行链路控制信息(UCI)传输的技术。
相关技术描述
无线通信系统被广泛部署以提供诸如电话、视频、数据、消息接发、广播等各种电信服务。这些无线通信系统可采用能够通过共享可用系统资源(例如,带宽、发射功率等等)来支持与多个用户通信的多址技术。此类多址系统的示例包括第三代伙伴项目(3GPP)长期演进(LTE)系统、高级LTE(LTE-A)系统、码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统、以及时分同步码分多址(TD-SCDMA)系统,仅列举几个示例。
在一些示例中,无线多址通信系统可包括数个基站(BS),每个基站能够同时支持多个通信设备(另外被称为用户装备(UE))的通信。在LTE或LTE-A网络中,包含一个或多个基站的集合可定义演进型B节点(eNB)。在其它示例中(例如,在下一代、新无线电(NR)、或5G网络中),无线多址通信系统可包括与数个中央单元(CU)(例如,中央节点(CN)、接入节点控制器(ANC)等)处于通信的数个分布式单元(DU)(例如,边缘单元(EU)、边缘节点(EN)、无线电头端(RH)、智能无线电头端(SRH)、传送接收点(TRP)等),其中包含与CU处于通信的一个或多个DU的集合可定义接入节点(例如,其可被称为BS、5G NB、下一代B节点(gNB或gNodeB)、传送接收点(TRP)等)。BS或DU可在下行链路信道(例如,用于从BS或DU至UE的传输)和上行链路信道(例如,用于从UE至BS或DU的传输)上与UE集合通信。
这些多址技术已经在各种电信标准中被采纳以提供使不同的无线设备能够在城市、国家、地区、以及甚至全球级别上进行通信的共同协议。NR(例如,新无线电或5G)是新兴电信标准的示例。NR是由3GPP颁布的LTE移动标准的增强集。NR被设计成通过改善频谱效率、降低成本、改善服务、利用新频谱、并且更好地与在下行链路(DL)和上行链路(UL)上使用具有循环前缀(CP)的OFDMA的其他开放标准进行整合来更好地支持移动宽带因特网接入。为此,NR支持波束成形、多输入多输出(MIMO)天线技术和载波聚集。
然而,随着对移动宽带接入的需求持续增长,存在对于NR和LTE技术的进一步改进的需要。优选地,这些改进应当适用于其他多址技术以及采用这些技术的电信标准。
概述
本公开的系统、方法和设备各自具有若干方面,其中并非仅靠任何单一方面来负责其期望属性。在不限定如所附权利要求所表述的本公开的范围的情况下,现在将简要地讨论一些特征。在考虑本讨论后,并且尤其是在阅读题为“详细描述”的章节之后,将理解本公开的特征是如何提供包括无线网络中的接入点与站之间的改进通信在内的优点的。
本公开的某些方面一般涉及用于在某些系统(诸如,新无线电(NR)系统)中交叠的重复型上行链路资源指派(诸如,物理上行链路共享信道(PUSCH)和物理上行链路控制信道(PUCCH)资源指派)的上行链路控制信息(UCI)传输的方法和装置。
本公开的某些方面提供了一种可由例如用户装备(UE)执行的用于无线通信的方法。该方法一般包括:接收用于在与第一重复次数相关联的一个或多个第一时隙中在PUSCH上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在PUCCH上进行传送的调度。被调度的PUSCH和PUCCH传输在至少一个时隙中交叠。该方法包括针对一个或多个第一和第二时隙中的每个时隙确定要在PUSCH上传送UCI并丢弃被调度的PUCCH传输、在PUCCH上传送UCI并丢弃被调度的PUSCH传输、或者丢弃UCI传输。该方法包括根据该确定在一个或多个第一和第二时隙中传送或丢弃UCI。
本公开的某些方面提供了一种用于无线通信的装备,诸如UE。该装备一般包括:用于接收用于在与第一重复次数相关联的一个或多个第一时隙中在PUSCH上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在PUCCH上进行传送的调度的装置。被调度的PUSCH和PUCCH传输在至少一个时隙中交叠。该装备包括:用于针对一个或多个第一和第二时隙中的每个时隙确定要在PUSCH上传送UCI并丢弃被调度的PUCCH传输、在PUCCH上传送UCI并丢弃被调度的PUSCH传输、或者丢弃UCI传输的装置。该装备包括:用于根据该确定在一个或多个第一和第二时隙中传送或丢弃UCI的装置。
本公开的某些方面提供了一种用于无线通信的装置,诸如UE。该装置一般包括:接收机,其被配置成接收用于在与第一重复次数相关联的一个或多个第一时隙中在PUSCH上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在PUCCH上进行传送的调度。被调度的PUSCH和PUCCH传输在至少一个时隙中交叠。该装置包括:至少一个处理器,其与存储器耦合并被配置成:针对一个或多个第一和第二时隙中的每个时隙确定要在PUSCH上传送UCI并丢弃被调度的PUCCH传输、在PUCCH上传送UCI并丢弃被调度的PUSCH传输、或者丢弃UCI传输。该装置包括:发射机,其被配置成根据该确定在一个或多个第一和第二时隙中传送或丢弃UCI。
本公开的某些方面提供了一种其上存储有用于由UE进行无线通信的计算机可执行代码的计算机可读介质。该计算机可执行代码一般包括:用于接收用于在与第一重复次数相关联的一个或多个第一时隙中在PUSCH上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在PUCCH上进行传送的调度的代码。被调度的PUSCH和PUCCH传输在至少一个时隙中交叠。该计算机可执行代码一般包括:用于针对一个或多个第一和第二时隙中的每个时隙确定要在PUSCH上传送UCI并丢弃被调度的PUCCH传输、在PUCCH上传送UCI并丢弃被调度的PUSCH传输、或者丢弃UCI传输的代码。该计算机可执行代码一般包括:用于根据该确定在一个或多个第一和第二时隙中传送或丢弃UCI的代码。
为了达成前述及相关目的,这一个或多个方面包括在下文充分描述并在权利要求中特别指出的特征。以下描述和附图详细阐述了这一个或多个方面的某些解说性特征。然而,这些特征仅指示可采用各个方面的原理的各种方式中的若干种。
附图简述
为了能详细理解本公开的以上陈述的特征所用的方式,可参照各方面来对以上简要概述的内容进行更具体的描述,其中一些方面在附图中解说。然而应该注意,附图仅解说了本公开的某些典型方面,故不应被认为限定其范围,因为本描述可允许有其他等同有效的方面。
图1是概念性地解说根据本公开的某些方面的示例电信系统的框图。
图2是解说根据本公开的某些方面的分布式无线电接入网(RAN)的示例逻辑架构的框图。
图3是解说根据本公开的某些方面的分布式RAN的示例物理架构的示图。
图4是概念性地解说根据本公开的某些方面的示例基站(BS)和用户装备(UE)的设计的框图。
图5是示出根据本公开的某些方面的用于实现通信协议栈的示例的示图。
图6解说了根据本公开的某些方面的用于新无线电(NR)系统的帧格式的示例。
图7是解说根据本公开的某些方面的可由UE执行以进行上行链路控制信息(UCI)传输的示例操作的流程图。
图8是解说根据本公开的某些方面的可由BS执行的示例操作的流程图。
图9解说了根据本公开的各方面的可包括被配置成执行本文所公开技术的操作的各种组件的通信设备。
图10解说了根据本公开的各方面的可包括被配置成执行本文中所公开的各技术的操作的各种组件的通信设备。
为了促进理解,在可能之处使用了相同的附图标记来指定各附图共有的相同要素。构想了一个方面所公开的要素可有益地用在其他方面而无需具体引述。
详细描述
本公开的各方面提供了用于NR(新无线电接入技术或5G技术)的装置、方法、处理系统、和计算机可读介质。NR可支持各种无线通信服务,诸如以宽带宽(例如,超过80MHz)为目标的增强型移动宽带(eMBB)、以高载波频率(例如,25GHz或以上)为目标的毫米波(mmW)、以非后向兼容的MTC技术为目标的大规模机器类型通信(mMTC)、和/或以超可靠低等待时间通信(URLLC)为目标的关键任务。这些服务可包括等待时间和可靠性要求。这些服务还可具有不同的传输时间区间(TTI)以满足相应的服务质量(QoS)要求。另外,这些服务可以在相同子帧中共存。
在某些系统(诸如,NR)中,信道(诸如,物理上行链路共享信道(PUSCH)和物理上行链路控制信道(PUCCH))可被配置成用于重复。这些信道中的上行链路控制信息(UCI)的传输可以基于规则。基于规则,用户装备(UE)可在PUCCH中传送UCI,在PUSCH中捎带UCI,或者丢弃UCI或UCI的一部分。在一些情形中,规则被定义用于在没有重复的情形中(例如,重复因子=1)确定UCI传输;然而,因为在NR中,PUSCH和PUCCH可被配置成用于重复(例如,重复因子=2、4、8等),所以期望在重复的情形中应用UCI规则的技术。
相应地,本公开的各方面提供了用于交叠的重复型PUSCH和PUCCH资源指派的UCI传输的技术和装置。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者示例。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的范围。各种示例可恰适地略去、替代、或添加各种规程或组件。例如,可按不同于所描述的次序来执行所描述的方法,并且可以添加、略去、或组合各种步骤。另外,参照一些示例所描述的特征可在一些其他示例中被组合。例如,可使用本文中所阐述的任何数目的方面来实现装置或实践方法。另外,本公开的范围旨在覆盖使用作为本文中所阐述的本公开的各个方面的补充或者另外的其他结构、功能性、或者结构及功能性来实践的此类装置或方法。应当理解,本文中所披露的本公开的任何方面可由权利要求的一个或多个元素来实施。措辞“示例性”在本文中用于意指“用作示例、实例、或解说”。本文中描述为“示例性”的任何方面不必被解释为优于或胜过其他方面。
本文中所描述的技术可用于各种无线通信技术,诸如LTE、CDMA、TDMA、FDMA、OFDMA、SC-FDMA及其他网络。术语“网络”和“系统”常常可互换地使用。CDMA网络可以实现诸如通用地面无线电接入(UTRA)、cdma2000等无线电技术。UTRA包括宽带CDMA(WCDMA)和CDMA的其他变体。cdma2000涵盖IS-2000、IS-95和IS-856标准。TDMA网络可实现诸如全球移动通信系统(GSM)之类的无线电技术。OFDMA网络可以实现诸如NR(例如,5G RA)、演进型UTRA(E-UTRA)、超移动宽带(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDMA等无线电技术。UTRA和E-UTRA是通用移动电信系统(UMTS)的一部分。
新无线电(NR)是正协同5G技术论坛(5GTF)进行开发的新兴无线通信技术。3GPP长期演进(LTE)和高级LTE(LTE-A)是使用E-UTRA的UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM在来自名为“第3代伙伴项目”(3GPP)的组织的文献中描述。cdma2000和UMB在来自名为“第3代伙伴项目2”(3GPP2)的组织的文献中描述。本文中所描述的技术可被用于以上所提及的无线网络和无线电技术以及其他无线网络和无线电技术。为了清楚起见,虽然诸方面在本文可使用通常与3G和/或4G无线技术相关联的术语来描述,但本公开的诸方面可以在包括NR技术在内的基于其他代的通信系统(诸如5G和后代)中应用。
示例无线通信系统
图1解说了其中可执行本公开的各方面的示例无线通信网络100。例如,无线网络100可以是新无线电(NR)或5G网络。无线通信网络100中的UE 120可被配置成例如从无线通信网络100中的BS 110接收用于物理上行链路共享信道(PUSCH)传输的调度和用于物理上行链路控制信道(PUCCH)传输的调度。PUSCH和PUCCH可被调度成用于重复。UE 120可被调度成在子帧中的交叠时隙中、和/或在时隙内的交叠正交频分复用(OFDM)码元中传送PUSCH和PUCCH。UE 120可具有要发送的上行链路控制信息(UCI),并且可确定是否丢弃UCI、丢弃PUCCH并在PUSCH上捎带UCI、或者在PUCCH上传送UCI并丢弃PUSCH。UE 120可基于以下更详细描述的规则来作出确定。UE 120规则可应用于单个重复或者可被应用于资源指派中的多个或所有时隙。规则可基于多个因素,包括但不限于:被调度的交叠的性质,信道、逻辑信道、和/或与该信道和逻辑信道相关联的信息的优先级,传输的内容,与调度相关联的资源指派和/或其他因素。
如图1中解说的,无线通信网络100可包括数个基站(BS)110和其他网络实体。BS可以是与用户装备(UE)进行通信的站。每个BS 110可为特定地理区域提供通信覆盖。在3GPP中,术语“蜂窝小区”可指代B节点(NB)的覆盖区域和/或服务该覆盖区域的NB子系统,这取决于使用该术语的上下文。在NR系统中,术语“蜂窝小区”和下一代B节点(gNB或gNodeB)、接入点(AP)、或传送接收点(TRP)可以是可互换的。在一些示例中,蜂窝小区可以不必是驻定的,并且蜂窝小区的地理区域可根据移动BS的位置而移动。在一些示例中,基站可通过各种类型的回程接口(诸如直接物理连接、无线连接、虚拟网络、或使用任何合适的传输网络的类似物)来彼此互连和/或互连到无线通信网络100中的一个或多个其他基站或网络节点(未示出)。
一般而言,在给定的地理区域中可部署任何数目的无线网络。每个无线网络可支持特定的无线电接入技术(RAT),并且可在一个或多个频率上操作。RAT还可被称为无线电技术、空中接口等。频率也可被称为载波、副载波、频率信道、频调、子带等。每个频率可在给定的地理区域中支持单个RAT以避免不同RAT的无线网络之间的干扰。在一些情形中,可部署NR或5G RAT网络。
BS可提供对宏蜂窝小区、微微蜂窝小区、毫微微蜂窝小区、和/或其他类型的蜂窝小区的通信覆盖。宏蜂窝小区可以覆盖相对较大的地理区域(例如,半径为数千米),并且可允许由具有服务订阅的UE无约束地接入。微微蜂窝小区可以覆盖相对较小的地理区域,并且可允许由具有服务订阅的UE无约束地接入。毫微微蜂窝小区可覆盖相对较小的地理区域(例如,住宅)且可允许由与该毫微微蜂窝小区有关联的UE(例如,封闭订户群(CSG)中的UE、住宅中用户的UE等)有约束地接入。用于宏蜂窝小区的BS可被称为宏BS。用于微微蜂窝小区的BS可被称为微微BS。用于毫微微蜂窝小区的BS可被称为毫微微BS或家用BS。在图1中所示的示例中,BS 110a、110b和110c可以分别是用于宏蜂窝小区102a、102b和102c的宏BS。BS110x可以是用于微微蜂窝小区102x的微微BS。BS 110y和110z可以分别是用于毫微微蜂窝小区102y和102z的毫微微BS。BS可以支持一个或多个(例如,三个)蜂窝小区。
无线通信网络100还可包括中继站。中继站是从上游站(例如,BS或UE)接收数据和/或其他信息的传输并向下游站(例如,UE或BS)发送该数据和/或其他信息的传输的站。中继站还可以是为其他UE中继传输的UE。在图1中所示的示例中,中继站110r可与BS 110a和UE 120r进行通信以促成BS 110a与UE 120r之间的通信。中继站也可被称为中继BS、中继等。
无线通信网络100可以是包括不同类型的BS(例如,宏BS、微微BS、毫微微BS、中继等)的异构网络。这些不同类型的BS可具有不同发射功率电平、不同覆盖区域、以及对无线通信网络100中的干扰的不同影响。例如,宏BS可具有高发射功率电平(例如,20瓦),而微微BS、毫微微BS和中继可具有较低的发射功率电平(例如,1瓦)。
无线通信网络100可支持同步或异步操作。对于同步操作,各BS可以具有类似的帧定时,并且来自不同BS的传输可以在时间上大致对齐。对于异步操作,各BS可以具有不同的帧定时,并且来自不同BS的传输可能在时间上并不对齐。本文中所描述的技术可被用于同步和异步操作两者。
网络控制器130可以耦合到一组BS并提供对这些BS的协调和控制。网络控制器130可以经由回程来与BS 110进行通信。BS 110还可经由无线或有线回程(例如,直接或间接地)彼此通信。
UE 120(例如,120x、120y等)可分散遍及无线通信网络100,并且每个UE可以是驻定或移动的。UE也可被称为移动站、终端、接入终端、订户单元、站、客户端装备(CPE)、蜂窝电话、智能电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持式设备、膝上型计算机、无绳电话、无线本地环(WLL)站、平板计算机、相机、游戏设备、上网本、智能本、超级本、电器、医疗设备或医疗装备、生物测定传感器/设备、可穿戴设备(诸如智能手表、智能服装、智能眼镜、智能腕带、智能珠宝(例如,智能戒指、智能手链等))、娱乐设备(例如,音乐设备、视频设备、卫星无线电等)、交通工具组件或传感器、智能计量仪/传感器、工业制造装备、全球定位系统设备、或者被配置成经由无线或有线介质进行通信的任何其他合适设备。一些UE可被认为是机器类型通信(MTC)设备或演进型MTC(eMTC)设备。MTC和eMTC UE包括例如机器人、无人机、远程设备、传感器、计量仪、监视器、位置标签等,其可与BS、另一设备(例如,远程设备)或某个其他实体通信。无线节点可以例如经由有线或无线通信链路来为网络(例如,广域网,诸如因特网或蜂窝网络)提供连通性或提供至该网络的连通性。一些UE可被认为是物联网(IoT)设备,其可以是窄带IoT(NB-IoT)设备。
某些无线网络(例如,LTE)在下行链路上利用正交频分复用(OFDM)并在上行链路上利用单载波频分复用(SC-FDM)。OFDM和SC-FDM将系统带宽划分成多个(K个)正交副载波,这些副载波也常被称为频调、频槽等。每个副载波可用数据来调制。一般而言,调制码元对于OFDM是在频域中发送的,而对于SC-FDM是在时域中发送的。毗邻副载波之间的间隔可以是固定的,且副载波的总数(K)可取决于系统带宽。例如,副载波的间隔可以是15kHz,而最小资源分配(称为“资源块”(RB))可以是12个副载波(或180kHz)。因此,对于1.25、2.5、5、10或20兆赫兹(MHz)的系统带宽,标称快速傅里叶变换(FFT)大小可以分别等于128、256、512、1024或2048。系统带宽还可被划分成子带。例如,子带可覆盖1.08MHz(即,6个资源块),并且对于1.25、2.5、5、10或20MHz的系统带宽,可分别有1、2、4、8或16个子带。
虽然本文中所描述的示例的诸方面可与LTE技术相关联,但是本公开的诸方面可适用于其他无线通信系统,诸如NR。
NR可以在上行链路和下行链路上利用具有CP的OFDM并且包括对使用TDD的半双工操作的支持。可支持波束成形并且可动态地配置波束方向。还可支持具有预编码的MIMO传输。DL中的MIMO配置可支持至多达8个发射天线(具有至多达8个流的多层DL传输)和每UE至多达2个流。可支持每UE至多达2个流的多层传输。可使用至多达8个服务蜂窝小区来支持多个蜂窝小区的聚集。
在一些示例中,可以调度对空中接口的接入。调度实体(例如,BS)在其服务区域或蜂窝小区内的一些或所有设备和装备间分配用于通信的资源。调度实体可负责调度、指派、重配置和释放用于一个或多个下级实体的资源。即,对于被调度的通信而言,下级实体利用由调度实体分配的资源。基站不是可用作调度实体的唯一实体。在一些示例中,UE可用作调度实体,并且可调度用于一个或多个下级实体(例如,一个或多个其他UE)的资源,且其他UE可将由UE调度的资源用于无线通信。在一些示例中,UE可在对等(P2P)网络中和/或在网状网络中充当调度实体。在网状网络示例中,UE除了与调度实体通信之外还可以直接彼此通信。
在图1中,带有双箭头的实线指示UE与服务BS之间的期望传输,服务BS是被指定为在下行链路和/或上行链路上服务该UE的BS。带有双箭头的细虚线指示UE与BS之间的干扰传输。图2解说了分布式无线电接入网(RAN)200的示例逻辑架构,其可在图1中所解说的无线通信网络100中实现。5G接入节点206可包括接入节点控制器(ANC)202。ANC 202可以是分布式RAN 200的中央单元(CU)。至下一代核心网(NG-CN)204的回程接口可在ANC 202处终接。至相邻的下一代接入节点(NG-AN)210的回程接口可在ANC 202处终接。ANC 202可包括一个或多个TRP 208(例如,蜂窝小区、BS、gNB等)。
TRP 208可以是分布式单元(DU)。TRP 208可连接到单个ANC(例如,ANC 202)或者不止一个ANC(未解说)。例如,对于RAN共享、无线电即服务(RaaS)、以及因服务而异的AND部署,TRP 208可被连接到一个以上ANC。TRP 208各自可包括一个或多个天线端口。TRP 208可被配置成个体地(例如,动态选择)或联合地(例如,联合传输)服务至UE的话务。
分布式RAN 200的逻辑架构可支持跨不同部署类型的去程方案。例如,该逻辑架构可基于传送网络能力(例如,带宽、等待时间和/或抖动)。分布式RAN 200的逻辑架构可与LTE共享特征和/或组件。例如,下一代接入节点(NG-AN)210可支持与NR的双连通性,并且可针对LTE和NR共享共用去程。分布式RAN 200的逻辑架构可实现TRP 208之间和之中的协作,例如,在TRP内和/或经由ANC 202跨TRP。可以不使用TRP间接口。
逻辑功能可在分布式RAN 200的逻辑架构中动态地分布。如将参照图5更详细地描述的,无线电资源控制(RRC)层、分组数据汇聚协议(PDCP)层、无线电链路控制(RLC)层、媒体接入控制(MAC)层、以及物理(PHY)层可适应性地放置于DU(例如,TRP 208)或CU(例如,ANC 202)处。
图3解说了根据本公开的诸方面的分布式RAN 300的示例物理架构。集中式核心网单元(C-CU)302可主存核心网功能。C-CU 302可被集中地部署。C-CU 302功能性可被卸载(例如,至高级无线服务(AWS))以力图处置峰值容量。
集中式RAN单元(C-RU)304可主存一个或多个ANC功能。可任选地,C-RU 304可在本地主存核心网功能。C-RU 304可具有分布式部署。C-RU 304可以靠近网络边缘。
DU 306可主存一个或多个TRP(边缘节点(EN)、边缘单元(EU)、无线电头端(RH)、智能无线电头端(SRH)等)。DU可位于具有射频(RF)功能性的网络的边缘处。
图4解说了(如图1中描绘的)BS 110和UE 120的示例组件,其可被用来实现本公开的各方面。例如,UE 120的天线452、处理器466、458、464和/或控制器/处理器480和/或BS110的天线434、处理器420、430、438和/或控制器/处理器440可被用于执行本文描述的各种技术和方法。
在BS 110处,发射处理器420可接收来自数据源412的数据和来自控制器/处理器440的控制信息。控制信息可以用于物理广播信道(PBCH)、物理控制格式指示符信道(PCFICH)、物理混合ARQ指示符信道(PHICH)、物理下行链路控制信道(PDCCH)、群共用PDCCH(GC PDCCH)等。数据可以用于物理下行链路共享信道(PDSCH)等。处理器420可以处理(例如,编码以及码元映射)数据和控制信息以分别获得数据码元和控制码元。处理器420还可生成参考码元(例如,用于主同步信号(PSS)、副同步信号(SSS)、以及因蜂窝小区而异的参考信号(CRS))。发射(TX)多输入多输出(MIMO)处理器430可在适用的情况下对数据码元、控制码元、和/或参考码元执行空间处理(例如,预编码),并且可将输出码元流提供给调制器(MOD)432a到432t。每个调制器432可处理各自相应的输出码元流(例如,针对OFDM等等)以获得输出采样流。每个调制器可进一步处理(例如,转换至模拟、放大、滤波、及上变频)输出采样流以获得下行链路信号。来自调制器432a到432t的下行链路信号可分别经由天线434a到434t被发射。
在UE 120处,天线452a到452r可接收来自基站110的下行链路信号并可分别向收发机中的解调器(DEMOD)454a到454r提供收到信号。每个解调器454可调理(例如,滤波、放大、下变频、以及数字化)各自的收到信号以获得输入采样。每个解调器可进一步处理输入采样(例如,针对OFDM等)以获得收到码元。MIMO检测器456可从所有解调器454a到454r获得收到码元,在适用的情况下对这些收到码元执行MIMO检测,并提供检出码元。接收处理器458可处理(例如,解调、解交织、以及解码)这些检出码元,将经解码的给UE 120的数据提供给数据阱460,并且将经解码的控制信息提供给控制器/处理器480。
在上行链路上,在UE 120处,发射处理器464可接收并处理来自数据源462的数据(例如,用于物理上行链路共享信道(PUSCH))以及来自控制器/处理器480的控制信息(例如,用于物理上行链路控制信道(PUCCH))。发射处理器464还可生成用于参考信号(例如,用于探通参考信号(SRS))的参考码元。来自发射处理器464的码元可在适用的情况下由TXMIMO处理器466预编码,进一步由收发机中的解调器454a到454r处理(例如,针对SC-FDM等),并且向基站110传送。在BS 110处,来自UE 120的上行链路信号可由天线434接收,由调制器432处理,在适用的情况下由MIMO检测器436检测,并由接收处理器438进一步处理以获得经解码的由UE 120发送的数据和控制信息。接收处理器438可将经解码数据提供给数据阱439并将经解码控制信息提供给控制器/处理器440。
控制器/处理器440和480可分别指导BS 110和UE 120处的操作。BS 110处的处理器440和/或其他处理器和模块可执行或指导本文中所描述的技术的过程的执行。存储器442和482可分别存储供BS 110和UE 120用的数据和程序代码。调度器444可以调度UE以进行下行链路和/或上行链路上的数据传输。
图5解说了示出根据本公开的各方面的用于实现通信协议栈的示例的示图500。所解说的通信协议栈可由在无线通信系统(诸如5G系统(例如,支持基于上行链路的移动性的系统))中操作的设备来实现。示图500解说了包括RRC层510、PDCP层515、RLC层520、MAC层525和PHY层530的通信协议栈。在各种示例中,协议栈的这些层可被实现为分开的软件模块、处理器或ASIC的部分、由通信链路连接的非共处一地的设备的部分、或其各种组合。共处一地和非共处一地的实现可例如在协议栈中用于网络接入设备(例如,AN、CU和/或DU)或UE。
第一选项505-a示出了协议栈的拆分实现,其中协议栈的实现在集中式网络接入设备(例如,图2中的ANC 202)与分布式网络接入设备(例如,图2中的DU 208)之间拆分。在第一选项505-a中,RRC层510和PDCP层515可由中央单元实现,而RLC层520、MAC层525和PHY层530可由DU实现。在各种示例中,CU和DU可共处一地或非共处一地。第一选项505-a在宏蜂窝小区、微蜂窝小区、或微微蜂窝小区部署中可以是有用的。
第二选项505-b示出了协议栈的统一实现,其中协议栈在单个网络接入设备中实现。在第二选项中,RRC层510、PDCP层515、RLC层520、MAC层525、以及PHY层530可各自由AN实现。第二选项505-b在例如毫微微蜂窝小区部署中可以是有用的。
不管网络接入设备实现部分还是全部的协议栈,UE都可如505-c中所示地实现整个协议栈(例如,RRC层510、PDCP层515、RLC层520、MAC层525、以及PHY层530)。
在LTE中,基本传输时间区间(TTI)或分组历时是1ms子帧。在NR中,一个子帧仍然是1ms,但基本TTI被称为时隙。子帧包含可变数目的时隙(例如,1、2、4、8、16…个时隙),这取决于副载波间隔。NR RB是12个连贯频率副载波。NR可支持15KHz的基副载波间隔,并且可相对于基副载波间隔定义其他副载波间隔,例如,30kHz、60kHz、120kHz、240kHz等。码元和时隙长度随副载波间隔而缩放。CP长度也取决于副载波间隔。
图6是示出用于NR的帧格式600的示例的示图。下行链路和上行链路中的每一者的传输时间线可被划分成以无线电帧为单位。每个无线电帧可具有预定历时(例如,10ms),并且可被划分成具有索引0至9的10个子帧,每个子帧为1ms。每个子帧可包括可变数目的时隙,这取决于副载波间隔。每个时隙可包括可变数目的码元周期(例如,7或14个码元),这取决于副载波间隔。可为每个时隙中的码元周期指派索引。迷你时隙(其可被称为子时隙结构)是指具有小于时隙的历时(例如,2、3或4个码元)的传送时间区间。
时隙中的每个码元可指示用于数据传输的链路方向(例如,DL、UL或灵活),并且每个子帧的链路方向可以动态切换。链路方向可基于时隙格式。每个时隙可包括DL/UL数据以及DL/UL控制信息。
在NR中,传送同步信号(SS)块。SS块包括PSS、SSS和两码元PBCH。SS块可在固定的时隙位置(诸如图6中所示的码元0-3)中被传送。PSS和SSS可由UE用于蜂窝小区搜索和捕获。PSS可提供半帧定时,SS可提供CP长度和帧定时。PSS和SSS可提供蜂窝小区身份。PBCH携带一些基本系统信息,诸如下行链路系统带宽、无线电帧内的定时信息、SS突发集合周期性、系统帧号等。SS块可被组织成SS突发以支持波束扫掠。进一步的系统信息(诸如,剩余最小系统信息(RMSI)、系统信息块(SIB)、其他系统信息(OSI))可在某些子帧中在物理下行链路共享信道(PDSCH)上传送。SS块可被传送至多达64次,例如,对于mmW而言用至多达64个不同的波束方向传送。SS块的至多达64次传输被称为SS突发集合。SS突发集合中的SS块在相同的频率区域中传送,而不同SS突发集合中的SS块可以在不同的频率位置处传送。
在一些情况下,两个或更多个下级实体(例如,UE)可使用侧链路信号来彼此通信。此类侧链路通信的现实世界应用可包括公共安全、邻近度服务、UE到网络中继、交通工具到交通工具(V2V)通信、万物联网(IoE)通信、IoT通信、关键任务网状网、和/或各种其它合适的应用。一般而言,侧链路信号可指从一个下级实体(例如,UE1)传达给另一下级实体(例如,UE2)而无需通过调度实体(例如,UE或BS)中继该通信的信号,即使调度实体可被用于调度和/或控制目的。在一些示例中,侧链路信号可使用有执照频谱来传达(不同于无线局域网,其通常使用无执照频谱)。
UE可在各种无线电资源配置中操作,包括与使用专用资源集传送导频相关联的配置(例如,无线电资源控制(RRC)专用状态等)、或者与使用共用资源集传送导频相关联的配置(例如,RRC共用状态等)。当在RRC专用状态中操作时,UE可选择专用资源集以用于向网络传送导频信号。当在RRC共用状态中操作时,UE可选择共用资源集以用于向网络传送导频信号。在任一情形中,由UE传送的导频信号可由一个或多个网络接入设备(诸如AN、或DU、或其诸部分)接收。每个接收方网络接入设备可被配置成接收和测量在共用资源集上传送的导频信号,并且还接收和测量在分配给UE的专用资源集上传送的导频信号,其中该网络接入设备是针对该UE的监视方网络接入设备集的成员。一个或多个接收方网络接入设备或者接收方网络接入设备向其传送导频信号测量的CU可使用这些测量来标识UE的服务蜂窝小区或者发起针对一个或多个UE的服务蜂窝小区的改变。
用于交叠的重复型上行链路资源指派的示例UCI传输
本公开的各方面提供了用于NR系统(例如,新无线电接入或5G技术)的装置、方法、处理系统、和计算机可读介质。某些方面提供了用于在NR中传送上行链路控制信息(UCI)的技术。
基站(例如,诸如在图1的无线通信网络100中解说的BS 110)可调度用户装备(例如,诸如在图1的无线通信网络100中解说的UE 120)进行上行链路传输。例如,BS可调度UE进行物理上行链路共享信道(PUSCH)传输和/或物理上行链路控制信道(PUCCH)传输。在某些系统(诸如,NR)中,PUSCH和/或PUCCH可被配置成用于重复。PUSCH和/或PUCCH可与重复因子(例如1、2、4、8)相关联,重复因子指定其中传输被重复的传输时间区间(TTI)(诸如,时隙)的数目。时隙可以在单个子帧中或在不同子帧中。传输可被调度成在时隙内的特定正交频分复用(OFDM)码元上。
被调度传输可以在一些或所有被调度时隙中交叠。在同一时隙中(例如,同时)传送交叠的PUSCH和/或PUCCH可导致最大功率降低(MPR)、增加的峰均功率比(PAPR)、时隙内的功率转换等。规则可被应用于在其中传输交叠的时隙中在被调度信道上进行传送或丢弃,和/或当PUCCH被丢弃时在PUSCH上捎带(即,复用)UCI。
期望用于在为PUSCH和/或PUCCH配置了重复时要传送或丢弃哪些信道以及在何处传送或丢弃UCI的规则的技术。
相应地,本公开的各方面提供了用于交叠的重复型PUSCH和/或PUCCH资源指派的UCI传输的技术和装置。
图7是解说根据本公开的某些方面的用于无线通信的示例操作700的流程图。操作700可以由UE(举例而言,诸如图1中解说的UE 120中的一者)来执行。操作700可被实现为在一个或多个处理器(例如,图4的处理器480)上执行和运行的软件组件。进一步,在操作700中由UE进行的信号传输和接收可例如由一个或多个天线(例如,图4的天线452)来实现。在某些方面,UE进行的信号传输和/或接收可经由一个或多个处理器(例如,处理器480)的总线接口获得和/或输出信号来实现。
操作700可始于在702,接收用于在与第一重复次数(例如,第一重复因子)相关联的一个或多个第一时隙中在PUSCH上进行传送的调度(例如,资源指派),以及接收用于在与第二重复次数(例如,第二重复因子)相关联的一个或多个第二时隙中在PUCCH上进行传送的调度。重复因子可指定其中相关联PUSCH或PUCCH被重复的时隙的数目。重复因子为1可指示没有重复(即,只有1个时隙传输)。重复可以在连贯时隙中或在非连贯时隙中。重复可以在相同子帧、不同子帧和/或不同帧中的时隙中。例如,一些时隙可能不具有足够数目个UL码元以进行传输(例如,这些码元可能已通过一些其他信令被切换为DL),并且那些时隙可对于重复被跳过。
被调度的PUSCH和/或PUCCH传输在至少一个时隙中交叠(例如,在部分或完全交叠的时隙集合中以及在时隙内的部分或完全交叠的OFDM码元集合中)。
在704,UE针对一个或多个第一和第二时隙中的每个时隙确定要在PUSCH上传送UCI(例如,捎带)并丢弃被调度的PUCCH传输、在PUCCH上传送UCI并丢弃被调度的PUSCH传输、或者丢弃UCI传输。如以下更详细描述的,该确定可以基于规则或规则集合。规则可取决于各种因素,诸如与传输相关联的优先级等级(如图7中的可任选711所示)、交叠传输的性质(如图7中的可任选812所示)、传输的内容、传输的定时、用于传输的资源指派的定时等。
在706,UE根据该确定来在一个或多个第一和第二时隙中传送或丢弃UCI(例如,以及PUSCH和PUCCH)。
图8是解说根据本公开的某些方面的用于无线通信的示例操作800的流程图。操作800可由BS(例如,诸如图1中所解说的无线通信网络100中的BS 110)来执行。操作800可以是与由UE执行的操作700互补的由BS进行的操作。操作800可被实现为在一个或多个处理器(例如,图4的处理器440)上执行和运行的软件组件。此外,在操作800中由BS进行的信号传输和接收可例如由一个或多个天线(例如,图4的天线434)来实现。在某些方面,由BS进行的信号传输和/或接收可经由一个或多个处理器(例如,处理器440)的总线接口获得和/或输出信号来实现。
操作800可始于在802,调度UE以在与第一重复次数相关联的一个或多个第一时隙中在PUSCH上进行传送,以及在与第二重复次数相关联的一个或多个第二时隙中在PUCCH上进行传送,其中被调度的PUSCH和PUCCH传输在至少一个时隙中交叠。
在804,在被调度的一个或多个第一和第二时隙中,BS在被调度的PUSCH上从UE接收(例如,捎带的)UCI,但是不接收被调度的PUCCH传输(例如,因为PUCCH由UE丢弃),或者BS在被调度的PUCCH上接收UCI,但是不接收被调度的PUSCH传输(例如,因为PUSCH由UE丢弃),或者BS可能不接收UCI(例如,因为UCI由UE丢弃)。
如上所提及的,UE确定在哪些信道上传送UCI或进行丢弃可以基于规则或规则集合。规则可取决于各种因素,诸如与传输相关联的优先级等级、交叠传输的性质、传输的内容、传输的定时、用于传输的资源指派的定时等。
本文讨论的示例规则和因素可以不是穷尽的,并且可以不是互斥的。可使用其他合适的规则来进行确定,并且规则可以基于其他合适的因素。可使用规则和因素的恰适组合来作出确定。
根据某些方面,该确定至少部分地基于信道和/或UCI的相对优先级。例如,该确定可以基于与UCI相关联的第一优先级等级和与PUSCH相关联的第二优先级等级。
PUSCH的优先级等级可以基于与PUSCH相关联(例如,其中携带有比特)的逻辑信道的相应优先级等级。例如,PUSCH可与用于不同服务(诸如,用于增强型移动宽带(eMBB)和超可靠低等待时间通信(URLLC))的不同逻辑信道相关联。在一些示例中,PUSCH的优先级等级是相关联逻辑信道的最高优先级等级。UCI的优先级等级可以基于UCI内容(例如,信息)的优先级等级或最高优先级等级。在一些示例中,混合自动重复请求(HARQ)确收(ACK)信息(例如,ACK/NACK反馈)的优先级基于被确收的对应物理下行链路共享信道(PDSCH)的优先级等级。在一些示例中,调度请求(SR)的优先级等级基于与SR相关联的逻辑信道的优先级等级。如果与不同逻辑信道相对应的多个SR资源与PUSCH资源交叠,则与PUSCH一起被包括的SR可对应于具有最高逻辑信道优先级的资源或具有较早开始的SR资源的资源。
UE可以被配置有优先级以应用于信道。例如,UE可以是硬连线的,可在无线标准中指定优先级,和/或可向UE发信令通知优先级。在一些示例中,优先级按照优先级降序可以是具有最高优先级的ACK/NACK信息,随后是调度请求,第一类型的信道状态信息(例如,周期性CSI),第二类型的CSI(例如,半持久CSI),第三类型的CSI(例如,周期性CSI),并且随后是具有最低优先级的PUSCH数据。在一些示例中,可以配置不同的优先级顺序。例如,如果认为上行链路话务比下行链路话务更重要,则SR可优先于ACK。
根据某些方面,UE确定要在哪些信道上传送UCI或进行丢弃至少部分地基于被调度传输的交叠。例如,该确定可以基于传输是否在时隙内和/或时隙间交叠。
对于时隙内交叠,该确定基于交叠传输是被调度用于在时隙内的完全交叠的OFDM码元上(例如,该时隙中的相同OFDM码元集合被调度用于PUSCH和PUCCH)还是部分交叠的OFDM码元上(例如,一些OFDM码元被调度用于交叠传输,而其他OFDM码元未被调度用于交叠传输)进行传输。如果时隙中的传输仅在部分交叠的OFDM码元集合上,则该确定可进一步基于哪个指派较早或较晚开始和/或哪个指派较早或较晚结束。在一些示例中,可以针对不同时隙的不同OFDM码元来调度传输;因此,对于不同时隙,时隙内交叠可以是不同的。
对于时隙间交叠,该确定可以基于被调度时隙是完全交叠(例如,相同时隙集合被调度用于传输)还是部分交叠(例如,一些时隙交叠、而其他时隙不交叠)。如果被调度传输仅在部分交叠的时隙集合中,则该确定可进一步基于哪个指派较早或较晚开始和/或哪个指派较早或较晚结束。
根据某些方面,该确定至少部分地基于与UCI(例如,UCI的内容)相关联的信息类型。
根据某些方面,该确定至少部分地基于调度交叠传输的资源指派。例如,该确定可以基于资源指派是半静态还是动态的和/或资源指派被接收到的时间。
根据某些方面,可以针对一个时隙中的交叠(例如,无重复)来确定/定义规则。单时隙规则的确定可以基于以上讨论的任何因素,或者那些因素和/或其他因素的组合。对于完全交叠,可将相同的规则扩展到重复时隙。例如,在每个被调度时隙中,可将相同的规则/确定应用于PUSCH/PUCCH/UCI的传输/丢弃。对于部分交叠,可将单时隙规则的确定仅应用于交叠时隙,而不应用于其他时隙。在一些示例中,一个信道(例如,PUSCH或PUCCH)可被丢弃。该信道可在每个时隙上被丢弃、仅在交叠时隙上被丢弃,或者可从第一交叠时隙开始并在剩余时隙处被丢弃。要丢弃的信道可以基于信道的优先级等级、指派的定时、何时知晓(例如,半静态地或动态地接收到)指派、或者这些的组合。
在一些示例中,对于部分交叠,调度交叠传输的收到/经配置指派可被调整以创建(例如,强制执行或实现)附加交叠或完全交叠。可以隐式地扩展一个或多个指派以减少或消除非交叠时隙的数目。例如,如果各指派中的一者是半静态的,则一旦接收到另一指派(例如,对另一个信道的动态指派),就可以预测交叠。基于所预测交叠,可将半静态指派扩展为与动态指派交叠。在该情形中,用于一个时隙的规则/确定可被用于所有交叠时隙。
在一些示例中,可对指派进行其他调整以允许改进的处理。例如,如果各指派中的一者是针对单个时隙的,则单时隙规则可能只应用于该时隙。将该交叠时隙移位到另一多时隙指派的开始或结尾以获得具有相同结构的毗连时隙重复集合或改进UE处理时间线可能是有利的。在解说性示例中,当单时隙PUSCH与N时隙PUCCH交叠时,可将单时隙PUSCH移到这N个时隙中的第一或最后一个时隙,将UCI捎带在单时隙PUSCH上并在剩余N-1个时隙上进行传送。PUSCH被移到指派的开始还是结束可通过其他因素来决定(例如,基于其他因素来确定),诸如举例而言基于时隙内的交叠的性质(例如,两个资源指派(PUSCH或PUCCH)中哪个具有较早开始或结束的OFDM码元)。将指派移位到稍晚时隙也可以改进处理时间线。例如,如果单时隙PUCCH与双时隙PUSCH中的第一时隙交叠,并且PUSCH早于PUCCH开始,则如果将UCI捎带在第一时隙上,UCI应比在没有交叠PUSCH的情况下更早可用。相反,可将UCI捎带在PUSCH的第二时隙上。这可被解读为在首先将PUCCH指派延迟1个时隙之后,遵循交叠时隙内的捎带规则。
如果有效载荷还未准备好,则可使用陈旧/先前的有效载荷(例如,旧/先前的CSI),或者可以不扩展指派,或者可丢弃各传输中的一者。通常,只要针对PUCCH ACK和PUSCH两者有足够的提前通知来遵从完全扩展,例如,基于k1时间线(即,PDSCH与对应ACK之间的间隙)和k2时间线(即,PUSCH指派准予和PUSCH传输之间的间隙),则完全扩展可被允许。在解说性示例中,动态调度的单时隙(即,经配置的重复因子为1)ACK与4时隙(即,经配置的重复因子为4)半持久PUSCH指派中的第三时隙交叠。如果在4时隙PUSCH指派中的第一时隙之前足够久(例如,基于最小k1值)知晓ACK指派,则单时隙ACK指派可被扩展以覆盖4时隙PUSCH指派的所有时隙。如果没有提前足够久知晓ACK指派以扩展到4时隙PUSCH指派的所有时隙,则ACK不被扩展或者可以仅扩展到其足够的时隙。在另一解说性示例中,ACK指派和PUSCH指派两者被动态地调度。如果动态PUSCH指派在知晓动态ACK指派之前被知晓(例如,首先接收到针对PUSCH的DCI),则可遵循来自先前解说性示例的办法。
根据某些方面,某些交叠可以是不允许的。例如,gNB可以不调度(例如,避免调度)某些交叠,而UE可以不期望gNB调度不允许的交叠。
根据某些方面,UE可拒绝在一个或多个交叠时隙中调度PUSCH和PUCCH传输的一个或多个指派(例如,上行链路准予)。在一些示例中,如果针对一个信道的准予是动态的,而针对另一信道的准予是半静态的,则UE可以拒绝该动态准予。在一些示例中,如果针对两个信道的准予是动态的,则UE可以接受首先接收到的准予并拒绝稍后接收到的准予,或者UE可以拒绝首先接收到的准予并接受较新的准予。在一些示例中,如果针对一个信道的准予是动态的并且针对另一信道的准予同时被接收到,或者如果两个准予都是动态的,则UE可以接受针对PUCCH的准予并且拒绝针对PUSCH的准予。在一些示例中,如果针对PUSCH的准予比针对PUCCH的准予小得多(例如,更低的有效载荷容量),则UE可以拒绝PUSCH准予并且不在PUSCH上捎带UCI。
在一些示例中,规则可以是指派的定时的函数。例如,PUCCH和PUSCH的相对优先级可以是针对PUCCH和PUSCH的指派历时的函数。较短历时传输可以与较低等待时间要求相关联,并且因此与较长历时传输相比具有较高优先级。一些示例是短PUCCH(例如,1或2个OFDM码元历时)和非时隙PUSCH(例如,B型,其也可被称为迷你时隙PUSCH传输),其优先级可以分别高于长PUCCH(例如,4个或更多个OFDM码元历时)和基于时隙的PUSCH(例如,A型传输)。
当PUCCH和PUSCH两者具有相同优先级时(例如,短PUCCH和非时隙PUSCH,或者长PUCCH和基于时隙的PUSCH),要应用的所确定规则可以与当PUCCH和PUSCH具有不同优先级时的规则不同。例如,当PUSCH和PUCCH具有相同优先级时,在时间上较晚开始的传输可被丢弃,而当PUSCH和PUCCH具有不同优先级时,即使较高优先级的传输稍晚开始,较早传输在部分传输之后可被丢弃或挂起,以便允许较高优先级的传输继续进行。即使在较高优先级的传输已完成之后,也可以不允许在其中挂起开始的时隙内恢复经挂起的传输,这是因为可能无法在与挂起之前发送的传输的原始部分保持相位一致性的情况下恢复该传输。当时隙重复被配置时,也可以不允许经挂起的传输在后续重复时隙中恢复。替换地,由于每个重复时隙具有其自己的解调参考信号(DMRS),因此可允许较低优先级的传输在后续重复时隙中恢复。
尽管本文讨论的技术引述可PUSCH和PUCCH的示例,但是本文描述的技术可扩展到两个以上传输资源的情形,其中在资源的不同子集之间具有部分或完全交叠。例如,N时隙PUCCH可以与两个相继PUSCH传输交叠。可在PUSCH传输中的一者或两者上捎带UCI。在一些示例中,可基于交叠时隙内的码元级交叠的性质,或者基于哪个PUSCH传输具有更长历时,来确定捎带UCI的一个或多个PUSCH传输。在一些示例中,PUCCH也可在没有交叠PUSCH的时隙上传送。本文讨论的技术还可扩展到其中在同一时隙中包含两个以上传输资源的情形。例如,单时隙PUCCH可与在同一时隙内的两个相继的毗连或非毗连PUSCH传输(例如,迷你时隙传输)交叠。可在PUSCH中的一者或两者上捎带UCI。
根据某些方面,可确定要用于传输的发射波束。在一些示例中,可根据本文描述的技术来确定用于确定针对PUCCH和PUSCH传输的一个或多个发射波束的规则。在一些示例中,在每个时隙中,可首先确定是在PUCCH上还是在PUSCH上进行传输(即,根据该时隙的单时隙规则),并且随后确定用于该时隙中的对应传输的波束。例如,如果仅在交叠时隙上捎带UCI,则这可导致不同时隙的波束不同。因此,在一些示例中,针对传输的第一时隙确定传输和发射波束,并且随后针对第一时隙确定的波束被用于后续时隙中的所有后续传输。使用相同波束可以促成跨传输的导频信号(诸如,DMRS和相位跟踪参考信号(PTRS))中的相位相干假设,这可实现跨时隙的联合信道和相位噪声估计。
本文描述的用于波束确定的技术甚至可应用于与单时隙PUSCH交叠的单时隙PUCCH指派。在一些示例中,UE可使用PUCCH波束或PUSCH波束,并且UE可基于各种因素(诸如,传输是在PUCCH上还是在PUSCH上发生、UCI的性质等等)来确定波束。在一些示例中,UE可使用PUSCH波束,而不管PUSCH是否仅携带SCH数据、仅捎带UCI、还是SCH数据和UCI两者。
当PUSCH与PUCCH指派之间没有交叠时,也可应用本文描述的用于波束确定的技术。在一些示例中,UE在所有稍晚时隙中重用在第一时隙中确定的波束。在一些示例中,基于恰适波束确定规则来更新波束。例如,UE可基于PUSCH准予中的波束指示符、或者如果不存在波束指示符则基于新近PUCCH或PDCCH资源的波束来确定用于PUSCH的发射波束。对于所有重复的PUSCH时隙,新近PUCCH或PDCCH资源可以是相同的,或者如果在时隙重复期间出现更新近的PUCCH或PDCCH资源,则可以针对相继时隙进行更新。在时隙重复期间,可例如基于无线电资源控制(RRC)或媒体接入控制(MAC)控制元素(CE)信令来更新与新近PUCCH或PDCCH资源相关联的波束。出于重复PUSCH时隙的波束确定目的,可以包括或排除更新。
图9解说了可包括被配置成执行本文所公开技术的操作(诸如,图7中所解说的操作)的各种组件(例如,对应于装置加功能组件)的通信设备900。通信设备900包括耦合到收发机908的处理系统902。收发机908被配置成经由天线910来传送和接收用于通信设备900的信号(诸如本文中所描述的各种信号)。处理系统902可被配置成执行用于通信设备900的处理功能,包括处理由通信设备900接收和/或将要传送的信号。
处理系统902包括经由总线906耦合到计算机可读介质/存储器912的处理器904。在某些方面,计算机可读介质/存储器912被配置成存储指令(例如,计算机可执行代码),该指令在由处理器904执行时致使处理器904执行图7中所解说的操作或者用于执行本文中所讨论的具有交叠上行链路指派的UCI传输的各种技术的其他操作。在某些方面,计算机可读介质/存储器912存储用于接收针对PUSCH和PUCCH的调度的代码914,例如,根据本公开的各方面的用于接收用于在与第一重复次数相关联的一个或多个第一时隙中在PUSCH上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在PUCCH上进行传送的调度的代码,其中被调度的PUSCH和PUCCH传输在至少一个时隙中交叠;用于确定要传送或丢弃UCI、PUCCH和PUSCH的代码914,例如,根据本公开的各方面的用于针对一个或多个第一和第二时隙中的每个时隙确定要在PUSCH上传送UCI并丢弃被调度的PUCCH传输、在PUCCH上传送UCI并丢弃被调度的PUSCH传输、或者丢弃UCI传输的代码;以及根据本公开的各方面的用于基于该确定来传送或丢弃UCI的代码916。在某些方面,处理器904具有被配置成实现存储在计算机可读介质/存储器912中的代码的电路系统。处理器904包括用于接收针对PUSCH和PUCCH的调度的电路系统920;用于确定要传送或丢弃UCI、PUCCH和PUSCH的电路系统922;以及用于基于该确定来传送或丢弃UCI的电路系统924。
图10解说了可包括被配置成执行本文所公开技术的操作(诸如,图8中所解说的操作)的各种组件(例如,对应于装置加功能组件)的通信设备1000。通信设备1000包括耦合到收发机1008的处理系统1002。收发机1008被配置成经由天线1010来传送和接收用于通信设备1000的信号(诸如本文中所描述的各种信号)。处理系统1002可被配置成执行用于通信设备1000的处理功能,包括处理由通信设备1000接收和/或将要传送的信号。
处理系统1002包括经由总线1006耦合到计算机可读介质/存储器1012的处理器1004。在某些方面,计算机可读介质/存储器1012被配置成存储指令(例如,计算机可执行代码),该指令在由处理器1004执行时致使处理器1004执行图8中所解说的操作或者用于执行本文中所讨论的具有交叠上行链路指派的UCI传输的各种技术的其他操作。在某些方面,计算机可读介质/存储器1012存储用于调度UE以传送PUSCH和PUCCH的代码1014,例如根据本公开的各方面的用于调度UE以在与第一重复次数相关联的一个或多个第一时隙中在PUSCH上进行传送,和调度UE以在与第二重复次数相关联的一个或多个第二时隙中在PUCCH上进行传送的代码,其中被调度的PUSCH和PUCCH传输在至少一个时隙中交叠;以及用于从UE接收或不接收UCI、PUSCH和PUCCH的代码1016,诸如根据本公开的各方面的用于在被调度的PUSCH上从UE接收UCI但不接收被调度的PUCCH传输、在被调度的PUCCH上接收UCI但不接收被调度的PUSCH传输、或者不接收UCI的代码。在某些方面,处理器1004具有被配置成实现存储在计算机可读介质/存储器1012中的代码的电路系统。处理器1004包括用于调度UE以传送PUSCH和PUCCH的电路系统1018;以及用于从UE接收或不接收UCI、PUSCH和PUCCH的电路系统1020。
本文中所公开的方法包括用于实现这些方法的一个或多个步骤或动作。这些方法步骤和/或动作可以彼此互换而不会脱离权利要求的范围。换言之,除非指定了步骤或动作的特定次序,否则具体步骤和/或动作的次序和/或使用可以改动而不会脱离权利要求的范围。
如本文中所使用的,引述一列项目“中的至少一者”的短语是指这些项目的任何组合,包括单个成员。作为示例,“a、b或c中的至少一者”旨在涵盖:a、b、c、a-b、a-c、b-c、和a-b-c,以及具有多重相同元素的任何组合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c,或者a、b和c的任何其他排序)。
如本文中所使用的,术语“确定”涵盖各种各样的动作。例如,“确定”可包括演算、计算、处理、推导、研究、查找(例如,在表、数据库或另一数据结构中查找)、查明及诸如此类。而且,“确定”可包括接收(例如,接收信息)、访问(例如,访问存储器中的数据)及诸如此类。“确定”还可以包括解析、选择、选取、确立及诸如此类。
提供先前描述是为了使本领域任何技术人员均能够实践本文中所描述的各种方面。对这些方面的各种修改将容易为本领域技术人员所明白,并且在本文中所定义的普适原理可被应用于其他方面。由此,权利要求并非旨在被限定于本文中所示出的诸方面,而是应被授予与权利要求的语言相一致的全部范围,其中对要素的单数形式的引述并非旨在表示“有且仅有一个”(除非特别如此声明),而是“一个或多个”。除非特别另外声明,否则术语“一些/某个”指的是一个或多个。本公开通篇描述的各个方面的要素为本领域普通技术人员当前或今后所知的所有结构上和功能上的等效方案通过引述被明确纳入于此,且旨在被权利要求所涵盖。此外,本文中所公开的任何内容都并非旨在贡献给公众,无论这样的公开是否在权利要求书中被显式地叙述。权利要求的任何要素都不应当在35U.S.C.§112(f)的规定下来解释,除非该要素是使用短语“用于……的装置”来明确叙述的或者在方法权利要求情形中该要素是使用短语“用于……的步骤”来叙述的。
以上所描述的方法的各种操作可由能够执行相应功能的任何合适的装置来执行。这些装置可包括各种硬件和/或软件组件和/或模块,包括但不限于电路、专用集成电路(ASIC)、或处理器。一般地,在存在附图中解说的操作的场合,这些操作可具有带相似编号的相应配对装置加功能组件。
结合本公开所描述的各种解说性逻辑块、模块、以及电路可用设计成执行本文所描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件(PLD)、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何市售的处理器、控制器、微控制器、或状态机。处理器还可以被实现为计算设备的组合,例如,DSP与微处理器的组合、多个微处理器、与DSP核心协同的一个或多个微处理器、或任何其他此类配置。
如果以硬件实现,则示例硬件配置可包括无线节点中的处理系统。处理系统可以用总线架构来实现。取决于处理系统的具体应用和整体设计约束,总线可包括任何数目的互连总线和桥接器。总线可将包括处理器、机器可读介质、以及总线接口的各种电路链接在一起。总线接口可被用于将网络适配器等经由总线连接至处理系统。网络适配器可被用于实现PHY层的信号处理功能。在用户终端120(参见图1)的情形中,用户接口(例如,按键板、显示器、鼠标、操纵杆,等等)也可以被连接到总线。总线还可以链接各种其他电路,诸如定时源、外围设备、稳压器、功率管理电路以及类似电路,它们在本领域中是众所周知的,因此将不再进一步描述。处理器可用一个或多个通用和/或专用处理器来实现。示例包括微处理器、微控制器、DSP处理器、以及其他能执行软件的电路系统。取决于具体应用和加诸于整体系统上的总设计约束,本领域技术人员将认识到如何最佳地实现关于处理系统所描述的功能性。
如果以软件实现,则各功能可作为一条或多条指令或代码存储在计算机可读介质上或藉其进行传送。软件应当被宽泛地解释成意指指令、数据、或其任何组合,无论是被称作软件、固件、中间件、微代码、硬件描述语言、或其他。计算机可读介质包括计算机存储介质和通信介质两者,这些介质包括促成计算机程序从一地向另一地转移的任何介质。处理器可负责管理总线和一般处理,包括执行存储在机器可读存储介质上的软件模块。计算机可读存储介质可被耦合到处理器以使得该处理器能从/向该存储介质读写信息。替换地,存储介质可被整合到处理器。作为示例,机器可读介质可包括传输线、由数据调制的载波、和/或与无线节点分开的其上存储有指令的计算机可读存储介质,其全部可由处理器通过总线接口来访问。替换地或补充地,机器可读介质或其任何部分可被集成到处理器中,诸如高速缓存和/或通用寄存器文件可能就是这种情形。作为示例,机器可读存储介质的示例可包括RAM(随机存取存储器)、闪存、ROM(只读存储器)、PROM(可编程只读存储器)、EPROM(可擦式可编程只读存储器)、EEPROM(电可擦式可编程只读存储器)、寄存器、磁盘、光盘、硬驱动器、或者任何其他合适的存储介质、或其任何组合。机器可读介质可被实施在计算机程序产品中。
软件模块可包括单条指令、或许多条指令,且可分布在若干不同的代码段上,分布在不同的程序间以及跨多个存储介质分布。计算机可读介质可包括数个软件模块。这些软件模块包括当由装置(诸如处理器)执行时使处理系统执行各种功能的指令。这些软件模块可包括传送模块和接收模块。每个软件模块可以驻留在单个存储设备中或者跨多个存储设备分布。作为示例,当触发事件发生时,可以从硬驱动器中将软件模块加载到RAM中。在软件模块执行期间,处理器可以将一些指令加载到高速缓存中以提高访问速度。可随后将一个或多个高速缓存行加载到通用寄存器文件中以供处理器执行。在以下述及软件模块的功能性时,将理解此类功能性是在处理器执行来自该软件模块的指令时由该处理器来实现的。
任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或无线技术(诸如红外(IR)、无线电、以及微波)从web网站、服务器、或其他远程源传送而来,则该同轴电缆、光纤电缆、双绞线、DSL或无线技术(诸如红外、无线电、以及微波)就被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括压缩碟(CD)、激光碟、光碟、数字多用碟(DVD)、软盘、和碟,其中盘(disk)常常磁性地再现数据,而碟(disc)用激光来光学地再现数据。因此,在一些方面,计算机可读介质可包括非瞬态计算机可读介质(例如,有形介质)。另外,对于其他方面,计算机可读介质可包括瞬态计算机可读介质(例如,信号)。以上的组合应当也被包括在计算机可读介质的范围内。
由此,某些方面可包括用于执行本文中给出的操作的计算机程序产品。例如,此类计算机程序产品可包括其上存储(和/或编码)有指令的计算机可读介质,这些指令能由一个或多个处理器执行以执行本文中所描述的操作。
此外,应当领会,用于执行本文中所描述的方法和技术的模块和/或其他恰适装置可由用户终端和/或基站在适用的场合下载和/或以其他方式获得。例如,此类设备能被耦合到服务器以促成用于执行本文中所描述的方法的装置的转移。替换地,本文中所描述的各种方法能经由存储装置(例如,RAM、ROM、诸如压缩碟(CD)或软盘之类的物理存储介质等)来提供,以使得一旦将该存储装置耦合到或提供给用户终端和/或基站,该设备就能获得各种方法。此外,可利用适于向设备提供本文中所描述的方法和技术的任何其他合适的技术。
将理解,权利要求并不被限于以上所解说的精确配置和组件。可在以上所描述的方法和装置的布局、操作和细节上作出各种改动、更换和变形而不会脱离权利要求的范围。
Claims (30)
1.一种用于由用户装备(UE)进行无线通信的方法,包括:
接收用于在与第一重复次数相关联的一个或多个第一时隙中在物理上行链路共享信道(PUSCH)上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在物理上行链路控制信道(PUCCH)上进行传送的调度,其中被调度的PUSCH和PUCCH传输在至少一个时隙中交叠;
针对所述一个或多个第一和第二时隙中的每个时隙确定要在所述PUSCH上传送上行链路控制信息(UCI)并丢弃被调度的PUCCH传输、在所述PUCCH上传送所述UCI并丢弃被调度的PUSCH传输、或者丢弃所述UCI传输;以及
根据所述确定在所述一个或多个第一和第二时隙中传送或丢弃所述UCI。
2.如权利要求1所述的方法,其特征在于,所述确定至少部分地基于与所述UCI相关联的第一优先级等级和与所述PUSCH相关联的第二优先级等级。
3.如权利要求1所述的方法,其特征在于,所述确定包括确定要在所述PUCCH上传送调度请求(SR),并且在所述PUSCH上丢弃UCI。
4.如权利要求1所述的方法,其特征在于,所述确定至少部分地基于与所述UCI相关联的信息类型的优先级等级。
5.如权利要求4所述的方法,其特征在于,所述优先级等级按优先级降序包括ACK/NACK信息、调度请求、第一类型的信道状态信息(CSI)和第二类型的CSI。
6.如权利要求1所述的方法,其特征在于,所述确定基于无线电资源控制(RRC)配置。
7.如权利要求1所述的方法,其特征在于,所述确定至少部分地基于以下至少一者:哪个传输被调度成比另一传输更早地传送,或者用于所述传输的资源指派被接收到的时间。
8.如权利要求1所述的方法,其特征在于:
所述第一重复次数大于1,而所述第二重复次数为1;以及
对于所述至少一个时隙中的每个时隙,所述确定基于用于传送UCI的单时隙规则。
9.如权利要求8所述的方法,其特征在于,进一步包括根据所述单时隙规则,确定要用于在所述至少一个时隙中进行传输的波束。
10.如权利要求1所述的方法,其特征在于:
所述第二重复次数大于1;以及
所述确定包括确定要在所述PUCCH上传送UCI并丢弃所述PUSCH。
11.如权利要求10所述的方法,其特征在于,要丢弃所述PUSCH的一个或多个被调度时隙仅包括交叠的所述至少一个时隙。
12.如权利要求1所述的方法,其特征在于,所述确定至少部分地基于是否为所述PUSCH和PUCCH传输配置了多次重复。
13.如权利要求1所述的方法,其特征在于,所述确定至少部分地基于所述UE被调度成在所述PUSCH上进行传送的服务类型。
14.如权利要求13所述的方法,其特征在于,所述服务类型包括增强型移动宽带(eMBB)服务或超可靠低等待时间通信(URLLC)服务。
15.一种用于无线通信的装置,包括:
接收机,其被配置成接收用于在与第一重复次数相关联的一个或多个第一时隙中在物理上行链路共享信道(PUSCH)上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在物理上行链路控制信道(PUCCH)上进行传送的调度,其中被调度的PUSCH和PUCCH传输在至少一个时隙中交叠;
至少一个处理器,其与存储器耦合且被配置成针对所述一个或多个第一和第二时隙中的每个时隙确定要在所述PUSCH上传送上行链路控制信息(UCI)并丢弃被调度的PUCCH传输、在所述PUCCH上传送所述UCI并丢弃被调度的PUSCH传输、或者丢弃所述UCI传输;以及
发射机,其被配置成根据所述确定在所述一个或多个第一和第二时隙中传送或丢弃所述UCI。
16.如权利要求15所述的装置,其特征在于,所述至少一个处理器被配置成至少部分地基于与所述UCI相关联的第一优先级等级和与所述PUSCH相关联的第二优先级等级来作出确定。
17.如权利要求15所述的装置,其特征在于,所述确定包括确定要在所述PUCCH上传送调度请求(SR),并且在所述PUSCH上丢弃UCI。
18.如权利要求15所述的装置,其特征在于,所述至少一个处理器被配置成至少部分地基于与所述UCI相关联的信息类型的优先级等级来作出确定。
19.如权利要求18所述的装置,其特征在于,所述优先级等级按优先级降序包括ACK/NACK信息、调度请求、第一类型的信道状态信息(CSI)和第二类型的CSI。
20.如权利要求15所述的装置,其特征在于,所述至少一个处理器被配置成基于无线电资源控制(RRC)配置来作出确定。
21.如权利要求15所述的装置,其特征在于,所述至少一个处理器被配置成至少部分地基于以下至少一者来作出确定:哪个传输被调度成比另一传输更早地传送,或者用于所述传输的资源指派被接收到的时间。
22.如权利要求15所述的装置,其特征在于:
所述第一重复次数大于1,而所述第二重复次数为1;以及
对于所述至少一个时隙中的每个时隙,所述至少一个处理器被配置成基于用于传送UCI的单时隙规则来作出确定。
23.如权利要求22所述的装置,其特征在于,进一步包括用于根据所述单时隙规则,确定要用于在所述至少一个时隙中进行传输的波束的装置。
24.如权利要求15所述的装置,其特征在于:
所述第二重复次数大于1;以及
所述确定包括确定要在所述PUCCH上传送UCI并丢弃所述PUSCH。
25.如权利要求24所述的装置,其特征在于,要丢弃所述PUSCH的一个或多个被调度时隙仅包括至少一个交叠时隙。
26.如权利要求15所述的装置,其特征在于,所述至少一个处理器被配置成至少部分地基于是否为所述PUSCH和PUCCH传输配置了多次重复来作出确定。
27.如权利要求15所述的装置,其特征在于,所述至少一个处理器被配置成至少部分地基于所述装置被调度成在所述PUSCH上进行传送的服务类型来作出确定。
28.如权利要求27所述的装置,其特征在于,所述服务类型包括增强型移动宽带(eMBB)服务或超可靠低等待时间通信(URLLC)服务。
29.一种用于无线通信的装备,包括:
用于接收用于在与第一重复次数相关联的一个或多个第一时隙中在物理上行链路共享信道(PUSCH)上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在物理上行链路控制信道(PUCCH)上进行传送的调度的装置,其中被调度的PUSCH和PUCCH传输在至少一个时隙中交叠;
用于针对所述一个或多个第一和第二时隙中的每个时隙确定要在所述PUSCH上传送上行链路控制信息(UCI)并丢弃被调度的PUCCH传输、在所述PUCCH上传送所述UCI并丢弃被调度的PUSCH传输、或者丢弃所述UCI传输的装置;以及
用于根据所述确定在所述一个或多个第一和第二时隙中传送或丢弃所述UCI的装置。
30.一种其上存储有用于无线通信的计算机可执行代码的计算机可读介质,包括:
用于接收用于在与第一重复次数相关联的一个或多个第一时隙中在物理上行链路共享信道(PUSCH)上进行传送的调度、和用于在与第二重复次数相关联的一个或多个第二时隙中在物理上行链路控制信道(PUCCH)上进行传送的调度的代码,其中被调度的PUSCH和PUCCH传输在至少一个时隙中交叠;
用于针对所述一个或多个第一和第二时隙中的每个时隙确定要在所述PUSCH上传送上行链路控制信息(UCI)并丢弃被调度的PUCCH传输、在所述PUCCH上传送所述UCI并丢弃被调度的PUSCH传输、或者丢弃所述UCI传输的代码;以及
用于根据所述确定在所述一个或多个第一和第二时隙中传送或丢弃所述UCI的代码。
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862619709P | 2018-01-19 | 2018-01-19 | |
US62/619,709 | 2018-01-19 | ||
US201862710441P | 2018-02-16 | 2018-02-16 | |
US62/710,441 | 2018-02-16 | ||
US201862634797P | 2018-02-23 | 2018-02-23 | |
US62/634,797 | 2018-02-23 | ||
US16/250,542 | 2019-01-17 | ||
US16/250,542 US10973038B2 (en) | 2018-01-19 | 2019-01-17 | UCI transmission for overlapping uplink resource assignments with repetition |
PCT/US2019/014256 WO2019143982A1 (en) | 2018-01-19 | 2019-01-18 | Uci transmission for overlapping uplink resource assignments with repetition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111602365A true CN111602365A (zh) | 2020-08-28 |
CN111602365B CN111602365B (zh) | 2023-06-23 |
Family
ID=67299517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980008829.7A Active CN111602365B (zh) | 2018-01-19 | 2019-01-18 | 用于交叠的重复型上行链路资源指派的uci传输 |
Country Status (10)
Country | Link |
---|---|
US (2) | US10973038B2 (zh) |
EP (1) | EP3741075B1 (zh) |
JP (1) | JP7320516B2 (zh) |
KR (1) | KR20200108852A (zh) |
CN (1) | CN111602365B (zh) |
AU (1) | AU2019210208B2 (zh) |
BR (1) | BR112020014468A2 (zh) |
SG (1) | SG11202005214UA (zh) |
TW (1) | TWI809033B (zh) |
WO (1) | WO2019143982A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022077352A1 (en) * | 2020-10-15 | 2022-04-21 | Apple Inc. | Technologies for reliable physical data channel reception in wireless communications |
WO2023028956A1 (en) * | 2021-09-02 | 2023-03-09 | Apple Inc. | Repeated uplink transmissions in ntn |
CN115804187A (zh) * | 2020-06-30 | 2023-03-14 | 中兴通讯股份有限公司 | 传输信息的确定系统和方法 |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3550918B1 (en) | 2017-01-07 | 2024-06-12 | LG Electronics Inc. | Method for terminal transmitting uplink control channel in wireless communication system, and communication device using same |
US10973038B2 (en) | 2018-01-19 | 2021-04-06 | Qualcomm Incorporated | UCI transmission for overlapping uplink resource assignments with repetition |
MX2020005527A (es) * | 2018-01-24 | 2020-08-20 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Aparato y procedimiento de asignacion de canal de transmision para controlar una transmision sobre un canal de transmision. |
CN111247857B (zh) * | 2018-02-07 | 2023-08-22 | Lg 电子株式会社 | 在无线通信系统中发送或接收信号的方法及其设备 |
JP7057839B2 (ja) * | 2018-04-04 | 2022-04-20 | 北京小米移動軟件有限公司 | スケジューリング・リクエストを伝送するための方法および装置 |
US11723051B2 (en) * | 2018-08-20 | 2023-08-08 | Ntt Docomo, Inc. | User terminal |
US11265854B2 (en) * | 2018-08-21 | 2022-03-01 | Qualcomm Incorporated | Collision handling for physical uplink channel repetition |
WO2020067762A1 (ko) * | 2018-09-27 | 2020-04-02 | 엘지전자 주식회사 | 스케줄링 요청 정보를 전송하는 방법 및 통신 장치 |
US11122591B2 (en) | 2018-10-09 | 2021-09-14 | Qualcomm Incorporated | Physical layer and MAC layer uplink channel prioritization |
US11201702B2 (en) * | 2018-11-13 | 2021-12-14 | At&T Intellectual Property I, L.P. | Facilitating hybrid automatic repeat request reliability improvement for advanced networks |
CN111372316A (zh) * | 2018-12-25 | 2020-07-03 | 北京展讯高科通信技术有限公司 | 上行资源的发送方法及装置 |
US12101774B2 (en) * | 2019-02-15 | 2024-09-24 | Lg Electronics Inc. | Method and apparatus for transmitting and receiving signals in wireless communication system |
US11582077B2 (en) * | 2019-02-25 | 2023-02-14 | Huawei Technologies Co., Ltd. | Systems and methods for transmission of uplink control information over multiple carriers in unlicensed spectrum |
EP3949612A4 (en) * | 2019-03-28 | 2022-04-06 | ZTE Corporation | METHODS AND DEVICES FOR SCHEDULING CONTROL INFORMATION TRANSMISSION |
US12075406B2 (en) * | 2019-03-29 | 2024-08-27 | Lg Electronics Inc. | Method and apparatus for performing a scheduling request based on a prioritized logical channel in wireless communication system |
EP3970400A1 (en) * | 2019-05-13 | 2022-03-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Uplink transmission pre-emption |
US20220264623A1 (en) * | 2019-07-24 | 2022-08-18 | Sharp Kabushiki Kaisha | Priority differentiation of sr transmissions with periodic/semi-persistent csi report |
EP4007396A4 (en) * | 2019-07-31 | 2023-05-03 | Ntt Docomo, Inc. | TERMINAL AND WIRELESS COMMUNICATION METHOD |
EP3908053A4 (en) * | 2019-08-01 | 2022-03-23 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE |
JP7488839B2 (ja) | 2019-08-01 | 2024-05-22 | オッポ広東移動通信有限公司 | 通信方法、端末装置及びネットワーク装置 |
CN113557779B (zh) * | 2019-08-14 | 2024-03-12 | Oppo广东移动通信有限公司 | 调度请求传输的方法和设备 |
KR20210020470A (ko) | 2019-08-14 | 2021-02-24 | 삼성전자주식회사 | 차세대 이동 통신 시스템에서 상향 링크를 지원하기 위한 mimo 설정 방법 및 장치 |
CN112399469B (zh) * | 2019-08-15 | 2022-06-14 | 华为技术有限公司 | 信息传输的方法和装置 |
WO2021029738A1 (ko) * | 2019-08-15 | 2021-02-18 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 채널을 송수신 하는 방법 및 이에 대한 장치 |
US11452123B2 (en) * | 2019-09-17 | 2022-09-20 | Qualcomm Incorporated | Uplink control information multiplexing with dynamic physical uplink shared channel skipping |
US20210007129A1 (en) * | 2019-09-19 | 2021-01-07 | Intel Corporation | Multiplexing rules for configured grant transmissions in new radio systems operating on unlicensed spectrum |
EP4224774A1 (en) * | 2019-09-29 | 2023-08-09 | ZTE Corporation | Systems and methods for transmitting signals |
WO2021072590A1 (zh) * | 2019-10-14 | 2021-04-22 | 北京小米移动软件有限公司 | 混合自动重传请求应答信息发送方法、装置以及存储介质 |
EP4059299A1 (en) * | 2019-11-15 | 2022-09-21 | Qualcomm Incorporated | Transmission of uplink control information (uci) based on priority rules |
CN112825595B (zh) * | 2019-11-21 | 2023-06-06 | 大唐移动通信设备有限公司 | 一种上行信道的传输、接收方法、终端及网络设备 |
CN112929966B (zh) * | 2019-12-05 | 2022-08-05 | 维沃移动通信有限公司 | 上行传输资源选择的方法及终端 |
CN113014360B (zh) * | 2019-12-19 | 2022-07-22 | 中国移动通信有限公司研究院 | 上行控制信道的传输方法、终端及基站 |
US11558887B2 (en) * | 2020-01-31 | 2023-01-17 | Qualcomm Incorporated | Uplink control information piggyback restrictions for ultra-reliable/low-latency communications |
WO2021160840A1 (en) * | 2020-02-13 | 2021-08-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and devices for flexible time-division-duplexing resource allocation to support ultra-reliable low-latency communications |
US11930489B2 (en) * | 2020-02-14 | 2024-03-12 | Qualcomm Incorporated | Overlapping PUCCH and PUSCH transmission |
US11665732B2 (en) | 2020-02-14 | 2023-05-30 | Qualcomm Incorporated | Uplink transmission interruption |
US20230171777A1 (en) * | 2020-03-04 | 2023-06-01 | Qualcomm Incorporated | Multiplexing for physical uplink channels with different directional beams |
EP4136916A4 (en) * | 2020-04-17 | 2023-11-22 | Lenovo (Beijing) Limited | PUCCH REPEAT COUNT DISPLAY |
US20230114310A1 (en) * | 2020-04-21 | 2023-04-13 | Qualcomm Incorporated | Enhanced cg-ul transmission over pusch |
US20230138449A1 (en) * | 2020-05-09 | 2023-05-04 | Mostafa Khoshnevisan | Uplink control information multiplexing |
CN115669122A (zh) * | 2020-05-15 | 2023-01-31 | 苹果公司 | 用于稳健物理上行链路共享信道发射的控制信令 |
US11902027B2 (en) * | 2020-07-01 | 2024-02-13 | Samsung Electronics Co., Ltd. | Mechanisms and conditions for supporting repetitions for a PUCCH transmission |
CN113965955A (zh) * | 2020-07-20 | 2022-01-21 | 展讯通信(上海)有限公司 | 一种通信资源冲突的选择方法及相关产品 |
CN116114346A (zh) * | 2020-08-06 | 2023-05-12 | 株式会社Ntt都科摩 | 终端 |
CN116326017A (zh) * | 2020-08-19 | 2023-06-23 | 高通股份有限公司 | 共享频谱中孤立码元的处置 |
US11863324B2 (en) | 2020-09-11 | 2024-01-02 | Qualcomm Incorporated | Repetition transmissions with overlapping resources |
US11805542B2 (en) * | 2020-09-15 | 2023-10-31 | Acer Incorporated | Method used by UE to multiplex uplink transmissions and UE using the same |
WO2022061578A1 (en) * | 2020-09-23 | 2022-03-31 | Lenovo (Beijing) Limited | Method and apparatus for multiplexing uplink resources |
EP4229961A4 (en) * | 2020-10-19 | 2024-09-18 | Apple Inc | PHASE TRACKING REFERENCE SIGNAL TRANSMISSION FOR IMPROVING PHYSICAL UPLINK SHARED CHANNEL RELIABILITY |
WO2022086262A1 (ko) * | 2020-10-22 | 2022-04-28 | 엘지전자 주식회사 | 상향링크 채널을 전송하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 상향링크 채널을 수신하는 방법 및 기지국 |
WO2022083941A1 (en) * | 2020-10-22 | 2022-04-28 | Sony Group Corporation | Communications device, infrastructure equipment and methods |
WO2022118481A1 (ja) * | 2020-12-04 | 2022-06-09 | 株式会社Nttドコモ | 端末及び通信方法 |
EP4280522A1 (en) * | 2021-01-15 | 2023-11-22 | LG Electronics Inc. | Tboms pusch method and device using method |
US12082167B2 (en) * | 2021-03-29 | 2024-09-03 | Qualcomm Incorporated | Transmission continuity capability reporting |
US20220322395A1 (en) * | 2021-04-02 | 2022-10-06 | Qualcomm Incorporated | Appended uplink control channel resource set for uplink control channel repetition |
EP4338514A1 (en) * | 2021-05-10 | 2024-03-20 | Lenovo (Beijing) Limited | Methods and apparatus of pdsch processing procedure time derivation for harq-ack feedback of pdsch scheduled by enhanced pdcch e |
KR20230017080A (ko) * | 2021-07-27 | 2023-02-03 | 삼성전자주식회사 | 무선 통신 시스템에서 중첩된 상향링크 채널 전송 방법 및 장치 |
US12028861B2 (en) * | 2021-08-05 | 2024-07-02 | Qualcomm Incorporated | Physical uplink control channel repetition across multiple component carriers |
WO2023086690A1 (en) * | 2021-11-09 | 2023-05-19 | Qualcomm Incorporated | Performing actions for transmissions of a device capable of energy harvesting |
US20240244472A1 (en) * | 2023-01-12 | 2024-07-18 | Quectel Wireless Solutions Co., Ltd. | Wireless communication method and apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150036618A1 (en) * | 2013-07-30 | 2015-02-05 | Qualcomm Incorporated | Uplink control information (uci) transmission with bundling considerations |
US20160262182A1 (en) * | 2013-10-14 | 2016-09-08 | Lg Electronics Inc. | Method for enhancing coverage in wireless communication system, and apparatus therefor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3223569A1 (en) * | 2009-06-19 | 2017-09-27 | Interdigital Patent Holdings, Inc. | Signaling uplink control information in lte-a |
WO2014021649A1 (ko) * | 2012-08-01 | 2014-02-06 | 엘지전자 주식회사 | 데이터 송신 및 수신 방법 및 장치 |
WO2014107053A1 (ko) | 2013-01-03 | 2014-07-10 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치 |
CN110086526B (zh) | 2013-12-03 | 2022-03-01 | Lg 电子株式会社 | 在支持mtc的无线接入系统中发送上行链路的方法和设备 |
SG10202009141VA (en) * | 2014-01-29 | 2020-11-27 | Interdigital Patent Holdings Inc | Uplink transmissions in wireless communications |
CN110383912A (zh) | 2016-12-13 | 2019-10-25 | 夏普株式会社 | 基站、用户设备和相关通信方法 |
CN110192422B (zh) | 2017-02-05 | 2023-07-18 | Lg电子株式会社 | 在无线通信系统中发送/接收与免许可资源关联的信号的方法和装置 |
CN111434064B (zh) | 2017-06-27 | 2023-04-04 | 苹果公司 | 上行链路控制信息传输和混合自动重传请求处理标识 |
US10973038B2 (en) | 2018-01-19 | 2021-04-06 | Qualcomm Incorporated | UCI transmission for overlapping uplink resource assignments with repetition |
-
2019
- 2019-01-17 US US16/250,542 patent/US10973038B2/en active Active
- 2019-01-18 BR BR112020014468-1A patent/BR112020014468A2/pt unknown
- 2019-01-18 JP JP2020539852A patent/JP7320516B2/ja active Active
- 2019-01-18 KR KR1020207020942A patent/KR20200108852A/ko not_active Application Discontinuation
- 2019-01-18 SG SG11202005214UA patent/SG11202005214UA/en unknown
- 2019-01-18 WO PCT/US2019/014256 patent/WO2019143982A1/en active Application Filing
- 2019-01-18 CN CN201980008829.7A patent/CN111602365B/zh active Active
- 2019-01-18 AU AU2019210208A patent/AU2019210208B2/en active Active
- 2019-01-18 EP EP19704130.4A patent/EP3741075B1/en active Active
- 2019-01-18 TW TW108101983A patent/TWI809033B/zh active
-
2020
- 2020-12-29 US US17/136,797 patent/US11405940B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150036618A1 (en) * | 2013-07-30 | 2015-02-05 | Qualcomm Incorporated | Uplink control information (uci) transmission with bundling considerations |
US20160262182A1 (en) * | 2013-10-14 | 2016-09-08 | Lg Electronics Inc. | Method for enhancing coverage in wireless communication system, and apparatus therefor |
Non-Patent Citations (2)
Title |
---|
HUAWEI ET AL.: "Discussion on UCI feedback for URLLC", 《3GPP TSG RAN WG1 AD HOC MEETING R1-1800054》 * |
PANASONIC: "PUSCH/PUCCH overlap handling", 《3GPP TSG RAN WG1 MEETING #83 R1-156951》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115804187A (zh) * | 2020-06-30 | 2023-03-14 | 中兴通讯股份有限公司 | 传输信息的确定系统和方法 |
WO2022077352A1 (en) * | 2020-10-15 | 2022-04-21 | Apple Inc. | Technologies for reliable physical data channel reception in wireless communications |
WO2023028956A1 (en) * | 2021-09-02 | 2023-03-09 | Apple Inc. | Repeated uplink transmissions in ntn |
Also Published As
Publication number | Publication date |
---|---|
US11405940B2 (en) | 2022-08-02 |
US20210136791A1 (en) | 2021-05-06 |
SG11202005214UA (en) | 2020-08-28 |
AU2019210208A1 (en) | 2020-07-02 |
EP3741075A1 (en) | 2020-11-25 |
US10973038B2 (en) | 2021-04-06 |
EP3741075C0 (en) | 2023-09-06 |
BR112020014468A2 (pt) | 2020-12-01 |
AU2019210208B2 (en) | 2023-06-01 |
JP2021512530A (ja) | 2021-05-13 |
KR20200108852A (ko) | 2020-09-21 |
EP3741075B1 (en) | 2023-09-06 |
JP7320516B2 (ja) | 2023-08-03 |
CN111602365B (zh) | 2023-06-23 |
WO2019143982A1 (en) | 2019-07-25 |
US20190230683A1 (en) | 2019-07-25 |
TW201933925A (zh) | 2019-08-16 |
TWI809033B (zh) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111602365B (zh) | 用于交叠的重复型上行链路资源指派的uci传输 | |
CN112106319B (zh) | 新无线电的物理上行链路共享信道上的上行链路控制信息复用 | |
CN112514296B (zh) | 协调发射的反馈模式指示 | |
CN110431798B (zh) | 用于时隙格式指示符(sfi)冲突处置的方法和装置 | |
CN110249580B (zh) | 用于物理上行链路控制信道(pucch)的资源分配 | |
CN111567002A (zh) | 时隙聚集中的解调参考信号(dmrs)集束和用于新无线电的时隙格式考虑 | |
CN113170495A (zh) | 用于dci重复的修剪规则 | |
CN111670550A (zh) | 用于时隙聚集的信令 | |
CN111937324A (zh) | 集成接入和回程中的调度和时域配置 | |
CN111971919B (zh) | 用于pusch上的csi报告的冲突处理 | |
CN111937465A (zh) | 在rrc建立之前的pucch资源分配 | |
CN111345051A (zh) | 用于减小ue能力信息消息大小的方法和装置 | |
CN111758235A (zh) | 载波聚合/多连接模式下的上行链路抢占 | |
CN112219358A (zh) | 用于共享频谱中毫米波系统的波束完善参考信号(brrs)设计 | |
KR102714303B1 (ko) | 물리 업링크 공유 채널 (pusch) 상에서 업링크 제어 정보 (uci) 및 데이터 멀티플렉싱을 위한 리소스 할당 | |
CN112005514B (zh) | 存在下行链路抢占指示情况下的pdsch处理 | |
CN112534759A (zh) | 探测参考信号(srs)与其他上行链路信道之间的冲突 | |
CN112425109A (zh) | 多载波调度和搜索空间激活 | |
CN111656824A (zh) | 上行链路功率控制配置 | |
CN110892665B (zh) | 物理上行链路控制信道(pucch)序列配置 | |
CN114208368A (zh) | 用于harq-ack的非数值反馈定时指示符 | |
CN111630806B (zh) | 上行链路控制信息(uci)到资源元素(re)映射 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |